
FACULTY of MATHEMATICS, PHYSICS and INFORMATICS
COMENIUS UNIVERSITY

BRATISLAVA

MASTER THESIS

Bratislava, 2003. april, Gabriel Farkas



FACULTY of MATHEMATICS, PHYSICS and INFORMATICS
COMENIUS UNIVERSITY

BRATISLAVA
DEPARTMENT of GEOMETRY

BLENDING of CANAL SURFACES

Author: Gabriel Farkas
Consultant: RNDr. Pavel Chalmovianský, PhD.



I honestly allege that i have developed the master thesis independently only
with the use of the literature listed in the bibliography

.......................
Gabriel Farkas



I would like to thank to my diploma thesis consultant Pavel Chalmo-
vianský for his valuable advices, remarks and suggestions.



Contents

1 Introduction 3

2 Preliminaries/Basic notions 4
2.1 Boundary representation (b-rep) . . . . . . . . . . . . . . . . . 4

2.1.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Representation of the mesh . . . . . . . . . . . . . . . 6

2.2 Functional representations . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Implicit surfaces . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Bézier curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Bernstein polynomials . . . . . . . . . . . . . . . . . . 13
2.3.2 Bézier segments . . . . . . . . . . . . . . . . . . . . . . 14

3 The blending algorithm 15
3.1 An intuitive overview . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Input-output characterization . . . . . . . . . . . . . . . . . . 17

3.3.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Blending between two selections . . . . . . . . . . . . . . . . . 18
3.4.1 calculate the rings from the selections . . . . . . . . . . 19
3.4.2 remove the selections . . . . . . . . . . . . . . . . . . . 19
3.4.3 generate the worms . . . . . . . . . . . . . . . . . . . . 19
3.4.4 determine a suitable form for the worm . . . . . . . . . 23

3.5 Blending between three or more selections . . . . . . . . . . . 30
3.5.1 Creating the virtual sphere . . . . . . . . . . . . . . . . 30
3.5.2 Mapping a ring to a sphere . . . . . . . . . . . . . . . . 30
3.5.3 Connecting the mapped rings with the original rings . 32
3.5.4 Eroding the sphere mesh . . . . . . . . . . . . . . . . . 32

4 Summary and Future Work 35

1



5 Results 37

2



Chapter 1

Introduction

Computer graphics offers many approaches to represent the reality or the
unreal if needed: boundarily represented objects, functional representations,
fractals, particle systems just to name a few. Everyone of these approaches
(techniques) offer different advantages and disadvantages, some are excellent
to represent organic materials for example but lack the ability to construct
technical object from them. Other representations are easily used to cre-
ate strictly defined clearly shaped objects, but are unable to capture the
characteristics of the more chaotic systems.

That is the reason why the users of computer graphics usually select the
approach based on the problem to solve. In our work, we will try to break
the barrier between some of those representations and will try to show that
with a little help from the computer and the user representations can have
properties that usually belong to other ones.

The implicit surfaces are well known for their ease to use to create smooth
blendings. This effect comes naturally because of their very definition. Our
goal is to mimic this behaviour with boundarily represented objects (meshes
to be more precise).

But curiousity or lust to adventures are not the only reasons why we are
planning to explore this possibility. Many graphic designers prefer to work
with meshes, because of their easier to understand properties (it is made of
triangles after all). We hope that with our work even they will be able to
experiment with features usually reserved to implicit surfaces.

Our work is organized in the following manner: first in Chapter 2 we
introduce the mathematical background needed for our work, then in Chap-
ter 3 we show our approach to blend triangular surfaces. In Chapter 4 we
summarize our work and list ideas on possible future improvements, and in
Chapter 5 we show some characteristic results of our algorithm.

3



Chapter 2

Preliminaries/Basic notions

2.1 Boundary representation (b-rep)

One of the most used object representations deals with the description of the
boundary of the object, because:

• it is the most natural representation (people usually draw the boundary
of the objects)

• the inner part can be calculated from the boundary. ??? HOW ???

As always, we begin with defining our basic working structure, the mesh [1].

2.1.1 Mesh

Let A denote a set. The set of all possible selections of n elements created
from the elements of the set A without repetition will be denoted An. By
(a0, . . . , an−1) we denote the elements of A, called ordered n− tuples. Let
A[n] be the set of all cyclically and reverse unordered n − tuples. The
elements of A[n] are denoted [a0, . . . , an−1], where ai ∈ A, i ∈ Zi. The set
A[n] is the set An factored by relation of equivalence ' generated by relations:

(a0, . . . , an−2, an−1) ' (a0, an−1, . . . , an−2)

(a0, a1, . . . , an−2, an−1) ' (an−1, an−2, . . . , a1, a0)for all (a0, . . . , an−1

According to this A[n] = An/'.
We say that the element [b0, . . . , bk−1] is a sub− element of [a0, . . . , an−1], ai ∈

A, k ≤ n and denote [b0, . . . , bk−1] ⊂ [a0, . . . , an−1], iff there exist elements
c0, . . . , cn−k−1 ∈ A such that (a0, . . . , an−1) ' (b0, . . . , bk−1, c0, . . . , cn−k−1.
We say that [b0, . . . , bk−1] is incident with [a0, . . . , an−1] and vice versa.

