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Chapter 1
Introduction

Geometric modeling is a discipline, that deals with description of real objects mainly
with respect to their geometric properties. This subject field deals with a wide range of
tasks — intersections, parameterization, implicitization, inversion, etc. In this diploma
thesis we focused only on one of them, namely intersectionsof algebraic curves and
surfaces. Geometric modeling uses methods of geometry and informatics and invents
also own methods and algorithms.

Beginning with Descartes, mathematics has been developing tools to formulate and
prove geometric theorems algebraically, and, vice versa, to express geometric facts in
algebraic terms in an effort to interpret algebraic theorems geometrically, where possible.
The resulting discipline of algebraic geometry is of use to geometric modeling because it
delivers a symbolic representation of geometric objects that allows us to compute with
geometric objects using symbolic manipulation. In fact this means algorithms have to
accept algebraic equations as input and deliver, as output, other algebraic equations.
The role of mathematics is to interpret the result.

In the last decades the development of computer equipment has enabled the appli-
cation of modern algebra methods in geometry. Same here we file our second target, the
theory of Grobner basis.

In this diploma thesis we deal with algebraic curves and surfaces. Our goal in
this work is to study Grébner basis and their use by algebraic curve/curve and sur-
face/surface intersection computing. We also aim to examine some curve properties
(singularities). We present two new methods — one for piecewise implicit curve intersec-
tion, the other for surface/surface intersection.

Evaluating the intersection of parametric and algebraic curves and surfaces is a re-
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curring operation in geometric and solid modeling, as well as computer graphics and
computer aided design. An efficient surface intersection algorithm that is numerically
reliable, accepts general surface models, and operates without human supervision is
critical for every of these fields. Notwithstanding the elegance of the Grébner basis so-
lution we must remark constructing a Grobner basis can be computationally expensive,
because of both the need for exact arithmetic and the possibility of generating and an-
alyzing many polynomials. This fact hinders using Grébner bases in practice. However,
research on basis conversion has significantly improved the efficiency of this approach.
The work is organized in the following manner. In Chapter 2 we present our notation
and introduce some necessary facts about polynomials, curves and surfaces. In Chapter
3 we briefly review techniques for curve/curve and surface/surface intersection. This
topic is very wide and we did not intend to immerse very much. Chapter 4 is the ground
of our work. Here we define Grobner basis and introduce algorithms for curve/curve
and surface/surface intersection. Marginally we mention a method for singularities

evaluation.



Chapter 2

Essentials

2.1 Polynomials and Ideals

Ideal. Nonempty set I of elements of a ring R is called an ideal if and only if:
() Ve,yel:x—yel
2)Vzel, YVae R:av € INza€el

Univariate polynomial. An univariate polynomial (in fact, a polynomial in one in-

determinate) over k has the form

where x is an indeterminate symbol, and the coefficients a; are elements of the
field k. We frequently fix the field of coordinate values and call it the ground field.
In CAD oriented applications usually £k =R or k = C.

The set of all univariate polynomials in x is denoted by k[z]. The set k[z] is a ring

with operations of multiplication and addition defined as follows:
If f(x), g(z) € k[z], f(z)zaz" g(z)= > i biz' we define
f(@)g(z) =co+ecrz+ ...+ cpymz™™,

where

crp = Z ab; for k=0,..., n+m.
i+j=k
Similarly, assuming n > m:

f(z)+g(z) = (ag +bo) + (a1 +b)x + ...+ (@ +bp) 2™ + @y 2™ 4.+ ap2™,

3
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—f(z) = (—ag) + (—a1)z + ... + (—a,)x".

The reducibility of an univariate polynomial. A polynomial that factors nontriv-
ially is called reducible. One that cannot be factored is irreducible. The reducibility,
resp. irreducibility of a polynomial depends on the ground field £, e.g. the poly-
nomial 22 + 1 does not factor over the reals, but it will factor as (z —1i)(x +1i) over

the complex numbers.

Multivariate polynomial. Similarly, we talk about multivariate polynomials (poly-

nomials in more indeterminates). Using the symbols

m

61,5 .62, €n,j
E ;T " Ty ...Zlfn’”,
j=1

where the coefficients a; are elements of the ground field k. The exponents e; ;
are, of course, nonnegative integers. The set of all multivariate polynomials in the
indeterminates zi,...,x, is denoted by k[zy,...,z,] and forms a ring together

with operations of multiplication and addition®.

The reducibility of a multivariate polynomial. The reducibility of a multivariate
polynomial, as well as the reducibility of univariate polynomials, depends on the
ground field. But there are also multivariate polynomials that cannot be factored
over any ground field. Such polynomials are called absolutely irreducible. For

example, the polynomial x? + 3? + 22 — 1 is absolutely irreducible (for explanation
see [8]).

We fix a ground field k, and consider the n-dimensional affine space k™ over k. The
points in this space are n-tuples (z1, xo,...,2,), where the x; take on the values in k.
We consider the hypersurface f = 0 defined by a multivariate polynomial f. We assume
that any multiple ¢f of f defines the same hypersurface, where ¢ is a nonzero field
element. Moreover, for any polynomial g, the hypersurface gf = 0 certainly includes
the hypersurface f = 0. This raises the question of whether there exists a unique
algebraic representation for the hypersurface f = 0. The answer is yes, but the unique

representation requires a set of polynomials, rather then a single one.

IThese operations are defined similarly as in the case of polynomials in one indeterminate.
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Consider the surface f = 0, and let g be a polynomial. All surfaces gf = 0 for all
g, f € klxy,...,3,] (f is arbitrary but fixed ) will contain the surface f = 0%. Moreover,
for fixed f in k[xq,...,z,], the intersection of all surfaces gf = 0, where g varies over

k[x1, ..., zy,)], is precisely the surface f = 0. Thus for fixed f, we consider the set

If)={gf | g € k[x1,...,2,]}

as the description of the surface. This description is not always unique. The reason is
explained in [4, p. 268, Chapter 7/, .

I(f)is an ideal in k[z1,...,2,): I(f) has the property that the sum and difference of
any two polynomials in the set is again in I{f). Moreover, the product of any polynomial
in k[xq,...,z,] with an element of I{f) is again in I{f). Therefore I{f) is an ideal.

Now consider a finite set F' of polynomials fi, fo,..., fr (r € N) in k[z4,...,2,]. We

form all algebraic combinations of the f;; that is, we form the set of polynomials

KF)={gifi+gfo+. .-+ g-fr| 9 €K[x1,...,2,]}.

Clearly, I{F') is an ideal in k[z1, ..., x,] (apply the same proof as in the former case
of I{f)). We say that I(F) is an ideal generated by F, and that F is a generating set
of I{F). Generating sets are not unique, and a basic theme of this diploma thesis is to

find generating sets that have special properties useful for solving geometric problems.

