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DIPLOMOVÁ PRÁCA
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Ciěl práce:
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Abstrakt

Táto práca opisuje vybrané vlastnosti Bernsteinovej bázy polynómov v súvislosti

s prienikmi parametrických a algebraických kriviek. Sú uvedené základné vlastnosti

a spojenia medzi monomiálnou, Bernsteinovou a škálovanou Bernsteinovou bázou.

Ukáže sa, že Bernsteinová báza má v porovnańı s inými bázami najväčšiu numerickú

stabilitu. Definuje sa rezultant, spolu s výkladom konštrukčných metód a vlastnost́ı

rôznych formulácíı rezultantu pomocou mat́ıc. Okrem známej Sylvestrovej matice

sa odvod́ı matica nǐzšieho rádu pre Bernsteinove polynómy priamo v tejto báze,

vychádzajúc zo sprievodnej matice jedného z polynómov. Prezentujú sa aj trans-

formácie týchto rezultantov z monomiálnej bázy do Bernsteinovej. Výsledky tejto

teórie sa nakoniec použijú k výpočtu bodov prieniku dvoch polynomiálnych kriviek al-

gebraickým pŕıstupom. Uvedený je aj numerický pŕıstup pre problém prieniku kriviek

či plôch.

ǩlúčové slová:

Bernsteinova báza, rezultant, matica rezultantu, prienik kriviek



Abstract

This paper describes the properties of the Bernstein polynomial basis, concerning

the computation of the intersection points of parametric and algebraic curves. The

basic properties and connections between the power basis, the Bernstein basis and

the scaled Bernstein basis are presented, and it is shown that the Bernstein basis has

the best numerical stability in comparison to other bases. The resultant expression

is defined, and the construction and properties of several formulations of resultant

matrices are described. In addition to the widely known Sylvester’s matrix, a resul-

tant matrix of lower order – the companion matrix resultant – for two polynomials

is obtained directly in the Bernstein basis, in terms of the companion matrix of one

of the polynomials. The transformation of these resultants from the power basis to

the Bernstein basis is also considered. The presented results of the elimination the-

ory are then applied to compute the intersection of two polynomial curves from an

algebraic approach, and a numerical solution for this problem is also included.

keywords:

Bernstein basis, resultant, resultant matrix, intersection of curves



Preface

The purpose of this work is to examine the Bernstein basis of polynomials in order
to describe its properties related to finding the intersection of algebraic curves and
surfaces. As it will be shown, the problem of intersection for such curves can be
reduced to finding the common roots of the corresponding polynomials. Therefore,
the study is concentrated on the methods of finding the common roots of polyno-
mials expressed in the Bernstein basis.

Significant part of the work is devoted to the comparison and reformulation of prop-
erties and resultant expressions represented in different bases. Parts of the formu-
lations come from the literature; these were examined and combined, resulting in
possible more general formulations, or proofs involving more straight derivation. In
several cases, interesting properties of matrices and resultant expressions seemed to
be well described in some recent publications, but were revealed to be more complex
when trying to unify the commentaries from more simultaneous sources, or applying
them in another basis. The formulations have become more clear, and property rela-
tions which were partially missing from the existing publications are now introduced.

Concerning algebraic curves, the technique of implicitization of parametric curves is
shown, enabling the application of the presented results in elimination theory to be
used for arbitrary representation of polynomial curves. In addition to the algebraic
approach, the Bézier curves are described, and their convex hull property along with
the Bézier clipping method is used to introduce a numerical solution for the inter-
section problem. In the end, a numerical method for surface intersection is briefly
presented, too.

The contribution of this work is the study and description of the Bernstein poly-
nomial basis and its relation to the power basis and the scaled Bernstein basis,
concerning transformations and comparison of matrix methods expressed in these
bases, aimed at the computation of the intersection points of algebraic curves, in-
cluding a unified exposition of recent progress in the area of resultants.

An intergral part of this work is the demonstration software, implementing the most
important methods and algorithms presented in this paper.
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Chapter 0

Introduction

Consider two univariate polynomials and find their common roots effectively, or at
least detect their existence. Many practical problems can be reduced to this task,
emphasizing the importance of this problem.