4



Definition 2.1.1 An abstract 2-dimensional cell complex C = (V , E ,F)
is a triple of sets:

V 6= ∅ is a countable set of vertices - called also the set of 0-faces,

E ⊂ V [2] is a set of edges - called also the set of 1-faces,

F ⊂
⋃∞

i=3 V [i] is a set of faces, or 2-faces,

satisfying the following conditions:

1. if u ∈ V, there exists v ∈ V , u 6= v such that [u, v] ∈ E (that is, there
are no isolated vertices),

2. if [v0, v1, . . . , vk−1] ∈ F , then [v0, v1], [v1, v2], . . . , [vn−2, vn−1], [vn−1, v0] ∈
E (E must contain all edges of a face)

3. [u, v] ∈ E, then there is a face F ∈ F such that [u, v] ⊂ F (all edges are
contained in a face),

4. if [u, v] ∈ E, there are no more than two faces F1, F2 ∈ F such that
[u, v] ⊂ F1 and [u, v] ⊂ F2 (maximally 2 faces are sharing an edge),

5. if v ∈ V and the set Loop(v) = {u ∈ V | ∃F ∈ F ∧ v ∈ F ∧ u ∈
F ∧ u 6= v} is finite with k elements u0, . . . , uk−1, then there exists an
ordering of elements (u0, . . . , uk−1) of Loop(v) so that [ui, ui+1] is edge
of F ∈ F with v ∈ F ∀i = 0, . . . , k − 2.

Definition 2.1.2 A Mesh M(V,E,F) is a special case of cell complex (see
Definition 2.1.1)- the vertex set is made up from points in R3. An edge e is
called a boundary edge of M(V,E,F) if it is not shared by two faces. A vertex
v is called boundary vertex if it belongs to a boundary edge. The mesh is said
to be closed if it has no boundary edges. Otherwise, M(V,E,F) is an open
mesh.

We list several functions which will be used in the following text:

vnv(v), v ∈ V the neighboring vertices of a vertex:

vnv(v) = {w ∈ V |[w, v] ∈ E} (2.1)

vnf(v),v ∈ V the neighboring faces of a vertex:

vnf(v) = {f ∈ F |∃wi1 , . . . , win ∈ V : [v, wi1 , . . . , win ] = f} (2.2)

5



vne(v),v ∈ V the neighboring edges of a vertex:

vne(v) = {e ∈ E|∃w ∈ V : [w, v] = e} (2.3)

env(e),e ∈ E the vertices of an edge:

env(e) = {v, w},where {v, w} ⊂ V ∧ [v, w] = e (2.4)

ene(e),e ∈ E the neighboring edges of an edge:

ene(e) = {e′ ∈ E|∃w1, w2, w3 ∈ V : [w1, w2] = e ∧ [w2, w3] = e′} (2.5)

enf(e),e ∈ E the neighboring faces of an edge:

enf(e) = vnf(v) ∩ vnf(w), where [v, w] = e (2.6)

fnv(f),f ∈ F the vertices of a face:

fnv(f) = {vi1 , . . . , vin},where {vi1 , . . . , vin} ⊂ V ∧ [vi1 , . . . , vin ] = f
(2.7)

fne(f),f ∈ F the neighboring edges of a face:

fne(f) = {[v, w] ∈ E|∃wi1 , . . . , win ∈ V : [v, w, wi1 , . . . , win ] = f}
(2.8)

fnf(f),f ∈ F the neighboring faces of a face:

fnf(f) = {f ′ ∈ F |f ′ 6= f ∧ fnv(f) ∪ fnv(f ′) 6= ∅} (2.9)

As an example see Figure 2.1 for an example of a valid and a not valid
mesh. The second mesh is not valid because the edge e belongs to more than
two faces, not satisfying thereby condition 4 of Definition 2.1.1.An additional
Figure 2.2 shows an interesting valid mesh, a Klein bottle, non-orientable and
self-intersecting.

2.1.2 Representation of the mesh

In our algorithm we often need to query the mesh for different kinds of
neighborhood-related information (get the list of the neighboring vertices
of a vertex, the neighboring faces of a vertex, the neighboring faces of a
face etc.). Therefore it is essential for us to be able to query fast for these
information. As fast enough we consider constant time or linear dependent
on some local characteristic (valence of a vertex, number of the vertices of a
face) time responses. Here we explore different representations:

6



Figure 2.1: A valid and a non-valid mesh. The mesh on the left is not valid
because the edge e is shared by more than two faces

Face list

Every face is defined as a list of its vertices. The face is defined as a list of
edges. The reason for his popularity is the fact, that this structure is well
suited for hardware accelerated displaying. Its disadvantage is bad perfor-
mance in adjacency queries (o(n) for most queries).

Winged Edge

Proposed by B.Baumgart [2] .It was originally developed for manifold meshes
with no holes in the faces, and later extended to handle those situations, but
we will not explore those modifications because they are not needed for our
algorithm.