Extension field. The field L is termed simple algebraic extension of field F' C L, if
exists an element u € L, u is algebraic over F, that the set F'U {u} generates the
field L = F'(u). (We say: the element u over F' generates L.) If u is transcendental

over F, L = F(u) we call simple transcendental extension of field F.

Let us make some remarks: the set X C L generates the field L if and only
if every subfield L, containing X, equals L. Element u € L is algebraic over a
subfield (subring) F' C L, if exists a non-zero polynomial f over F such, that
f(u) = 0; element u is transcendental over F, if 0# f € F[x] implies f(u) # 0.

2.2 Admissible Term Ordering

Monomial. Assume that all polynomials are in k[zy,...,z,]. A product of the form
R S

2In fact, when we say, surface gf = 0 contains the surface f = 0, we mean point subsets — this will

be better explained in Section 2.4.
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with e; > 0 for ¢ =1,...,n, is called a power product or a monomial.

Admissible term ordering. An admissible term ordering <, is a total order of power
products that satisfies:
a. 1 <, z; for all variables z;.

b. For all power products u, v, and w, u <, v implies uvw <, vw.

The major term orderings in current use are the following ones?:

Lexicographic ordering. We define a lexicographic ordering, written <, of the power

products as follows:
a. 1<z <x<... <2,
b. If u < v, then uw < vw for all power products w.

c. If u and v are not yet ordered by rules 1 and 2, then order them lexicographi-

cally as strings, i.e. the power product z{'x5* ... x%" precedes the power prod-

b1 bn

uct xg2 ...z if there is 1 < r < n such that a, < b, and a, 11 = by41, . . .,

a, = b,.

Total degree ordering. The total degree ordering, denoted by <;, is defined by re-
quiring that all power products of degree n precede the power products of degree

n + 1. Two power products of equal degree are ordered lexicographically.

Reverse lexicographic ordering. We define a reverse lexicographic ordering, written

<., of the power products as follows:
a l<r <r2<...<1x,
b. If u < v, then uw < vw for all power products w.

c. If v and v are not yet ordered by rules 1 and 2, then order them reverse

lexicographically as strings, i.e. the power product z{*z3*...z%" precedes

the power product xlflxlf .. x’,’f if there is 1 < r < n such that a, > b, and

a; = bl: sy Opo1 = brfl-

Reverse lexicographic total degree ordering. The reverse lexicographic total de-
gree ordering, denoted by <., is defined by requiring that all power products of
degree n precede all power products of degree n+ 1. Two power products of equal

degree are ordered by reverse lexicographic order.

3The following orderings we define according to [4, p. 270], in |2, p. 8] a different definition is used.
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All these orderings can be further varied by permuting the variables.
As observed in the given examples (lexicographic ordering, reverse lexicographic or-
dering, ...), term orders ignore the coefficient of a term, so a term order might more

properly be called a monomial order.

Leading term of a polynomial. Every term in a polynomial g consists of a coefficient
and a power product. The term whose power product is largest with respect to
the ordering < is called leading term of g, written lt(g). This term consists of the
leading coefficient, lcf(g), and the leading power product, lpp(g).

Example 2.2.1. Assuming 1 < x < ¥, let us have a polynomial h = 2z* + 333 +
422y + zy? + 2y + 1 over R. This polynomial contains the following monomials:
b, 3, 2%y, xy?, xy, 1. With the lexicographic ordering, we have the following
ordering of the monomials: 1, z*, zy, 2%y, xy?, v>. Thus, the leading term of
h lt(h) according to the lexicographic ordering is 3y, with the leading coefficient

lc(h) = 3 and the leading power product Ipp(h) = 3>.

Compare: Applying the total degree ordering, we have the following ordering of the
monomials: 1, zy, %y, zy?, y?, x*. Thus, the leading term of h It(h) according
to the total degree ordering is 2z, with the leading coefficient lc(h) = 2 and the

leading power product Ipp(h) = z?. ©

Simpler of two polynomials. The polynomial f is simpler than the polynomial g if
Ipp(f) < lpp(g)-

2.3 Curves and Surfaces

Algebraic surface. Every algebraic surface S in affine 3-space is determined by an
implicit equation f(z,y,z) = 0, where f(x,y,2) is a polynomial over k* in the

indeterminates x, y and z.

Geometric degree of an algebraic surface. The geometric degree of an algebraic
surface S is the maximum number of intersections between the surface and a
line, counting complex, infinite, and multiple intersections. It is a measure of the
“waviness” of the surface. This geometric degree is the same as the degree of the

defining polynomial f of the algebraic surface S in the implicit definition.

4k is an arbitrary field — in solid modeling we usually consider k = R
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Algebraic curve. Curves can be classified, according to equations defining them, as
algebraic curves, which have algebraic equations, and transcendental curves, which

have equations containing transcendental functions.

Similarly to 3D-algebraic surfaces, an algebraic plane curve is given by an implicit

equation f(z,y) =0, where f(z,y) is a polynomial in the indeterminates = and y.

An algebraic space curve is the common intersection of two or more algebraic
surfaces. Although solid modeling usually restricts attention to those space curves
that are the intersection of just two surfaces, one should remember that certain
space curves cannot be defined algebraically as the intersection of only two surfaces
([4, p. 163, Chapter 5]). (This motivates us to consider later in this work ideals

with generating sets that contain more than two polynomials.)

Example 2.3.1. An example of an algebraic curve that cannot be defined as
the intersection of only two surfaces is the twisted cubic (see Figure 2.1). The

parametric definition of this curve is:

x =t
y = t’
2 = 13,

To define it, we need to intersect three algebraic surfaces. For example, we could

intersect a paraboloid with two cubic surfaces:
P—y=0Ny’—22=0nN z2—2°>=0.

(For explanation why two surfaces do not suffice see [4, p. 267-269, Chapter 7|.)

<

Geometric degree of an algebraic plane curve. Similarly to 3D-algebraic surfaces,
the geometric degree of an algebraic plane curve is the maximum number of in-
tersections between this curve and a line, counting complex, infinite, and multiple
intersections. This geometric degree is the same as the degree of the defining

polynomial f of the algebraic plane curve in the implicit definition.

Example 2.3.2. Consider a curve given by an implicit equation x> — 322 +3y = 0.
This curve is obviously of degree 3 — it is given by a polynomial of degree 3, and

the line y = 1 cuts this curve in three points (see Figure 2.2). ¢
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Figure 2.1: Twisted Cubic

y

Figure 2.2: Cubic Curve

Typical plane curves of degree 2 are conic sections: ellipse, parabola, hyperbola.
The general conic is expressed by a general equation of the second degree: az? +
2hxy + by? + 2gx + 2fy + ¢ = 0.