Results from this area of research have been known for more than hundred years,
pointing out that the resultant expression computed from the coefficients of two
polynomials gives a necessary and sufficient condition for the polynomials to have a
common root. However, the efforts were made to handle polynomials expressed in
the power basis only. Other representations of polynomials had to be transformed.
Unfortunately, it was shown by the end of the last century that for a given interval
of interest, the power basis is numerically unstable and such basis transformations
may be ill-conditioned 1.

Nowadays, along with the increasing importance of geometric modelling, the Bern-
stein basis have become much more popular. They are frequently subjects to resul-
tant computations, but the numerical superiority of the basis is lost due to unstable
polynomial transformations. The necessity of resultant formulations directly in the
Bernstein basis is clear, and, according to recent publications, this area has been
targeted by several researchers in the last five years. Computations with Bernstein
polynomials without involving the power basis have become an intensively develop-
ing branch of algebra, geometry and computer graphics.

Once the basics for polynomials and basis transformations are defined, we start a
deeper examination of different formulations of resultant matrices, which yield the
necessary and sufficient condition for the existence of common roots of polynomials.
Then, having satisfactory theoretical results, we take a look at geometric issues,
concerning parametric and algebraic curves, and finally we formulate methods for
computing the intersection of such objects both numerically and algebraically.

1 A problem is ill-conditioned if the solution does not depend continuously on the data, and
– formulated informally – a very small change in the parameters may result in an incomparably
large change in the solution.
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The work is divided into the following chapters:

Chapter 1.
Definition of the polynomial bases that are subject to other chapters. Basic
properties of the Bernstein basis and its optimal numerical stability within the
set of polynomial bases defined on a given domain of interest.

Chapter 2.
Definition of the resultant expression. Several formulations of resultant matri-
ces, including different forms of the same matrix type for different polynomial
bases. Detailed derivation of the Sylvester resultant matrix and the compan-
ion matrix. Transformations of the most important resultant matrices between
the power basis and the Bernstein basis.

Chapter 3.
Parametric and algebraic curves. The intersection problem and different ap-
proaches for solving it. Algorithms for computing the intersection of curves or
surfaces.
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0.1 Commentary on the notation

Generic symbols and abbreviations

Polynomial functions and their coefficients are defined usually in the beginning of
the corresponding section or chapter. The Bernstein polynomial functions (β) and
scaled Bernstein polynomial functions (α), just as the transformation matrices TΦΩ,
referenced in the whole document, are defined in the first chapter.

GCD is an abbreviation for the greatest common divisor.
iff is an abbreviation for the term “if and only if”.

Terms of type “polynomial expressed in the Bernstein basis” are often simplified to
the form “Bernstein polynomial”. It will be clear from the context whether the basis
polynomial functions or an arbitrary polynomial is considered.

Geometric objects

For the d-dimensional space Rd, the following notation is used:

• Px, Py, Pz, . . . are the coordinates of the point P ,
vx, vy, vz, . . . are the elements of the vector ~v.

• fx(t), fy(t), fz(t), . . . are the components of the d-component polynomial f(t).
The vector of the ith coefficients of fκ(t), κ = x, y, z, . . . , makes the corre-
sponding coefficient of f(t).

The comma in the vector P = [Px, Py, Pz] or f(t) = [fx(t), fy(t)] is just to make the
notation more transparent.

The reason for a potential different notation may be the already existing index in
a sequence of points or functions. In such case, the components will be explicitly
defined.

Matrices

Matrix elements are indexed with (row, column) pairs, starting with (1,1).
In denotes the n× n identity matrix.
diag [. . .] is the diagonal matrix as shown below:

diag
[
m1 m2 · · · mr

]
=

(
mij

)
,

i,j=1,...,r

mij =

{
mi, i = j
0, i 6= j
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Transformation matrices

In the literature, two notations are used for transformation matrices:

According to the more common notation, the matrix Mf of the linear transforma-
tion f consists of columns that contain the images of the basis vectors. The image
f(x) of an arbitrary vector x is therefore equal to the product Mfx

T . This is derived
from the notation of the function composition, where the order of the symbols f , g
is the same on both sides of the equation (f ◦g)(x) = f(g(x)). Thus, Mf◦g = MfMg

is used for applying g first.

On the other hand, some scientific papers use the notation xf for mapping x by f .
In this case, keeping the order of the symbols unchanged, x(f ◦ g) = xfg. Holding
xf = xMf , the matrix Mf◦g = MfMg is used for applying f first. In comparison to
the first case, Mf is now transposed, containing the images of the basis vectors in
rows instead of columns.