Its basic idea is to use edges as the central information holders. For each
edge we store the following information (see Figure 2.3: (for edge a))

• vertices of this edge (X,Y )

• its left and right faces (1,2)

• the predecessor and successor edges of this edge when traversing its left
face (b,d)

• the predecessor and successor edges of this edge when traversing its
right face (e,c)

7



Figure 2.2: The Klein bottle mesh

Figure 2.3: The winged edge data structure

With those informations we can build a edge table. This example shows
one row of the edge table which corresponds to Figure 2.3

We need two more, very simple tables, which contain:

• for each vertex v ∈ V one edge that is incident to this vertex and the
position of the vertex

• for each face one of it’s boundary edges

8



Edge Vertices Faces Left Traverse Right Traverse
Name Start End Left Right Pred Succ Pred Succ

a X Y 1 2 b d e c

Table 2.1: Winged edge representation

This representation is able to answer the necessary queries (Section 2.1.2)
fast enough. Another advantage of him is its constant sized data structures.

Halfedge

Published by Eastman [3], also called as “Doubly-connected edge list”. Every
edge is represented by 2 directed “halfedges”. For every halfedge we have a
record of (see Figure 2.4): (edge e)

• the vertex at the end of the halfedge (V )

• the oppositely oriented halfedge (f)

• the face the halfedge borders (P )

• the next halfedge around the face (g)

Figure 2.4: The halfedge data structure

9



We create two more tables, one for the vertices. The first table serves as
a storage for every vertex: we store one of the halfedges that start from each
vertex and the position of the vertex. The other table contains for every face
one of its bordering halfedges. With those information the time complexity
of the queries (Section 2.1.2) is fast enough.

2.2 Functional representations

2.2.1 Implicit surfaces

See Figure 2.5 and Figure 2.6 as examples of this representation.

Figure 2.5: Changing of the implicit surface by two moving control points

An implicit surface is defined by a continuous function f : R3 → R which
assigns a scalar value to each point of the space. The surface S is defined as:

S = {p ∈ R3|f(p) = 0} (2.10)

TODO: POINTS AND VECTORS SHOULD BE BOLD!
As we can see implicit surfaces are contours (isosurfaces) of a scalar field.

The function f can be seen as the field potential at a given point in space. The
isosurface is usually constructed from a set of control points ( v0, . . . , vn ∈ R3

10



Figure 2.6: More complex example of the natural blending of the implicit
surfaces

), and the field potential is f(p) =
∑n

i=1 D(ri), where D(ri) is the field
function and ri denotes the square of the euclidean distance between the
points p and vi (ri(p, vi) = ‖p− vi‖2).

There are plenty of ways for the definition of the function D(r). The
methods are classified according to them.

Distance based approach : The numerically simplest solution is to define:

D(r) = 1/r2. (2.11)

Blobs Another field function was proposed by Jim Blinn (it is based on the
electron density fields):

D(r) = ae−br2

, (2.12)

where a is called threshold, and relates to the height, and b is called
blobbyness, and relates to the standard deviation of the curve.

There are two problems with the above solutions:

1. To calculate the field value in one point, we have to summarize the con-
tribution from all the control points. That means the the computation
time linearly depends on the number of control points.

2. The usual rendering method of implicit surfaces uses ray-tracing, which
involves finding the intersections between rays and the implicit surface.
Because of that it’s desired to use simple functions, what is definitely
not the case for the above mentioned two solutions.

These two problems are solved in the following approaches.

11



Metaballs Nishimura [7] uses the following formula:

D(r) =


a(1− 3r2/b2) 0 ≤ r ≤ b/3
3a/2(1− r/b)2 b/3 ≤ r ≤ b
0 b ≤ r

(2.13)

Soft Objects Wivil [8] proposes the following field function:

D(r) =

{
a(1− (4r6/9b6) + (17r4/9b4)− (22r2/9b2)) r2 < b2

0 r2 ≥ b2

(2.14)
a scales the function, and b specifies the distances after which the given
control point has no influence on the field strength. One of its advan-
tages over the metaballs is that it only uses squares, so it is not neces-
sary to compute square roots (which are usually slower to compute).

For a comparison between the different approaches see Figure 2.7 For

Figure 2.7: A Comparison of the value of the field function (D(r)) depending
on the distance(r)for the different approaches

more information see [4] and [5] As we have seen using implicit surfaces it’s
relatively simple to achieve the geometric operation we are trying to create.

12



2.3 Bézier curves

2.3.1 Bernstein polynomials

The Bernstein polynomial of degree n is defined as

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, i ∈ {0, . . . , n}, t ∈ R (2.15)

They have a number of useful properties[9]. They have extreme values at

Figure 2.8: Examples of of the simpler bernstein polynomials

Bi,n(0) =

{
0 for i = 1, 2, . . . , n
1 for i = 0 or 1,

(2.16)

Bi,n(1) =

{
0 for i = 1, 2, . . . , n
1 for i = 0 or 1,

(2.17)

satisfy symmetry
Bi,n(t) = Bn−i,n(1− t), (2.18)

positivity
Bi,n(t) ≥ 0 for 0 ≤ t ≤ 1, (2.19)

normalization
n∑

i=0

Bi,n(t) = 1, (2.20)

can be recursively calculated as

Bi,n(t) = (1− t)Bi,n−1(t) + tBi−1,n−1(t), (2.21)

13



and Bi,n with i 6= 0, n has a single unique local maximum of

iin−n(n− i)n−i

(
n

i

)
(2.22)

occurring at t = i/n.