Geometric degree of an algebraic space curve. The geometric degree of an alge-
braic space curve is the maximum number of intersections between the specified

curve and a plane, counting complex, infinite, and multiple intersections.

Bezout’s theorem. Let f and g be two algebraic curves of degree m and n, respec-
tively. If f and g intersect in more than mn points, then they have a common

component.

Singularity. The singularity (singular point) of a plane algebraic curve is the simulta-
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neous intersection of f =0, f, = 0, and f, = 0, where f,, and f, denote partial

derivatives (see [4, p. 280, Chapter 7]).

Examples are cusps (see Figure 4.6 on page 35) (cuspidal singularity — a singular
point on a curve at which there are two different tangents that coincide), acnodes
(isolated point — a singular point that does not lie on a given curve but does have
coordinates that satisfy the equation of the curve), and nodes (a singular point at
which the curve intersects itself such that there are two different tangents at the

point).

Example 2.3.3. Consider the cubic curve given by an implicit equation x? + y? +
xy = 0 (see Figure 2.3). This curve has one singular point—a node—at point
(0,0). ©

Figure 2.3: Nodal Singularity

2.4 Algebraic Sets and Varieties

Algebraic set. We consider the ideal I C k[xq,...,z,] generated by the set F' =
{fi,.--, f+}. Let p = (a,...,a,) be a point in k™ such that g(p) = 0 for every
g € I. The set of all such points p is the algebraic set V(I) of I. Clearly, for p to
be in the algebraic set V' (I), it suffices that f;(p) = 0 for every generator f; € F.

In two dimensions, the algebraic curve f(z,y) = 0 is the algebraic set of the ideal
I{f). Similarly, in three dimensions, the algebraic surface f(z,y,z) = 0 is the
algebraic set of the ideal I(f).



CHAPTER 2. ESSENTIALS 11

Example 2.4.1. The algebraic set V(I) of I = I(f), where f(z,y) = 2> —y is
the algebraic curve — parabola — {(z,y): y = 2°} (see Figure 2.4). ©

-1 -0.5 0.5 1

Figure 2.4: Algebraic Set V(I) in Two Dimensions

Example 2.4.2. The algebraic set V(I) of I = I(f), where f(x,y,2) = 2% —
0.1y* — 2z is the algebraic surface {(x,y,2) : 2 = 2% — 0.1y*} (see Figure 2.5). o

Figure 2.5: Algebraic Set V(1) in Three Dimensions

Dimension of the algebraic set. When we are given a set F' = {fy,..., f.}, we ex-
pect in general that the algebraic set defined by it in k™ has dimension® n — 7.
This is an analogy to linear algebra. This requires that the equations f; = 0
are algebraically independent. However, the matter becomes more complicated
in the algebraic case: the algebraic set of the ideal I{F') could consist of several

components, some of which might have different dimensions.

5The notion of the dimension is beyond the scope of this work.
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Reducibility of the algebraic set. Let us consider the algebraic set V' (I) defined by
the ideal I in k™. It is possible that V() is the union of two or more point sets, each
of which can be defined separately by an ideal. In this case, we say that the set V(1)
is reducible. The notion is analogous to polynomial reducibility: a multivariate
polynomial f that factors, describes a surface consisting of several components.
Each component of V(I) belongs to an irreducible factor of f. In the same spirit,
the reducibility of an algebraic set V() mirrors the fact that we can decompose
the ideal I into several components, although this no longer looks like polynomial
factorization in general. Each such ideal component defines a component of the
algebraic set V(7). If an algebraic set V(I) cannot be decomposed, we say that

V(I) is a variety, or, more simply, that it is irreducible.
Example 2.4.3. Let us consider an algebraic set V(I) of I = I(f), where
f=—ax—2+9* —ay? + 2% + o' —xz +oyle + 22+ 2% 42 4 2P

is a polynomial over k = R. Since f factors as (y* + 2% — x) (22 +y*+ 2+ 1), V(I)

is the union of two point sets (see Figure 2.6), each given by one of the factors. ¢

Figure 2.6: Reducible Algebraic Set
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2.5

Some Remarks on Implicit Representation

In this work I concern on intersections of implicitly given algebraic curves and surfaces.

Thus, I introduce some facts about implicit representation.

As mentioned above, a real algebraic surface S in R?® is implicitly defined by a
single polynomial equation F : f(x,y,z) = 0, where coefficients of f are over the

real numbers R.

Implicit surfaces pose difficulties in drawing, tessellation, and subdivision, but,
because they derive from volumetric functions, they are relatively supple at rep-
resenting blends. Someway, we notice, techniques to define, represent, process,
and display implicit surfaces are increasingly competing with the well-established

techniques used for parametric surfaces.

According to [4, p. 169], while all curves and surfaces with a rational parametric
form can be converted to implicit form, at least in principle, only a small subset of
these real algebraic curves and surfaces can be expressed in a rational parametric

formS.

Manipulating polynomials, as opposed to rational functions, is computationally

more efficient.

Algebraic surfaces provide enough generality to accurately model most rigid ob-

jects’.

An important advantage of the implicit definition F is its closure property under
modeling operations such as intersection, convolution offset, blending, etc. The
smaller class of parametrically defined algebraic surfaces is not closed under any
of these operations (see [1]). Closure under modeling operations allows cascading

repetitions® without any need of approximation.

6A rational parametric definition for a curve is a triple H(¢) : (v = Hy1(t), y = Ha(t), z = H3(t)),

where H;, i = 1,2, 3 is a rational function in t over R. Similarly for surface, a rational parametric form
is a triple G(s,t) : (x = G1(s,t), y = Ga(s,t), z = G3(s,t)), where G;, i = 1,2,3 is a rational function
in s and t over R2.

Tgeneral topology surfaces
8The output of one operation acts as the input to another operation.



Chapter 3
Intersections

The intersection problem in CAGD area can be roughly classified into three major
categories:

curve/curve intersection

curve/surface intersection

surface/surface intersection

In the further text we will concentrate on two of these topics — on curve/curve intersec-
tions and surface/surface intersections.

The complexity of this topic can be understood partly in some numbers. A gener-
alization of Bezout’s theorem states that an algebraic curve of degree m intersects an
algebraic surface of degree n in at most mn points (assuming that no part of the curve is
common with the surface!) and also states that the intersection of a surface of degree m
with a surface of degree n is an algebraic curve of degree mn or less [1]. The intersection
of two curves of degree m, n respectively are mn or less points. For example, two ellipses
(each of degree two) may intersect in at most 4 points (see Figure 3.1).