In this paper, the first notation is used. Concerning the transpose, it will be clear
from the context whether the vector symbols denote row of column vectors.

Proofs

In the equation A
(R)
= B of a derivation sequence, the label R references the relation

which authorizes this step of the sequence. Most often, the reference is made to a
numbered identity elsewhere in the document.

The 2 symbol signalizes the end of the proof or derivation sequence.

0.2 Auxiliary relations

In this text, the following basic combinatorial identities are referenced:

m ≥ 0 ∧ (r < 0 ∨ r > m) =⇒
(
m

r

)
= 0 , (1)(

m

r

)(
r

s

)
=

(
m

s

)(
m− s

r − s

)
, (2)

m∑
r=0

(−1)r

(
m

r

)
=

{
1, m = 0
0, m > 0

. (3)

(1) results from the interpretation of
(

m
r

)
in set theory.

This identity will be used mainly for changing sum boundaries.

(2) results from the definition of
(

m
r

)
by factorials.

(3) can easily be proved by splitting
(

m
r

)
into

(
m−1
r−1

)
+
(

m−1
r

)
.



Chapter 1

Power basis and Bernstein basis

This chapter describes the power basis, the Bernstein basis and the scaled Bernstein
basis, and presents some of their important properties releated to the definition and
conversion of the bases.

1.1 Introduction to the power basis

and the Bernstein basis

1.1.1 Definitions

A polynomial p(x) of degree n is represented in basis Φ iff

p(x) =
n∑

i=0

ciφi(x) (1.1)

where Φ = {φi(x)}n
i=0 is a set of linearly independent basis functions that span the

space of polynomials of degree n, and ci is the coefficient of the function φi(x).

Definition 1.1 (power basis)
The power basis (or monomial basis) of degree n consists of polynomials

xi, 0 ≤ i ≤ n .

Definition 1.2 (Bernstein basis – β)
The polynomial functions of the Bernstein basis of degree n are

β
[n]
i (x) =

(
n

i

)
(1− x)n−ixi, 0 ≤ i ≤ n .

The generalized formulation of the Bernstein basis for the interval [a, b] is

ξ
[n]
i (x) = β

[n]
i

(
x− a

b− a

)
=

(
n

i

)
(b− x)n−i(x− a)i

(b− a)n
. (1.2)
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Definition 1.3 (scaled Bernstein basis – α)
The polynomial functions of the scaled Bernstein basis are expressed by removing
the combinatorial factor from the Bernstein polynomial functions:

α
[n]
i (x) = (1− x)n−ixi, 0 ≤ i ≤ n .

Note that
α

[n]
i α

[m]
j = α

[m+n]
i+j . (1.3)

Figure 1.1: The Bernstein basis and the scaled Bernstein basis

0b
[3]

(x)

1b
[3]

(x) 2b
[3]

(x)

3b
[3]

(x)

0

0

1

1

0a
[3]

(x)

1a
[3]

(x) 2a
[3]

(x)

3a
[3]

(x)

0

0

1

1

The Bernstein basis and scaled Bernstein basis
polynomial funcions of degree 3 on the interval [0, 1].

From this point, the notation of α
[n]
i (x), β

[n]
i (x) may be simplified (e.g. to αi, βi) if

the degree n and the indeterminate x are obvious.

1.1.2 Basic properties of the Bernstein basis

The Bernstein basis was first introduced by S. Bernstein to give an especially simple
proof of Weierstrass’ approximation theorem (reference in [14]). Since then, it is
still widely used in different areas such as approximation theory, or for the repre-
sentation of curves and surfaces in computer-aided geometric design, because of its
elegant geometric properties and stable algorithms that are available for processing
it. One such elegant property is that the Bernstein polynomials are invariant under
affine transformations [18].

The nth order basis can be recursively generated from the (n− 1)th order basis by

β
[n]
i (x) = (1− x)β

[n−1]
i (x) + xβ

[n−1]
i−1 (x) .

A polynomial of degree n can be represented in terms of the Bernstein basis of
degree n+1 by degree elevation [18]. If {b[n]

i }n
i=0 are the Bernstein coefficients in the

degree-n basis, then the coefficients in the next higher basis are given by:

b
[n+1]
i =


b
[n]
0 , i = 0

(1− ki)b
[n]
i + kib

[n]
i−1, 1 ≤ i ≤ n

b[n]
n , i = n+ 1

ki =
i

n+ 1
, i = 1, . . . , n .
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A further property of the basis is that the sum of the Bernstein polynomial functions
equals 1, as stated by lemma 1.2.