2.3.2 Bézier segments

Given a set n+1 control points P0, P1, . . . , Pn ∈ R3, the corresponding Bézier
segment is given by

C(t) =
n∑

i=0

PiBi,n(t) (2.23)

where Bi,n(t) is a Bernstein polynomial and t ∈ [0, 1].

Figure 2.9: Example of a fifth order two dimensional Bézier curve

They have some useful properties inherited from the Bernstein polyno-
mials such that,

• they pass through the first and last control points because of (2.16)

• they lie within the convex hull of the control points (because the curve
is a convex combination of the control points, see (2.19) and (2.20))

• they can be split at an arbitrary t ∈ (0, 1) because of (2.21). This
algorithm is called the de Casteljau algorithm.

Their undesirable properties are their numerical instability for large num-
ber of control points, and the fact that moving a control point changes the
whole curve. That can be avoided by using multiple lower degree Bézier
curves.

14



Chapter 3

The blending algorithm

The aim of this chapter is to describe the algorithm we developed. We give
an informal overview of the algorithm, define the input-output constrains,
formally describe every step of the algorithm and show some basic time
estimations.

3.1 An intuitive overview

The input consist of a mesh and a list of “selections”. A selection is an area
on the surface of the mesh selected by the user. Our algorithm basically forms
smoothly blended canal surfaces between these selections, thereby mimicking
the blending of implicit surfaces. We call the boundary of the selections
“rings” (because of their circular shape), and the canal surfaces “worms”.

For the case when there are only two selections, the forming of the blend-
ing canal surface is intuitive (see Figure 3.1)

For the case when there are three or more selections we choose the fol-
lowing method: We add a virtual sphere to the scene and create the blend-
ing surfaces between the selections and the sphere (see Figure 3.2) We call
the blending surface formed by the virtual sphere and the canal surfaces
(“worms”) a “hydra” (after the serpent-like creature from the Greek mythol-
ogy with multiple heads, see Figure 3.3).

3.2 Basic definitions

Definition 3.2.1 A selection SM = {f1, . . . , fn} is a subset of the faces of
mesh M ( M = (V, E, F ) : ∀i ∈ {1, . . . , n} : fi ∈ F}, where between every
two faces of the selection there is a list of connected faces from the selection:

15



MESHES
RING
WORM

Figure 3.1: Creating a blended canal surface (a “worm”) between two surfaces

∀f1, f2 ∈ SM : ∃f ′i1 , . . . , f
′
in ∈ SM : fik+1

∈ fnf(ik), k ∈ {1, . . . , n− 1} (3.1)

Definition 3.2.2 The boundary of the selection can be defined as the set of
those vertices, which have neighboring faces from both the selection, and the
complement of the selection:

boundary(SM) = {v ∈ V |∃f1, f2 ∈ F : {f1, f2} ⊂ vnf(v)∧ f1 ∈ SM ∧ f2 /∈ SM

(3.2)
Because of (3.1) the boundary vertices can be ordered into a circular list,

where every two consecutive vertices are neighbors.

Definition 3.2.3 The ring is a circular list of the boundary vertices of a
selection. For the sake of simplicity we define them as tuples:

ring(SM) = (v1, . . . , vn), where vk ∈ boundary(SM) ∧ k ∈ {1, . . . , n}
∧vk+1 ∈ vnv(vk)∀k ∈ {1, . . . , n− 1} ∧ v1 ∈ vnv(vn) (3.3)

Definition 3.2.4 The center of a ring R = (v1, . . . , vn) is a point Pr ∈ R3

defined as:

Pr =
n∑

i=1

(1/n)vi (3.4)

Definition 3.2.5 The normal vector of a ring R = (v1, . . . , vn} is the vector
−→nR defined as the normal vector of the plane pR defined by three noncolinear
vertices from R for which plane the sum of the distances of the other vertices
from the plane is the least.

16



MESHES
CENTRAL SPHERE
WORM
RING

Figure 3.2: Creating a blended canal surface (a “hydra”) between three sur-
faces

3.3 Input-output characterization

3.3.1 Input

mesh M The mesh1 may contain boundary edges because our algorithm
only modifies the surface2 locally,but must not contain them around
the selections (the neighbors of the vertices of the rings must not be
boundary vertices).

set of selections L = {S1, . . . , Sn}
1One must realize that there is no fundamental difference between blending together

the selected parts of multiple meshes, and blending together the selections of a single mesh.
The blending between multiple meshes can simply be achieved by generating the union
of all the input meshes and working with it as a single mesh. This is the reason why our
algorithm works on a single mesh and not on multiple meshes

2In the following text we will use the term mesh and surface interchangeably

17



Figure 3.3: (Iolaos, Hydra , Herakles) THE HYDRA LERNAIA was a gi-
gantic serpent-like creature living in water with nine heads, one of which was
immortal. She was slain by Herakles who buried her immortal head beneath
a boulder

3.3.2 Output

Mesh N A mesh defined as a list of faces, which is formed by the input mesh
deformed the way as required by the user (the selected parts blended
together)

3.4 Blending between two selections

The algorithm can be shortly described as:

1. calculate the rings from the selections

2. remove the selections from the mesh

3. determine a suitable form for the worm3

4. generate the worm

3In the following text this step will be discussed after the fourth step, because to
understand the mechanism for selecting a suitable form for the worm, one must understand
the way the worm is defined

18



3.4.1 calculate the rings from the selections

First observe that determining whether a vertex, edge or face lies on the
boundary of the selection involves determining whether it has a neighboring
face which is not part of the selection. It can be done in three steps:

1. for every face check whether it is a boundary face or not

2. for every vertex of the boundary faces check whether they are boundary
vertices or not

3. order the boundary vertices in the order required by Definition 3.2.3

3.4.2 remove the selections

This step is necessary because without it the edges forming the boundary
of the selection would be shared by more than two faces, thereby violating
Condition 4 of Definition 2.1.2. It is a simple face removal algorithm which
can be done fast enough on the halfedge data structure4.

3.4.3 generate the worms

The problem can be defined as generate a canal surface, the ends of which
touch the two rings. The form of the worm is defined using cubic bezier
curves. Refer to Figure 3.4 where you can see three cubic bezier curves
(B1, B2, B3), and their control polygons (Ai,k). In the following we will use
n to denote the number of bezier curves.

The input for our algorithm for generating the worm consists of:

• The control points for the bezier curves:

Ai,k,where i ∈ {1, . . . , n} and k ∈ {1, . . . , 4}

• The value defining the number of samples we take from the bezier curve:

r (example: if r = 4, we take four samples (at t = 0,t = 0.33,t =
0.66,t = 1)

We denote the worms as Wn,r (example: the Figure 3.5 refers to a W3,9: three
bezier curves sampled at nine points)

The algorithm to generate the worms is the following:

4When using the term “fast enough” we refer to the time constrains defined in Section
2.1.2

19



sample the value of the bezier curves at the given intervals We de-
note the sampled values as Ci,k, where i ∈ {1, . . . , n} and k ∈ {1, . . . , r}.
Therefore:

Ci,k = B0,3(t)Ai,1 + B1,3(t)Ai,2 + B2,3(t)Ai,3 + B3,3Ai,4,

where t = (k − 1)(1/r), k ∈ {1, . . . , r} and Bj,l is the j-th Bernstein
polynomial of degree l.

Refer to Figure 3.5 where the value of the Bezier curves is already
sampled at uniform intervals (Ci,k).

generate the triangle strips which form the surface of the worm A
triangle strip is a list of triangle where each two consecutive triangles
share an edge.

The worms surface is formed by triangle strips inserted in between every
two consecutive triangle strips. Refer to Figure 3.6 for an example of
one of the triangle strips created, and to Figure 3.7 for an example of
all the strips created.

A3,4A3,1

A3,2 A3,3

B3

B2

B1

A2,4
A2,3

A2,2

A2,1

A1,1

A1,2 A1,3

A1,4

CONTROL POLYGON
BEZIER CURVE

Figure 3.4: Constructing the worm: the first step: showing the bezier curves
and the control polygons

The worms surface is formed by as many triangle strips as the number
of the bezier curves. Therefore the worm Wn,r is made of n triangle
strips.

The algorithm for generating the triangle strips in pseudo-code:

20



A3,4A3,1

A3,2 A3,3

B3

B2

B1

A2,4
A2,3

A2,2

A2,1

A1,1

A1,2 A1,3

A1,4
BEZIER CURVE

C5,1
C4,1

C6,1
C7,1

C8,1

C9,1
C1,1

C2,1

C1,2 C2,2
C3,2

C3,1

C4,2
C5,2

C6,2

C7,2

C8,2
C9,2

C1,3

C2,3

C3,3

C4,3 C5,3 C6,3 C7,3

C8,3

C9,3

CONTROL POLYGON

Figure 3.5: Constructing the worm: the second step: showing the bezier
curves, the control polygons and the points sampled uniformly on the curves

for curve = 1 to n :
for sample = 1 to k :

nextcurve = ( curve + 1) mod n
p0 = C [ curve ] [ sample ]
p1 = C [ nextcurve ] [ sample ]
p2 = C [ nextcurve ] [ sample+1]
addTriangle (p0 , p1 , p2 )

q0 = C [ nextcurve ] [ sample+1]
q1 = C [ curve ] [ sample+1]
q2 = C [ curve ] [ sample ]
addTriangle (q0 , q1 , q2 )

On Figure 3.6 the first triangle strip is made, and on Figure 3.7 the worm
is completed.

21



A3,4A3,1

A3,2 A3,3

B3

B2

B1

A2,4
A2,3

A2,2

A2,1

A1,1

A1,2 A1,3

A1,4
BEZIER CURVE

C5,1
C4,1

C6,1
C7,1

C8,1

C9,1
C1,1

C2,1

C1,2 C2,2
C3,2

C3,1

C4,2
C5,2

C6,2

C7,2

C8,2
C9,2

C1,3

C2,3

C3,3

C4,3 C5,3 C6,3 C7,3

C8,3

C9,3

CONTROL POLYGON

Figure 3.6: Constructing the worm: the third step: showing the bezier curves,
the control polygons, the sampled points and one of the triangle strips