All intersection algorithms we know face the following complex problems:

e The robustness of the algorithm refers to the detection of all curve segments, closed

loops, and singularities assuming no numerical errors. The surface intersection
problem gets further complicated due to numerical errors present in all finite-

precision computation.

e The accuracy characterizes numerical stability of the algorithm in the context of

floating point arithmetic.

Ino part of the curve lies entirely on this surface

14
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Figure 3.1: Possible Intersections of Two Ellipses

e Intersection algorithms must be efficient since they are applied frequently during

the design process.

By now, no algorithm meets fully these requirements.

3.1 Curve/Curve Intersection

The problem of computing the intersection of parametric and algebraic curves and sur-
faces is fundamental to geometric and solid modeling. Previous algorithms are based on

techniques from elimination theory or subdivision and iteration.

3.1.1 Previous Work

Parametric Curves. As far as computing the intersection of rational parametric curves
is concerned, algorithms based on implicitization, Bézier subdivision and interval

arithmetic are well known.

The implicitization approach is based on the fact, that every rational parametric
plane curve can be implicitized into an algebraic plane curve of the form F(x,y) =
0, where F(z,y) is bivariate polynomial. Curve implicitization can be solved
using resultant-based method or method based on Grobner basis (for detailed
information on both topics see [4], [12]). Given the implicit representation of one
curve, substitute the second parameterization and obtain an univariate polynomial
in its parameter. The problem of intersection corresponds to computing the roots
of the resulting polynomial. Implicitization based approaches are considered faster

than other intersection algorithms for curves of degree up to four [10].
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The Bézier subdivision is based on the convex hull property of Bézier curves and
de Casteljau’s algorithm for subdividing Bézier curves. The intersection algorithm
compares the convex hulls of the two curves. If they do not overlap, the curves do
not intersect. Otherwise the curves are subdivided and the resulting convex hulls
are checked for intersection. At each iteration step the algorithm rejects parts
of the curve that do not contain intersection points and the new curve segments
are better approximated by a straight line. After the two curves segments are
approximated by straight lines up to certain tolerance, their intersection points

are accepted as the intersection of the curves.

The idea of interval arithmetic approach is similar to subdivision. Each curve
is preprocessed to determine its vertical and horizontal tangents, and the curve
is divided into ‘intervals’, which have vertical or horizontal tangents only at the
endpoints. Thus, we obtain a rectangular bounding box and the subdivision comes
to evaluating the coordinate of the midpoint of the interval. The rest is similar to

subdivision.

Implicit Curves. The algorithms for algebraic curve intersection are similar to those
for parametric curves. Resultants can be used to eliminate one variable from
the two equations corresponding to the (plane) curves (see [2], Chapter 3, §1).
Then the problem of intersection corresponds to computing roots of the resulting
univariate polynomial. This approach causes numerical problems for higher degree
curves (greater than four). (The problem of computing real roots of high degree

polynomials is ill-conditioned in general.)

In [10] is described an interesting intersection algorithm suitable for both, parametric
and algebraic curves, based on the use of resultants — to represent the implicit form of
a parametric curve as a matrix determinant — and eigendecomposition. The algorithm

for algebraic curves is similar.

3.2 Surface/Surface Intersection

Roughly speaking, the intersection of two surfaces is a curve. In fact, the intersection
of two surfaces can be complicated in general, with a number of closed loops, self-

intersections and other singularities. A good surface intersection algorithm should, in
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theory, be able to detect all such features of the intersection curve and trace them
correctly in an efficient manner. The different approaches up to now applied to this
problem can be categorized according to the main used idea into subdivision, lattice
evaluation, analytic methods, and marching methods. However, none of them are able
to balance reasonably three conflicting goals of accuracy, robustness, and efficiency.

The components of an intersection curve consist of boundary segments and closed
loops. Start points on the boundary segments are obtained by curve-surface intersec-
tions. Many techniques have appeared over the last few years to detect closed loops on
the intersection curve (e.g. [11]).

Most algorithms use the local geometry of the curve for tracing. These methods do
not converge well sometimes and many issues related to choice of step size to prevent
component jumping are still open. Therefore, most implementation use very conserva-
tive step sizes for tracing and this slows down the algorithm. Overall, current tracing
algorithms are not considered robust.

The singularities on the intersection curve can be classified in terms of solutions of
algebraic equations related to the considered curve equation. Here we suggest to notice a
singularity-detection method based on Grébner basis (for plane curves see Section 4.3.5
on page 34). However, no techniques are known in the literature which can efficiently
compute them for high degree surfaces (like bicubic patches) and classify the curve

branches in the neighbourhood of the singularity.

3.2.1 Previous Work

There is a significant body of literature addressing the surface/surface intersection prob-

lem.

Subdivision method. The basic idea of these methods is to decompose the problem
recursively into similar problems which are much simpler. Decomposition con-
tinues until a desired level of simplicity is achieved and then the corresponding
intersection is obtained directly. The last step is to merge all the individual curves
together to get the final solution. (This approach has the flavor of the divide
and conquer paradigm.) These methods are convergent in the limit but if used
for high-precision results lead to data proliferation and are consequently slow. In
case subdivision is stopped at some finite steps, it may miss small loops or lead

to incorrect connectivity in the presence of singularities. The robustness of this
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approach can be improved by posing the problem algebraically and using interval

arithmetic (see [5]).

Lattice evaluation. These techniques decompose surface/surface intersection into se-
ries of lower geometric complexity problems like curve-surface intersections. This
is followed by connecting the discrete points into curves. Determination of the
discrete step size to guarantee robust solution is hard. Further, these technics can
be slow and suffer from robustness problem in terms of finding all the small loops

and singularities.

Analytic methods. Analytic methods are based on explicit representation of the in-
tersection curve and have been restricted to low degree intersections. Another

alternative to the analytic methods are methods using Grébner basis.

Marching methods. These methods are by far the most widely used because of their
generality and ease of implementation. The idea behind marching methods in-
volves analytic formulation of the intersection curve, determination of the start
point on each component and the use of local geometry to trace out the curve.
The intersection curve can be defined implicitly as an algebraic set based on the
surface equations, as a curve of zero distance between the two surfaces, or as a
vector field. Tracing can be done on the intersection curve in higher dimensions

or on its projection into the plane.

Hybrid Methods. More recently, techniques have been designed that combine features

of above different categories. These are generally referred to as hybrid methods.



Chapter 4
Grobner Basis

Grobner bases are related to ideals. Ideals are sets of polynomials that describe elemen-
tary geometric objects symbolically, and are a natural representation of the geometric
objects.