Lemma 1.1
The scaled Bernstein polynomial functions can be transposed to the following sum of
monomial components:

(1− x)n−ixi =
n∑

k=0

(−1)i+k

(
n− i

k − i

)
xk . (1.4)

Proof.
The first step in the sequence expresses the product in powers of x.

(1− x)n−ixi =
n−i∑
j=0

(
n− i

j

)
(−x)jxi =

n−i∑
j=0

(−1)j

(
n− i

j

)
xi+j k:=i+j

=

=
n∑

k=i

(−1)k−i

(
n− i

k − i

)
xk (1)

=
n∑

k=0

(−1)i+k

(
n− i

k − i

)
xk

2

Lemma 1.2
The sum of the Bernstein polynomial functions equals 1:

n∑
i=0

β
[n]
i (x) = 1 . (1.5)

Proof.

n∑
i=0

β
[n]
i (x) =

n∑
i=0

(
n

i

)
(1− x)n−ixi =

(1.4)
=

n∑
i=0

(
n

i

)
n∑

k=0

(−1)i+k

(
n− i

k − i

)
xk =

(2)
=

n∑
k=0

(
n

k

)
xk

n∑
i=0

(−1)i+k

(
k

i

)
=

(1)
=

n∑
k=0

(
n

k

)
xk(−1)k

k∑
i=0

(−1)i

(
k

i

)
=

(3)
=

(
n

0

)
x0(−1)0 1 + 0 = 1

2

The facts that all the polynomial functions of the Bernstein basis are positive on
the interval where they are defined, and that their sum equals 1, gives a bound on
the polynomial p(x) in the Bernstein basis with coefficients {bi}n

i=0 :

min
0≤i≤n

bi ≤ p(x) ≤ max
0≤i≤n

bi .

A tighter bound is given by the convex hull determined by the coefficients [18].
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1.2 Basis transformation

Definition 1.4
The transformation matrix between polynomial bases Φ and Ω of degree n is the
(n+ 1)× (n+ 1) matrix TΦΩ satisfying 1

ΩTΦΩ = Φ . (1.6)

Consider an arbitrary polynomial with vector C of coefficients in basis Φ and vector
D of coefficients in basis Ω. Both representations denote the same polynomial, thus
ΦCT = ΩDT . Using (1.6), this leads to TΦΩC

T = DT , which yields that (just as
expected) the transformation matrix TΦΩ maps the coefficients in C to those in D,
from basis Φ to basis Ω.

Considering the power basis, the Bernstein basis and the scaled Bernstein basis, the
following theorems introduce the general transformation matrices between pairs of
these bases, for arbitrary degree.

Theorem 1.1 (β ; α, α ; β)
The transformation matrices between the Bernstein basis and the scaled Bernstein
basis of degree n ≥ 1 – and vice-versa – have the following form:

T
[n]
βα = diag

[ (
n
0

) (
n
1

)
· · ·

(
n
n

) ]
,

T
[n]
αβ = diag

[
1

(n
0)

1

(n
1)

· · · 1

(n
n)

]
.

Proof.
Trivial, both follow from the identity β

[n]
i =

(
n
i

)
α

[n]
i . 2

Theorem 1.2 (β ; x)
The transformation matrix between the Bernstein basis and the power basis of degree
n ≥ 1 has the following form:

T
[n]
βx =

(
t[β,x,n]

ij

)
,

t[β,x,n]

ij = (−1)i+j

(
n

i

)(
i

j

)
, i, j = 0, . . . , n . (1.7)

Proof.
Let p(x) be an arbitrary polynomial and {bi}n

i=0 its coefficients in the Bernstein
basis. The transformation is achieved using lemma 1.1:

p(x) =
n∑

j=0

bjβ
[n]
j =

n∑
j=0

bj

(
n

j

)
(1− x)n−jxj =

(1.4)
=

n∑
j=0

bj

(
n

j

)
n∑

i=0

(−1)i+j

(
n− j

i− j

)
xi =

=
n∑

i=0

xi
n∑

j=0

(−1)i+j

(
n

j

)(
n− j

i− j

)
bj =

(2)
=

n∑
i=0

xi
n∑

j=0

t[β,x,n]

ij bj =
n∑

i=0

xiai .