A3,4A3,1

A3,2 A3,3

B3

B2

B1

A2,4
A2,3

A2,2

A2,1

A1,1

A1,2 A1,3

A1,4
BEZIER CURVE

C5,1
C4,1

C6,1
C7,1

C8,1

C9,1
C1,1

C2,1

C1,2 C2,2
C3,2

C3,1

C4,2
C5,2

C6,2

C7,2

C8,2
C9,2

C1,3

C2,3

C3,3

C4,3 C5,3 C6,3 C7,3

C8,3

C9,3

CONTROL POLYGON

Figure 3.7: Constructing the worm: the fourth, final step: showing the bezier
curves, the control polygons, the sampled points and all the triangle strips

22



3.4.4 determine a suitable form for the worm

As we have seen in the previous section positioning the bezier curves suitably
is crucial for achieving smooth blendings, because the bezier curves define
the form of the worm. The number of bezier curves used is defined by the
number of vertices contained in the longer ring:

ring1= {v1, . . . , vh}, ring2= {w1, . . . , wj} : n = max(h, j)
For every curve we have to calculate four control points:A1, A2, A3, A4.
The calculation algorithm can be described by the following steps:

Calculate the first and the last control point The first and the last con-
trol point has to be a vertex of the rings to actually connect the worm
to the surface.

Two problems arise when selecting the first and the last control point:

• Which vertex do we select from the first and which vertex from
the second ring, or more formally: how to find the function which
maps the vertices of the first ring into the vertices of the second
ring? The solution is described in Section 3.4.4

• How do we select the bezier curves if the number of the vertices
in the two rings is not the same? The solution is described in the
Section 3.4.4

Calculate the second and the third control point Theoretically the sec-
ond and the third control point can be at an arbitrary point in the
space, the worm will still connect the two rings. But to achieve smooth
blending, more care is needed. Our proposed algorithm for selecting
the second and third vertex is described in Section 3.4.4

Finding the correct mapping

We consider two cases:

both rings contain the same number of vertices In this case we use
the most straightforward mapping:

we map the i-th vertex from the first ring into the i=th vertex of the
second ring.

ring1= {v1, . . . , vl} and ring2= {w1, . . . , wl}.
Then we will use l bezier curves B1, . . . , Bl, for which: Aj,1 = vj and
Aj,4 = wj, j ∈ {1, . . . , l}

23



one of the rings contains more vertices than the second ring Let the
first ring have more vertices (the solution is symmetric if the second
ring has more vertices).

let us denote the first ring as ring1 and the second ring as ring2.

We solve the problem by adding vertices into ring2. We expand ring2 to
contain the same number of vertices as ring1 and then use the algorithm
for mapping two identically long rings.

The expanding algorithm is described in Section 3.4.4

Expanding a ring to a given length

As an explanation of the expanding algorithm refer to Figure 3.8. Here we
have a ring containing four vertices (V0, . . . , V4), which has to be expanded
to contain twelve vertices (W0, . . . ,W11).

We have to warn the reader that the figure is wrong in one fact: vertices
W0, W1, W2 are at the same position as vertex V0, vertices W3, W4, W5 at the
same place as vertex V1 and so on. The Figure is drawn this way to make
the expanding algorithm easier to understand.

What we do is the following:

1. We replace the ring containing the four vertices with a ring containing
twelve vertices, where the twelve vertices are not yet defined

2. we assign W0 = V0, W3 = V1, W6 = V2, W9 = V3

3. we sequentially examine every vertex of the ring beginning with W0

and ending with W11, and if the vertex is not yet defined, we define it
to be the same as the previous vertex.

This way we get V0 = W0 = W1 = W2, V1 = W3 = W4 = W5, V2 =
W6 = W7 = W8, V3 = W9 = W10 = W11

The pseudo-code of the algorithm used here:
The ring is defined as R = (v0, . . . , vl−1) and has to be expanded to contain
m vertices.
Our algorithm produces a new ring (P ) which is a copy of the ring on input
expanded to the required length.
the function “int” is defined as int(x) = bxc

step = m/l
P = empty−ring−of−length (m )
for i=0 to l−1:

24



index = int (i∗step )
P [ index ] = R [ i ]

lastValue = −1

for i=0 to m−1:
i f P [ i ] != −1 :

lastValue = P [ i ]
i f P [ i ] == −1:

P [ i ] = lastValue

V0

V1

V2

V3

W3

W4

W5

W6

W7

W8
W9

W2

W1

W0

W11

W10

Figure 3.8: Expanding the ring: creating a copy of the ring which contains
the same vertices as the original but is longer because contains some vertices
multiple times

Placing the middle vertices

Refer to Figure 3.9. This is an example with two rings (T1, T2, T3, T4) and
(T ′

1, T
′
2, T

′
3, T

′
4). The vertex normals in the given points are denoted as TiNi

and T ′
iN

′
i . We will use nearly the same notation for the general case:

ring1= (T1, . . . , Tj) and ring2= (T ′
1, . . . , T

′
j)

5

the normals are denoted as −→ni = TiNi and
−→
n′i = T ′

iN
′
I , where i ∈ {1, . . . , j}

We calculate the following points:

• T =
∑j

i=1(1/j)Ti

5At this point both rings contain the same number of points because of the application
of the algorithm described in Section 3.4.4