We can often find the solution of a system of linear equations more conveniently
by considering linear combinations of the given equations (e.g. this is the principle
of the Gaussian elimination). Likewise, when solving systems of algebraic equations,
considering algebraic combinations of them may lead to an easier solution. The set of
such algebraic combinations is an ideal.

An ideal has many generating sets defining it. Our goal is to study a special set of
polynomials defining an ideal — a Grébner basis. The advantage of Grébner bases is

that many algorithmic problems can be solved easily once a Grobner basis is known.

4.1 Definition of Grobner Bases

As mentioned above, an ideal can have many generating sets. Depending on the way of
use, some generating sets will be better than others.

Necessary and sufficient condition for I{{f1,..., f.}) = I{{g1,-.-,9m}), m,n € N
are {f1,..., fo} €I{Gg1,.- . 9m}) and {g1, ..., 9m} € I{{f1,..., fu})-

First we consider in detail the problem of testing, whether a given polynomial g is
in some ideal /. We consider a class of generating sets that allows conceptually simple

algorithms to decide ideal membership.
Problem: Given a finite set of polynomials F' = {f1,..., f,} and a polynomial g,

19
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decide whether g is in the ideal generated by F'; that is, whether g can be rewritten in

the form g = hy1f1 + hofo + ...+ h, f,, where the h; are polynomials.

The difficulty of the problem is to determine the polynomials h;.

We will solve the ideal membership problem by repeatedly rewriting g until g has
been simplified to the point where the original question can be answered by inspection.
Specifically, we will repeatedly subtract from ¢g multiples of the f;. Since these multiples
are in I(F), it is clear that the rewritten g is in the ideal if and only if g is in the ideal.
Moreover, if ¢ is in the ideal, then there must exist some rewriting sequence that reduces
g to zero. Whether such a rewriting sequence can be found easily, depends on specific

properties of the generators.

4.1.1 Rewriting, Normal Form and Membership Test Algorithm

We are given a polynomial g, and a set of polynomials F' = {fi,..., f,}. We plan to
rewrite ¢ using the polynomials in F', simplifying ¢ at each step, until it cannot be
further simplified. Then we say that ¢ is in normal form with respect to F, NF(g, F).

The rewriting is done as follows:

Algorithm 4.1.1.
Input: A set F of polynomials, and a polynomial g.
Output: A normal form NF(g, F) of g with respect to F.
Method:
1. 1=0;90=y;
2. For1=0,1,2, ...
3. If Af € F:lpp(f) divides a power product p in g;),
then {
u = p/lpp(f);
Denote b the quotient of the coefficient of p by lef(f).
gi+1 =gi —bu f;
} //end then

o RS

It can be shown that the rewriting algorithm must terminate. Intuitively, steps 7
eliminates a term in g;, but it may introduce more new terms. However, since the
cancellation is done with the leading term of f, the newly introduced term in g;y,

must precede the term just eliminated from g; in the term ordering. Thus, to prove
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termination, we must show that the terms introduced in step 7 cannot form an infinite
descending chain in the ordering.

The normal form is not necessarily unique, since there may be more than one f € F
with which to rewrite ¢ in step 3, leading to different sequences of rewriting steps with
possibly different outcomes.

If the normal form arrived at by the preceding algorithm is known to be unique,
than it can be shown that g is in the ideal precisely when NF(g, F') = 0. Therefore, we
will look for special generating sets with the property that normal forms are unique.

There always exists a set G' of polynomials that generates the same ideal as F' and
has the property that the rewriting algorithm produces unique normal forms. Such a
set is called a Grobner basis of the ideal I{F'). Then the membership problem is solved

as follows:

Algorithm 4.1.2.
Input: A set F of polynomials, and a polynomial g.

Output: “Yes” if g is in the ideal generated by F; “No” otherwise.
Method:

1.Construct a Grobner basis from F'.

2. h =NF(g,G);

3. If (h=0)

4. then output “Yes”,

5. else output “No™;

4.1.2 Buchberger’s Theorem and Construction of Grobner Bases

Definition 4.1.1. Let f and g be two polynomials with respective leading power prod-
ucts uy and u,. Let w be the least common multiple of these power products, such that
w = vsuy = v4u, for some power products vy and v,. Let ¢y be the leading coefficient

of f, ¢, the leading coefficient of g. Then the polynomial
S(f.9) = cqupf — cpugg
is the S-polynomial of f and g, and is denoted S(f, g).

The algorithm for computing a Grobner basis of F' is based on Buchberger’s theorem:



CHAPTER 4. GROBNER BASIS 22

Theorem 4.1.3.

Let G be a set of polynomials in k[xq,...,z,]. Then the following are equivalent:
1. G is a Grébner basis.

2. For dll f,g € G we have NF(S(f,g),G) = 0.

Thus, the basic idea is to generate S-polynomials from pairs in the set GG, and to add
their normal forms to G. It can be proved that this process must terminate. The basis

computation is now as follows:

Algorithm 4.1.4.
Input: A set F' of polynomials.
Output: A Grobner basis G of the ideal generated by F.
Method:
1. G:=F;
2. Denote B the set of all pairs { f1, fo} of polynomials in G, with fi # fs.
3. While (B is not empty) {
4. Delete a pair { f1, fo} from B.

5. h=NF(5(f1, f2),G);

6. If (h#£0)

7. then {

8. For all f € G

9. add to B all pairs of the form {f, h};
10. G =GU{h};

11.  } /] end_then 7
12. } /] end_while_3
13. Output G;  //G is a Grobner basis.

Remark 4.1.1. All coefficient arithmetic must be exact. Floating-point arithmetic would
introduce errors that would effectively change the ideal described by the input polyno-

mials.

The basis construction algorithm should be implemented such that it works with
every suitable ordering. Most generally, the basis calculation can be based on any
admissible term ordering. However, the ordering used can substantionaly influence both

the time needed to construct a Grobner basis and the basis size:

e In most applications, it appears that using the total degree ordering or the reverse
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lexicographic total degree ordering is much faster and leads to smaller bases than

using the lexicographic ordering.

e On the other hand, the lexicographic ordering has many useful properties that
would make it the ordering of choice in most geometric applications: e.g. a Grébner
basis of I constructed with the lexicographic ordering contains information about
the elimination ideals (see Equation 4.1 on page 25) of I, and can be used to solve

algebraic equations or, equivalently, find intersection of algebraic surfaces.

4.1.3 Some Properties of Grobner basis

A Grobner basis for a system of polynomials is an equivalence system that possesses

some useful properties:

e A Grobner basis of an ideal I is a set of polynomials {gi,...,g,} such that the
leading term of any polynomial in [ is divisible by the leading term of at least one

of the polynomials g1,..., g, (see [12]).

e The determination of a Grobner basis is very roughly analogous to computing
an orthonormal basis from a set of basis vectors and can be described roughly
as a combination of Gaussian elimination (for linear functions in any number
of variables) and the Euclidean algorithm (it is used to determine the greatest

common divisor for univariate polynomials over a field).