1 This time, the sets Φ and Ω are treated as row vectors of the basis polynomial functions.
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The result form is the power basis representation of p(x). Constants t[β,x,n]

ij are from
(1.7) and ai are defined by

(
t[β,x,n]

ij

)
b0
...
bn

 =


a0
...
an

 (1.8)

This concludes that elements t[β,x,n]

ij define the transformation matrix T
[n]
βx between

these bases. 2

Theorem 1.3 (α ; x)
The transformation matrix between the scaled Bernstein basis and the power basis
of degree n ≥ 1 has the following form:

T [n]
αx =

(
t[α,x,n]

ij

)
,

t[α,x,n]

ij = (−1)i+j

(
n− j

i− j

)
, i, j = 0, . . . , n .

Proof.
Follows from T [n]

αx = T
[n]
βxT

[n]
αβ by theorems 1.1 and 1.2. 2

Lemma 1.3
The monomial 2 xi can be transformed to the scaled Bernstein basis as shown:

n > 0 ∧ 0 ≤ i ≤ n =⇒ xi =
n∑

j=i

(
n− i

j − i

)
α

[n]
j . (1.9)

Proof.
By mathematical induction with measure µ = n − i. We show that the equation
holds for µ = 0 and that the validity for all ρ < µ implies the validity for µ. We use
the auxiliary variable k := n− ρ.

Step 1.
µ = 0, i = n (trivial)

xn =
n∑

j=n

(
n− n

j − n

)
α

[n]
j = α[n]

n = (1− x)0xn

Step 2.
Have the induction hypothesis (IH)

∀ρ : ρ < µ
k:=n−ρ
k>i
=⇒ xk =

n∑
j=k

(
n− k

j − k

)
α

[n]
j .

2 For univariate polynomials, monomials are the terms xi.
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Derive xi from the definition of α
[n]
i :

α
[n]
i = (1− x)n−ixi (1.4)

=
n∑

k=i

(−1)i+k

(
n− i

k − i

)
xk =

= xi +
n∑

k=i+1

(−1)i+k

(
n− i

k − i

)
xk . (1.10)

Finally, prove the equation for i using the induction hypothesis.

xi (1.10)
= α

[n]
i −

n∑
k=i+1

(−1)i+k

(
n− i

k − i

)
xk =

(IH)
= α

[n]
i −

n∑
k=i+1

(−1)i+k

(
n− i

k − i

)
n∑

j=k

(
n− k

j − k

)
α

[n]
j =

= α
[n]
i −

∑
j,k

i<k≤j≤n

(−1)i+k

(
n− i

k − i

)(
n− k

j − k

)
α

[n]
j =

= α
[n]
i −

n∑
j=i+1

α
[n]
j

j∑
k=i+1

(−1)i+k

(
n− i

k − i

)(
n− k

j − k

)
=

(2)
= α

[n]
i −

n∑
j=i+1

α
[n]
j

(
n− i

j − i

) j∑
k=i+1

(−1)i+k

(
j − i

k − i

)
=

= α
[n]
i −

n∑
j=i+1

α
[n]
j

(
n− i

j − i

) j−i∑
r=1

(−1)r

(
j − i

r

)
=

n>0

(3)
= α

[n]
i −

n∑
j=i+1

α
[n]
j

(
n− i

j − i

)[
0 − (−1)0

(
j − i

0

)]
=

= α
[n]
i +

n∑
j=i+1

α
[n]
j

(
n− i

j − i

)
=

n∑
j=i

α
[n]
j

(
n− i

j − i

)
,

and this is the form of xi we requested. Hence, the equality is proved. 2

Corollary 1.1
Using (1), the boundaries of the sum in (1.11) can be extended so that

n > 0 ∧ 0 ≤ i ≤ n =⇒ xi =
n∑

j=0

(
n− i

j − i

)
α

[n]
j . (1.11)

Theorem 1.4 (x ; α)
The transformation matrix between the power basis and the scaled Bernstein basis
of degree n ≥ 1 has the following form:

T [n]
xα =

(
t[x,α,n]

ij

)
,

t[x,α,n]

ij =

(
n− j

i− j

)
, i, j = 0, . . . , n .
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Proof.
Let p(x) be an arbitrary polynomial and {ai}n

i=0 its coefficients in the power basis.
The transformation is achieved using corollary 1.1 (of lemma 1.3):

p(x) =
n∑

i=0

aix
i (1.11)

=
n∑

i=0

ai

n∑
j=0

α
[n]
j

(
n− i

j − i

)
=

=
n∑

j=0

α
[n]
j

n∑
i=0

(
n− i

j − i

)
ai =

n∑
j=0

α
[n]
j sj

The result form is the scaled Bernstein basis representation of p(x) with coefficients

{sj}n
j=0. Analogically to the proof of theorem 1.2, it concludes that factors

(
n−i
j−i

)
are the elements of the transformation matrix T [n]

xα between these bases. 2

Theorem 1.5 (x ; β)
The transformation matrix between the power basis and the Bernstein basis of degree
n ≥ 1 has the following form:

T
[n]
xβ =

(
t[x,β,n]

ij

)
,

t[x,β,n]

ij =

(
i
j

)
(

n
j

) , i, j = 0, . . . , n .

Proof.
Follows from T

[n]
xβ = T

[n]
αβT

[n]
xα by theorems 1.1 and 1.4 and the identity (2). 2

Example

Transformation of a cubic polynomial between the power basis and the Bernstein
basis:

T
[3]
xβ =


1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

 T
[3]
βx =


+1 0 0 0
−3 +3 0 0
+3 −6 +3 0
−1 +3 −3 +1


a+ bx+ cx2 + dx3 = aβ0 + (a+ 1

3
b)β1 + (a+ 2

3
b+ 1

3
c)β2 + (a+ b+ c+ d)β3

aβ0 + bβ1 + cβ2 + dβ3 = a+ (−3a+ 3b)x+ (3a− 6b+ 3c)x2 + (−a+ 3b− 3c+ d)x3

1.3 Numerical stability

It can be shown by backward error analysis that the cumulative effect of floating-
point arithmetic errors during any computation on given polynomials is equivalent
to certain perturbations on their exact coefficients [19]. Therefore, to compare poly-
nomial bases, the point of our interest is to establish a condition number measuring
the sensitivity of roots to random perturbations in the coefficients of polynomials.
When such a condition number is defined, it will be desirable to employ a representa-
tion – a choice of basis – in which the condition numbers are as small as possible, in
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order to obtain accurate results when performing floating-point computations with
polynomials.

The details of the following section are described in [19].

1.3.1 Condition numbers

Any polynomial of degree at most n can be uniquely expressed in the form

p(t) =
n∑

i=0

ciφi(t) (1.12)

by a suitable choice of coefficients c0, . . . , cn for basis Φ = {φ0(t), . . . , φn(t)}. We
shall be concerned here with the stability of such representations: how senstive a
value or root of p is to random perturbations of a given maximum relative magnitude
ε in the coefficients corresponding to basis Φ.

Definition 1.5
The condition number for the value of the polynomial p defined in (1.12) is the
quantity

CΦ(p(t)) =
n∑

i=0

|ciφi(t)| .

Note that CΦ(p(t)) depends as much on the adopted basis Φ as on the particular
polynomial p under consideration. A sharp bound on the perturbation δp(t), holding
for arbitrary (not just infinitesimal) coefficient perturbations ε, may be expressed as

|δp(t)| ≤ CΦ(p(t))ε .

Suppose now that τ is a simple real root of p(t), i.e. p(τ) = 0 6= p′(τ). The
sensitivity of τ to a perturbation ε of the coefficients c0, . . . , cn in the basis Φ can
also be characterized by a condition number.

Definition 1.6
The condition number for the root τ of polynomial p(t) defined in (1.12) is the
quantity

CΦ(τ) =
1

|p′(τ)|

n∑
i=0

|ciφi(t)| .

[19] says that the displacement δτ of this root, strictly valid only in the limit for
ε→ 0, satisfies

|δτ | ≤ CΦ(τ)ε .

When comparing condition numbers in arbitrary bases without imposing suitable
restrictions on the bases, no systematic inequality can be expected. We shall be
concerned here only with bases which are non-negative over an interval t ∈ [a, b].
Such bases are of particular interest in the context of the following result:
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Lemma 1.4
Let Φ = {φ0(t), . . . , φn(t)} and Ψ = {ψ0(t), . . . , ψn(t)} be non-negative bases for
degree n polynomials on t ∈ [a, b] such that Ψ can be expressed as a non-negative
combination of Φ:

ψj(t) =
n∑

i=0

mijφi(t), j = 0, . . . , n ,

mij ≥ 0 for all 0 ≤ i, j ≤ n .