25



N’1

N’2

N’3

N’4

N1

N2

N3

N4

T4

T3

T2

T1

T’1

T’2

T’3

T’4

T N N‘
T’

Figure 3.9: Constructing the bezier curves for the worm: first step: the
vertices, the normals, and the centers shown

• T ′ =
∑j

i=1(1/j)T
′
i

• N =
∑j

i=1(1/j)Ni

• N ′ =
∑j

i=1(1/j)N
′
i

• −→n =
−−→
TN

•
−→
n′ =

−−→
T ′N ′

With these information calculated the position of the second (Aj,2) and
the third (Aj,3, j ∈ {1, . . . , n} can be defined as:

• Aj,2 = T + t−→n , where t ∈< 0, 1 >

• Aj,3 = T ′ + t′
−→
n′ , where t′ ∈< 0, 1 >

26



N’1

N’2

N’3

N’4

N1

N2

N3

N4

T4

T3

T2

T1

T’1

T’2

T’3

T’4

T N N‘
T’

Figure 3.10: Constructing the bezier curves for the worm: second step: the
vertices, the normals, the centers and the control polygons shown

The variables t and t′ are left for the user to adjust the smoothness of the
blending.
Refer to Figures 3.10, 3.11, 3.12 as examples of this algorithm, and to Figure
3.13 for a comparison between the results of Figure 3.11 and 3.12.

27



N’1

N’2

N’3

N’4

N1

N2

N3

N4

T4

T3

T2

T1

T’1

T’2

T’3

T’4

T N N‘
T’

Figure 3.11: Constructing the bezier curves for the worm: third step: the
vertices, the normals, the centers the control polygons and the bezier curves
shown

28



N’1

N’2

N’3

N’4

N1

N2

N3

N4

T4

T3

T2

T1

T’1

T’2

T’3

T’4

T N N‘
T’

Figure 3.12: Constructing the bezier curves for the worm: fourth step: the
vertices, the normals, the centers and the control polygons and the bezier
curves shown in a different position

Figure 3.13: Constructing the bezier curves for the worm: a comparison
shown between the two previous steps

29



3.5 Blending between three or more selec-

tions

For the sake of simplicity we will only discuss the issue of blending between
three surfaces. Blending between more than three surfaces can be done in
the same way.

The creating of the hydra (the blending consisting of the central sphere
and the worms) can be described in the following way:

1. We create a sphere mesh and insert it into the center of the scene

2. We map the rings of the selections into the surface of the sphere

3. We Connect the mapped rings with their originating ring using worms

4. We erode the sphere mesh to be better blended to the worms

3.5.1 Creating the virtual sphere

1. We create a spherical mesh (for possible algorithms to create a tessel-
lation of a sphere see [11]).

2. The suitable place to place the sphere is the center of the centers of the
rings.
We can calculate it as
C =

∑i
j=1(1/j)Ci, or for our case C = (C1 + C2 + C3)/3, where Ci is

the center of the i-th ring.

3. We move the sphere mesh to C.

3.5.2 Mapping a ring to a sphere

This process involves:

Moving the ring Involves moving the ring to a position where its center
touches the surface of the sphere mesh. We will use a real sphere as an
approximation of the sphere mesh.
This way the needed point can be quickly calculated:
let D denote the center of the sphere mesh, r the approximate radius
of the sphere and C the center of the ring. the vector of the move (

−→
t )

can be calculated as:
−→
t = (D − C)− ((D − C)/|D − C|)r

30



u
v

w

A

B

C
A’

B’

C’

Figure 3.14: Mapping a simple triangular ring into the surface of the sphere
mesh. Showing the needed transformations: translating and rotating

Rotating the ring Refer to Figure 3.14: The ring R = (A, B, C) first has
to be moved to the place denoted by (A′, B′, C ′) and then rotated to
make his normal vector point to the center of the sphere.
Let −→u denote the normal vector of the ring, and −→v the vector pointing
to the center of the sphere.
The needed rotation has to transform −→u into −→v , and can be calculated
as follows:
−→w = −→u ×−→v defines the axis of the rotation,and
α = −→u · −→v defines the angle of the rotation.

Mapping the vertices of the ring to vertices of the sphere At this step
we have a ring touching the sphere. Now we simply map each vertex
of the ring into the nearest vertex of the sphere mesh.

Create a ring from the mapped vertices and expand the ring if needed
The list of mapped vertices obtained after finishing the previous step

31



is not necessarily a ring. The problem is that the vertices can be so
distant from each other that they are not neighbors anymore.
See Figure 3.15 as an example of this situation. The ring consisting of
vertices V1, V2, V3 has been mapped to the surface, but the vertices does
not satisfy the neighborhood condition in Definition 3.2.3. Therefore
we use a simple breadth-first path finding algorithm to find the missing
vertices:
for every vertex, if the next vertex, defined by the ordering of the orig-
inal ring is not the neighbor of him, then has to find a way to that
vertex and add the acquired vertices to the ring:
In pseudocode:
R = (v1, . . . , vn) denotes the ring-like structure (a list of vertices) ob-
tained by mapping the vertices of the ring into the spherical mesh
P the output of the algorithm: a ring which contains all the vertices
from R

P = empty−list
for i = 1 to n :

next = (i+1) mod n
path = findPathBetweenVertices (R [ i ] , R [ next ] )
addVerticesToList (P , path )

3.5.3 Connecting the mapped rings with the original
rings

At this step we use the algorithm we developed for blending between two
rings as discussed in Section 3.4.