4.1.4 Improved Basis Construction and Reduced Grobner Bases

There are known different modifications of the Algorithm 4.1.4 resulting in significant
speedups. Most of the variants of the given algorithm concentrate on eliminating certain
pairs from B before reducing the S-polynomials constructed from them. A pair can be
eliminated if we can show that its S-polynomial must reduce to zero. Other modifications
order the pairs in B by various strategies that increase the chances of so eliminating
pairs. One such strategy is to remove early those pairs from B whose leading power
products have a small least common multiple.

We give two criteria for eliminating a pair {hq, hy} from B:

1. If there is another polynomial h3 in G with the property that the leading power

product of hz divides the least common multiple of the leading power products
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of hy and hy, and if both pairs {hy, h3} and {hs, h3} are not in B, then the pair
{h1, ha} does not need to be considered.

2. If the leading power products of h; and hy are coprime', then the pair {hy, hy} is
redundant.

It is possible to remove certain other polynomials during the computation:

3. If f can be reduced to zero using the polynomials in G \ {f}, then f is redundant

and can be deleted.

4. Moreover, if the normal form of f is not zero, then f can be replaced with its normal
form. Also the unprocessed pairs involving f are replaced with pairs involving the

normal form of f.

With the algorithm modified in this way, we obtain a reduced Grébner basis that is

then unique.

Example 4.1.5. We want to determine the reduced Groébner basis for the set F' =
{fl, fg}, where

fi = 2 —ay+3y*—1

fo = +y"+2y—1
We assume 1 < z < y and use the lexicographic ordering. Initially, G = {fi, fo} and
B = {{fi1, f2}}. We begin with removing the pair {f;, fo} from B, and constructing its
S-polynomial

S(f1, fo) = —22° — 2y — 6y + 2.

Since there is no polynomial f in G such that the leading power product of f divides a
power product in S(f1, f2) (Ipp(f1) = lpp(f2) = *, lpp(S(fi, f2)) = y),

NF(S(f1, f2), G) = S(fi. fo) = —22° — 2y — 6y + 2 := f5.

Now G = {f1, f2, f3}, but applying rule 1, the polynomial f; is redundant (f; = 3fo+ f3)
and can be removed. Thus G = {fo, f3} and B = {{fs, f3}}. We continue removing the
pair {fs, f3} from B, and constructing its S-polynomial

S(fa, f3) = x — 2® — 2y — 2zy + 22y + 6y

!Relatively prime, i.e. describing two monomials that have no divisors in common other than +1

and -1. Thus 2° and y*z are relatively prime pairs.
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Its normal form looks like
NF(S(fe, f3), G) = =22 + 5z + 2227 — 52° + T0y = fu.

Thus, G = {fa, f3, f1} and B = {{fa, fa},{fs, f+}}. Applying the rule 4, we want to
replace f in G with its normal form NF(fs, G):

NF(fy, G) = 8 + 8z — 3% — 82 — 5zt := fo.

Then G = {f2,f3,f4} and B = {{f2:f4}7{f3:f4}}' Now we want to replace f; in G
with its normal form NF(f3;, G). However,

NF(f;,G) = 0.

According to rule 3, f; is redundant and can be deleted. Thus, G = {f», f4} and B
consists of just one pair: B = {{fa, fs}}. Using the rule 2, we can delete the pair
{fQ, f1} from B (the leading power products lpp(fg) = z* and Ipp(f,) = y are coprime).
Since B = (),

G ={fs, f1} = {8+ 8z — 32" — 82® — 5a", ~22 + bu + 222" — 5a° + 70y}

is the wanted reduced Grobner basis. ¢

4.2 Solving Algebraic Equations

The central problem of this chapter, finding the solutions of a system of polynomial
equations {f; = 0,..., f, = 0}, rephrases in fancier language to finding the points of
the variety V(I), where I is the ideal generated by fi,..., fa-

If FF = 0 is a system of algebraic equations, then constructing a Grobner basis for
the ideal generated by F yields an equivalent system G = 0 that has the same solution
set but is often easier to solve. It can be shown that F' has no solution if and only if 1 is
in the Grobner basis G of the ideal generated by F'. This theorem does not require that
G be constructed with a special term ordering. However, to determine actual solutions
of the system F', we should use the lexicographic ordering.

Let I C k[zy,...,x,] be an ideal. Denote by I,, r € {1,...,n} such a set of
polynomials

IL={fel|fe€klz,....,z]} =1nN k[x1,..., 2] (4.1)

In the ring k[x1,...,,], the set I, is an ideal. We call it the 7" elimination ideal of I.
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Theorem 4.2.1.

Let F be a set of polynomials in the variables x4, . .., x,, and G be a Grobner basis for the

1deal I generated by F' with respect to the lexicographic ordering based on x1 < ... < .

Then, for 1 < r < n, the polynomials G N k[xy,..., x,| are a Grobner basis of the
elimination ideal I, = I N k[xy, ..., x,].
This theorem is used as follows to solve the system F = {f,..., f,} =0:

Algorithm 4.2.2.
Input: A set F ={f1,..., fa} of polynomials in k[xq, ..., z,].
Output: All solutions of F in the set X,, if F' has finitely many solutions, else a message
that F' has infinitely many solutions.
Method:
1. Construct a reduced lexicographic Grébner basis G for I{F'), with x1 < ... < x.
2.If (1 € G)

3. then stop: F' does not have any solution.

4. else {

5. If (G does not contain an univariate polynomial gy in k[x1])

6. then stop: The solution of F' does not consist of a finite set of points.

7. else{

8. Denote gy the polynomial of the lowest degree in G N k[xq],

9. and X1 = {(a) | g1(a) =0} /] X is the set of the roots of g1.

10. Fori=2,...,n{

11. Initialize X; to the empty set.

12. For each (o, ..., ;1) in X; 1,
13. substitute ag for x5 in G N k[xy, ..., x;], where 1 < s <i—1.
1. If this new set does not contain an univariate polynomial g; in k[z;))
15. then stop: The solution of F' does not consist of a finite set of points.
16. else {

From among the resulting univariate polynomials select one
of the lowest degree that is not identically zero, say p.
Let By, ..., B, be the roots of p.

17. Y /) end_else_ 16

18. Fors=1,...,r

19. X, =X, U{(ai,..., a;_1, Bs)}
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20. } /) end_for 10

21. '} /] end else 7

22.} /] end_else_}

23. OQutput X,; ]/ all solutions of F if F has finitely many solutions

It can be shown that the polynomial g; selected in step 8 is unique, and that the

algorithm correctly determines all solutions of F.