Then the condition number for the value of any degree-n polynomial p(t) at any point
t ∈ [a, b] in these bases satisfies the inequality

CΦ(p(t)) ≤ CΨ(p(t)) .

In [19] the lemma is stated to be an immediate consequence of the triangle inequality
and the non-negativity of the matrix elements mij and the bases Φ and Ψ. The
inequality also holds for root condition numbers, since these differ from condition
numbers for the value only by the magnitude of the derivative at the root, which is
independent of the choice of basis.

1.3.2 Partial ordering of non-negative bases

Let Πn be the space of all polynomials of degree at most n on the interval [a, b].
Let Bn denote the set of non-negative bases for Πn.

Definition 1.7 (�)
For bases Φ and Ψ in Bn, we write Φ � Ψ if there exist a non-negative (n+1)×(n+1)
sized matrix M such that

ΨT = MΦT .

Φ ∼ Ψ holds iff Φ � Ψ and Ψ � Φ.
Φ ≺ Ψ holds iff Φ � Ψ without Φ ∼ Ψ.

The relation � induces a partial ordering among the members of Bn, since it is re-
flexive, antisymmetric and transitive [19]. The ordering is partial because if neither
Φ nor Ψ can be expressed as a non-negative combination of the other, they will not
be comparable.

According to the definition of minimal elements in a partially ordered set, the basis
Φ is minimal if there is no basis Ψ in Bn satisfying Ψ ≺ Φ. Note that there may
be more than one mutually incomparable minimal bases. The following theorem
demonstrates that minimal bases are optimally stable, in the sence of the condition
numbers from definition 1.5.

Theorem 1.6
Any two bases Φ and Ψ in Bn satisfy

Φ � Ψ ⇐⇒ ∀p ∈ Πn ∀t ∈ [a, b] CΦ(p(t)) ≤ CΨ(p(t)) . (1.13)

Note that Φ ∼ Ψ implies CΦ(p(t)) ≡ CΨ(p(t)) for each p ∈ Πn and every t ∈ [a, b].
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1.3.3 Optimal stability of the Bernstein basis

As already indicated by theorem 1.6 and the paragraph above it, being optimal
means minimality in terms of the partial ordering �. An optimal basis is the least
sensitive to random perturbations in the coefficients, from within all bases which
are comparable to it.

Let B be the generalized Bernstein basis for x ∈ [a, b], defined in (1.2). We demon-
strate that B has optimal stability in Bn.

Theorem 1.7
Suppose that Ψ = {ψ0, . . . , ψn} and Ω = {ω0, . . . , ωn} are bases in Bn satisfying 3

ψ
(m)
i (a) = 0 for i = 1, . . . , n and m = 0, . . . , i− 1 ,

ω
(m)
i (a) = 0 for i = 0, . . . , n− 1 and m = 0, . . . , n− i− 1 .

Then, if Φ ∈ Bn satisfies both Φ � Ψ and Φ � Ω, we have Φ ∼ B.

There is a quite complex proof in [19] showing that Φ may be reordered such that the
matrix M from definition 1.7 is lower triangular, and that φi(t) = ci(b−t)n−i(t−a)i,
i = 0 . . . n holds for nonzero constants c0, . . . , cn.

Corollary 1.2
According to the partial ordering �, the basis B is minimal.

Proof.
Suppose Φ ∈ Bn is such that Φ � B. Since the basis B satisfies the conditions on
both Ψ and Ω stipulated in theorem 1.7, this theorem implies that Φ ∼ B. Thus,
there is no basis Φ in Bn such that Φ ≺ B. 2

Corollary 1.2 establishes the optimal stability of the Bernstein basis.
We note also the following corollaries to theorem 1.7:

Corollary 1.3
If Φ ∈ Bn satisfies both Φ � {1, t− a, . . . , (t− a)n} and Φ � {1, b− t, . . . , (b− t)n},
then Φ ∼ B.

Corollary 1.4
Suppose that Φ ∈ Bn satisfies Φ � {1, t − a, . . . , (t − a)n} and Φ is symmetric, i.e.
Φ(t) ∼ Φ(a+ b− t). Then Φ ∼ B.