3.5.4 Eroding the sphere mesh

To improve the visual appearance of the blending (to make the central sphere
less noticeable, we “erode” the central sphere. That means that the “not
needed” parts (the vertices of the sphere not contained in any of the rings)
will be moved in the direction of the center of the sphere, this way making
them less noticeable. We will do it in the following steps:

1. For every vertex of the central mesh we calculate its minimal distance
from the rings on the mesh (that means the minimum from the dis-
tances from all the rings on the mesh). We can do that with a simply
breadth-first path finding algorithm.

32



2. Let di denote the minimal distance from the rings for vertex vi, i ∈
{1, . . . , |V |}. For every non-ring vertex vi we move the vertex in the
direction of the center of the mesh by an amount of pi = f(di), where
f(di) is a function mapping the vertex-ring distance into distance in
R3. In our algorithm we used pi = r(di/k) where k = max(di), i ∈ I,
and r is the radius of the sphere.

33



V3

W2

W3

V1

W4

W5

V2

W1

Figure 3.15: A ring (V1, V2, V3) mapped to the surface. Expanding the ring-
like structure to fulfill the requirements of the definition of the ring needed.
Showing the searched paths for the vertices used in the expansion.

34



Chapter 4

Summary and Future Work

The aim of this work was to implement on boundary based objects one of
the artistically most appealing abilities of implicit surfaces: the ability to
naturally form smooth blendings.
In the previous chapter we have shown that it is possible to emulate or mimic
that behavior: to form smooth blendings between different parts of a mesh,
with as little help from the user as possible.
In this work we believed that a mixed approach gives the best efficiency:
automatically find a good way to create the blendings, and after that let the
user to tune the solution to his taste. At the end there are many unresolved
problems and possible enhancements:

• Our ring-vertex-mapping algorithm often finds incorrect mappings. Map-
pings that at the end produce distorted canal surfaces with self-intersection.
The user can always correct these errors, but automatizing this process
is definitely a problem worth to explore.

• Explore different ways to let the user control the form of the worm.
For now we proposed only two ways: either control all the middler
control points manually or let them in the hands of the algorithm only
allowing a little modification of the result to the user. There could be
better tools or better approaches to help the user modifying the control
points. Perharps group based controls or magnet like controls as can
be seen in different three dimensional modeling applications.

• The usage of the bezier curves is a two-edged sword: on one hand it
helps to make the calculations simple, but on the other hand the user
has only two control points for every curve to modify. A possibility
would be to use B-spline or rational curves.

35



• There is the possibility to mimic the implicit surfaces more closely. It
should be possible to just move different meshes near to each other and
form the complete blending manually (without the need to specify the
blending areas manually)

36



Chapter 5

Results

In this chapter we give an example of the results achieved by our work. We
demonstrate various types of connections on various types of meshes.

Figure 5.1: One of the simplest blending from different views

37



Figure 5.2: One of the simplest blending from different views

Figure 5.3: Eroding the central sphere: step1

38



Figure 5.4: Eroding the central sphere: step2

39



Figure 5.5: Eroding the central sphere: step3

40



Figure 5.6: Eroding the central sphere: final step

41



Figure 5.7: An example of connecting 8 blending areas

42



Figure 5.8: An example of connecting 8 blending areas

43



Figure 5.9: An example of connecting 8 blending areas

44



Figure 5.10: The obligatory teapot

45



Figure 5.11: The obligatory teapot zoomed

46



Bibliography

[1] Chalmovianský, P.: Mathematical Methods in Subdivision Surfaces, dis-
sertation thesis (2001)

[2] Baumgart,B.G.: Winged-Edge Polyhedron Representation for Computer
Vision, National Computer Conference (1975)

[3] Eastman,C.M., Weiss,S.F.: Tree structures for high dimensionality near-
est neighbor searching, Information Systems, vol. 7, no. 2 (1982)

[4] Bourke,P.: Implicit surfaces,
http://astronomy.swin.edu.au/pbourke/modelling/implicitsurf (1997)

[5] Hart, J.: Ray Tracing Implicit Surfaces, WSU Technical Report EECS-
93-014 (1993)

[6] Blinn, J.F: A generalization of algebraic surface drawing, ACM Trans-
actions on Graphics, (1982)

[7] Nishimura H., Hirai, M., Kawai, T., Kawata, T., Shirakawa, I. and
Omura, K., Object Modelling by Distribution Function and a Method of
Image Generation, The Transactions of the Institute of Electronics and
Communication Engineers of Japan (1985)

[8] Wyvill,G., Trotman,A.: Ray tracing soft objects, Proceedings of Com-
puter Graphics International (1990)

[9] Farin, G.: Curves and Surfaces for Computer Aided Geometric Design,
San Diego: Academic Press (1993)

[10] Shoemake, K.: ARCBALL: A User Interface for Specifying Three-
Dimensional Orientation Using a Mouse, Graphics Interface (1992)

[11] comp.graphics.algorithms Frequently Asked Questions,
http://isc.faqs.org/faqs/graphics/algorithms-faq/

47