4.3 Geometric Applications

4.3.1 Finding Intersections of Implicit Curves

In case the curve coefficients are known precisely, we can use the algorithm 4.2.2 to find
the intersection of two (or more) algebraic curves. If f; =0, fo=0,..., f, =0, n €N
are the equations of these curves, to find their intersection, we just apply the algorithm

in question and solve the respective system {f; =0, fo =0,..., f, = 0}.

Example 4.3.1. We compute the intersection of a circle
Py +2y—1=0
and an ellipse
2 — a2y +3y°—1=0.

We can use the algorithm 4.2.2. In the example 4.1.5 on page 24 we determined the

reduced lexicographic Grobner basis for the respective polynomials:
G ={fs, f1} = {8+ 8z — 32 — 82° — 52, —22 + 5 + 2227 — 5% + T0y}.

Obviously, f» is the polynomial of the lowest degree in G N k[z] (it is the only one meeting
this requirement). The real roots of this polynomial are X = {—1,1}. Substitute these
roots respectively for x in polynomial f;, we solve this polynomial. Thus the set Y of

the wanted intersections is:
{(_17 0)7 (]-7 0)}

(see Figure 4.1). ©

This was the case of two dimensions. In three dimensions the situation is only a bit

more complicated — instead of one equation per curve, we need (at least) two equations
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Figure 4.1: Intersection of Circle and Ellipse

to define an algebraic space curve. If we want to find the intersection of curve ¢; given
by fi = 0, fo = 0 and curve ¢y defined by g, = 0, g0 = 0, the solvable system is
{f1:07 f2:0791:0792:0}-

Example 4.3.2. Let us find the intersection of curves ¢;, ¢y defined by equations:
cl : x—y=0,22—2>—2=0
2 2*—y=0,z—2>=0.

Assuming lexicographic ordering with 1 < z < y < 2, the respective reduced Grébner

basis is {z,y, 2} and the wanted point of intersection is (0, 0,0) (see Figure 4.2). ©

Figure 4.2: Intersection of Space Curves
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4.3.2 Implementation of Algorithm 4.2.2

Our results were in practice verified by our package GBInt.m implemented in the appli-
cation Mathematica J (see Figure 4.3). This package contains 2 functions: GBInt2D,
GBInt2Dbbox.

n gbh3 nb =
In[1]= =< GBIRt .m j
= GBINE2D[{x"2 -y"3-2x¥, ¥ - X}, {X, ¥}] 7]

The interszection coh=sists of a
finice s2&f Oof pOiRACE OF G0&sS ROT EXisT.

ol J{{M=+=L), {(F==1)}),
({e=Df, ({¥=0})}, ({x=D0}, ({¥y—=D0})})

n(]= GBInt2Dbbox[{x-¥"2, x- 2}, {x, ¥}, {{1, 0}, {3, -4}3] ]|
9

The intersection congsist® of a

finicae set Of poOiRCS OF &S DOT &axist.

oupE {[ix=2}, [{vr--v2]1]}]

100% = 4 _rj_Jl

Figure 4.3: Mathematica Package

GBInt2D[{poly1, poly2}, {x, y}] evaluates intersection points of plane algebraic curves
given by the polynomials polyl, poly2. After entering the input polynomials and the
desired order of the indeterminates =, y ({z,y} implies 1 < 2 < y), the application
reports, whether the curves do intersect or not and whether the intersection consists of
finite set.

In case the set of intersection points is finite, the application evaluates the intersec-
tion points and outputs the result in the following form: to every x-value assigns the
respective set of y-values, e.g. if the set of intersection points is (0, 0), (0,1), (0,2), (3, 3),

the output will be: {{z — 0}, {{y — 0},{y — 1}, {y — 2}},{z — 3}, {{y — 3}}}.
The following example illustrates the usage of this module:

Example 4.3.3. We compute the intersection of the algebraic curve 22 — ¢ — 22y = 0
with the line y = z (see Figure 4.4). Assuming lexicographic ordering with 1 < z < v,
for the set {2? — y> — 22y, x — y}, we input

GBInt2D[{z* — y* — 22y, x — y}, {z, y}.
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This gives the result
(_17 _1)7 (07 O), (O: 0)7

since the intersection at point (0,0) is double. ¢

Figure 4.4: Curve/Curve Intersection

The second function GBInt2Dbbox[{polyl, poly2},{x,y}, {{plz, ply}, {p2z, p2y}}]
is similar, it evaluates intersection points of plane algebraic curves given by the poly-
nomials polyl, poly2 applying the desired order of indeterminates. More over it tests,
whether the intersection points are inside the bounding box with sides parallel with the

coordinate axes and given by two points (plx, ply), (p2x, p2y).

4.3.3 Finding Intersections of Piecewise Implicit Curves

Piecewise implicit curve C is a curve composed from implicit curves ¢y, co, ..., ¢,, N €
N, with the endpoints specified for every curve ¢;, (i € IN). The “last” point of the
curve ¢; equals the “initial” point of ¢;41 for i € {1,...n — 1}. Endpoints are also called
Jjunction points or joints.

The simplest way how to define endpoints of the curve (or the whole curve) is
parametrizing this curve (convert the implicit representation of the curve into para-
metric one).

However, not all implicit algebraic curves can be expressed in a rational parametric

form (confer Section 2.5 on page 13). A complete characterization of this curve property
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is given by the following Noether’s theorem |4, p. 169]:

Theorem 4.3.4. A plane algebraic curve f(x,y) = 0 possesses a rational parametric
form iff f has genus 0.

Roughly speaking, the curve genus measures the difference between the actual num-
ber of double points (singularities) of f and the maximum number of double points a
curve of the same degree as f may have. It can be proved, that a plane curve of degree
n can have no more than (n — 1)(n — 2)/2 double points?>. However, determining the
number of double points of f is difficult. Algorithms for determining the genus exist
but are nontrivial.

Since our work deals with general implicit representations, we did not want to limit
ourselves only to implicit forms that can be parametrized.

Thus, our solution is as follows: every implicit curve ¢; (i € {1,...n}) of the piecewise
implicit curve C will be defined by an algebraic equation (in the case of plane curves, for
space curves ¢; will be defined by two or more algebraic equations) and by a bounding
box. The bounding box is a rectangle (in 3D-case a box), not necessarily parallel with the
coordinate axes, intersecting the segment of the curve it defines in just two intersection

points — the endpoints of this segment (see Figure 4.5).

Figure 4.5: Piecewise Implicit Curve

In this point, some problems arise: not every segment of the piecewise implicit curve
can be enclosed in one box (in both cases—2D as well as 3D); then we must define

several bounding boxes to overcome this.

2We see immediately that all plane curves of degree one and two have genus zero and thus can be
parametrized using rational polynomial functions. A degree three plane algebraic curve is rational only

if it has a double point.
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Thus, the intersection of two piecewise implicit curves C and K (C is a curve composed
of implicit curves ¢; (denote its bounding box Bj), ¢o (with bounding box By), ..., ¢,
(with B,), n € N, K is a curve composite from implicit curves k; (with bounding box
Hy), ko (with Hy), ..., ky, (with H,,,), m € N) is evaluated as follows:

Algorithm 4.3.5.
Input: Implicit curves cq, ..., c, with respective bounding boxes B1,..., B, and the sec-
ond set of implicit curves: kq, ..., k,, with respective bounding boxes Hy, ..., H,,.
Output: Set X of all points of CNIC if this intersection consists of a finite set of points,
else a message that C N IC has infinitely many points.
Method:

1. X =0;

2. Fori=1,...,n

3. Forj=1,...,m{

4. X, =0;

5. compute the intersection of c;, kj;

6. If (c;Nk;) consists of an infinite set of points

7. then stop;

8. else {

9. X,=c¢Nk;NB,NH;; ]/ take only intersection points lying
in the respective bounding boxes

10. X =XUX,;

11. } /) end_else_8

12. '} /] end_for 3

13. Output X; // all intersection points of piecewise implicit curves

C, K, if CN K has finitely many points

We highlight the main advantage of our solution, that the pure definition of the
piecewise implicit curve in our sense evokes the idea of improvement of intersection
evaluation — acceleration using bounding boxes. The idea of the acceleration is that we
compute the intersection of only those curves, for which intersection of their bounding
boxes is unempty. Obviously, counting the intersection of rectangles or boxes is cheaper

than using algorithm 4.2.2.
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4.3.4 Finding Surface Intersections

Many geometric applications require finding intersections of algebraic surfaces. A so-
phisticated way to deal with this task is to use Grébner bases. We need to solve algebraic
equations. We can use the algorithm 4.2.2 to solve these generally nonlinear equations.

Algorithm 4.2.2 solves the case of finite intersection (finite set of points) of these (two
or more) surfaces. However, the intersection of two surfaces is usually a curve. Here,

algorithm 4.2.2 needs our assistance: the following example illustrates our technique.

Example 4.3.6. We want to determine the intersection of two surfaces

P +y—z = 0
224+y—2 = 0.

Assuming lexicographic ordering with 1 < x < y < 2, the reduced Grobner basis of the

respective set of polynomials is:
G = {2z — 2% 20 +y— 2}

According to algorithm 4.2.2, this intersection does not consist of a finite set of points.
Thus we have to make an essay of other method.

Let us denote the interrogated polynomials

P 4y—z = fi
2x—i—y—z = f2.

Our method is based on idea of “cutting” the two surfaces f; = 0, fo = 0 in an
“adequate” way with a series of planes f, = 0, where a is a parameter, a € A, A is a
set of parameters. That is, we compute the intersection f; =0 N fo, =0 N f, = 0.
“Adequate” way means, the intersection f; N fo N f, for every a € A is just a finite set
of points (the planes should be chosen in the way, no part of the intersection curve lies
in any of the planes f,). Here we choose the planes f, = y — a. Let us specify the set
A of parameters later.

The idea behind is, we want to determine the intersection f; N fo N f, irrespective
of the value of a.

Let us denote: F' := {f1, fa, fo}. Applying the Algorithm 4.2.2, we get “two” results

{r=0, y=a, z=a} (4.2)
{r=2, y=a, z=a+4}. (4.3)
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(The respective reduced Grobner basis for the ideal generated by F is G = {2r—12, —a+
y,a+2x — z2}.)

If we look at the equations 4.2, 4.3 a little bit more closely, we realize the first one is a
parametric representation of a line in a parameter a, the second one is a parametrization
of other line (also in parameter a). Thus, the intersection of surfaces 22 +y — z = 0,
2z +y — z = 0 are two lines with respective parametric representations 4.2, 4.3 and the

set of parameters A = R. ¢

We found a method, that is an improvement of algorithm 4.2.2. Algorithm 4.2.2 was
limited to intersections resulting in finite set of points. Our method accepts implicit
surfaces as input and yields parametric curves as output. (In general, of course, the
intersection of two surfaces is a curve.)

Our algorithm uses idea called basis determination with symbolic quantities (see |4,
p. 281-282]%). This means, we do not compute a special Grobner basis for every value of
a parameter a (in our case this is not possible, since the parameter a is a variable over
R), but we compute just one Grobner basis with a as a symbolic quantity.

However, our method faces one problem: It can be nontrivial to find planes satisfying

the requirement, that no part of the intersection curve lies in any of the planes f,, a € A.

4.3.5 Locating Singularities

The singular point of a plane algebraic curve can be found iteratively or by direct
methods. If the curve coefficients are known precisely, then we can apply the Grobner
basis method (algorithm 4.2.2) to precompute all singularities by solving the system
{f=0, f =0, f, =0} (see the following example).

Example 4.3.7. Consider the cubic curve f = 0 (see Figure 4.6), where f = 2% —xy? —
y3. We look for a singular point of this curve. We find it by solving the system

For f we have f, = 22 — y? and f, = —2zy — 3y*. With the ordering 1 < z < y, we

obtain the reduced Grébner basis {z, 3?}. Hence, f has one singular point, at (0,0). ¢

3In [4] is this technique used to determine singularities of every curve of a family of curves — specif-

ically quartics.
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-2 -1 1 2
Figure 4.6: Singularity — Cusp

In |4, p. 281-282| is described the way, how to use the formerly mentioned method
of basis determination with symbolic quantities (confer Section 4.3.4) to determine sin-

gularities of every curve of a family of curves.



Chapter 5
Conclusion and Future Work

In this diploma thesis we have briefly reviewed the main curve/curve and surface/surface
intersection techniques. We have presented Grobner bases and methods for solving
algebraic equations, described our package — with two functions for intersection of planar
curves — implemented in the application Mathematica 4 and introduced our algorithms —
one for piecewise implicit curves intersection, the other for surface/surface intersection.

It should be mentioned, we did not entirely cover the topic of Grébner bases. Grob-
ner basis techniques are capable of solving a wide spectrum of difficult and important
problems, like implicitization, inversion and parametrization.

In the future we would like to target on interrogating common tangents and cur-
vatures of parametric curves and the common enhancement of our two algorithms— we

want to find algorithm for piecewise implicit surfaces intersection.
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