3 f (m) denotes the m-th derivative of f .



Chapter 2

Resultant matrices

Resultants are a classical algebraic tool for determining whether or not a system
of n polynomials in n − 1 variables have a common root without explicitly solving
for the roots. Gröbner basis methods can also be used for this task [10]; however,
resultants are usually more efficient than Gröbner bases in practical applications.

Definition 2.1 (resultant)
The resultant of a set of polynomials is an expression involving the coefficients of the
polynomials, such that a necessary and sufficient condition for the set of polynomials
to have a common root is that the resultant expression is exactly zero.

There exist several different types of resultant, for example, the Sylvester, Macaulay,
Newton, Bézout, Dixon, sparse and U-resultants (and even more) [1, 14, 15], and
they may be considered theoretically equivalent because they all yield necessary and
sufficient conditions for polynomials to have a common root. Resultants are often
represented as the determinant of a matrix whose entries are polynomials in the
coefficients of the original polynomial equations. These matrices may be very large,
especially in the multivariate setting (as stated in [16]).

It was realized in the 1980’s that resultants can be applied to many problems in
computer-aided geometric design. The Sylvester and Bézout matrices, presented in
the 19th century, are the oldest formulations but used up to the present. Both of
them has more ways to be derived. On the other side, according to recent publica-
tions [3, 5, 8, 13], the companion matrix resultant seems to be a new, intensively
developing branch of the elimination theory.

The main disadvantage of the resultant method is that in some cases the resultant
of a polynomial set can become identically zero. This is due to the fact that the
resultant matrix is singular (for example, due to the presence of base points of the
parametrisation). To overcome these situations, different approaches have been in-
vestigated [14].

The following sections present the most known, widely used matrices used to con-
struct the resultant expression.
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2.1 Adaptation of Bernstein polynomials

for power basis resultants

Resultants were originally developed for the power basis. However, the polynomial
basis transformation may be ill-conditioned, thus it is not a computationally reli-
able solution. An alternative method involves the parameter substitution presented
below [13, 11], enabling the entire theory of the resultant of power basis polynomials
to be reproduced for Bernstein basis polynomials.

Let p(x) be a polynomial expressed in the Bernstein basis:

p(x) =
n∑

i=0

bi

(
n

i

)
(1− x)n−ixi . (2.1)

The parameter substitution

t =
x

1− x
, x 6= 1 (2.2)

is a Möbius transformation [2] which yields

p(x) = p
(

t

1 + t

)
=

1

(1 + t)n

n∑
i=0

bi

(
n

i

)
ti .

Thus, if x0 is a root of p(x), then t0 =
x0

1− x0

is a root of the polynomial

q(t) = (1 + t)np
(

t

1 + t

)
=

n∑
i=0

bi

(
n

i

)
ti, t 6= −1 .

The coefficients bi
(

n
i

)
of the power basis polynomial q(t) are those from the repre-

sentation of p(x) in the scaled Bernstein basis.

The use of the Bernstein basis implies that interest is restricted to the interval
0 ≤ x ≤ 1, but the parameter substitution (2.2) is not valid at x = 1. Assuming
that (1 − x) is a factor of p(x), this disadventage can be overcome by removing it
before the parameter substitution is made. The interval [0, 1) is then mapped to
[0,∞) as shown in figure 2.1.

This substitution is adequate for theoretical analysis or symbolic computations,
but it cannot be used in a floating-point environment because all computations are
performed in the power basis, which is numerically inferior to the Bernstein basis
[19]. The parameter substitution is numerically inferior even to the scaled Bernstein
basis [11]. When using this or a similar transformation, one of the advantages of the
Bernstein basis is lost: its enhanced numerical stability. Therefore, it is desirable to
retain the Bernstein basis throughout the computations.
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Figure 2.1: Parameter substitution t = x
1−x

0 1 x

t

2.2 Sylvester’s resultant matrix

Sylvester’s matrix, or Sylvester’s dialytic expansion 1, is one of the most frequently
referenced methods of constructing a resultant expression. Hereby, we present its
formulation for the power basis, the Bernstein basis and the scaled Bernstein basis,
and its transformation between the power basis and the Bernstein basis.

2.2.1 Sylvester’s matrix for the power basis

Definition 2.2 (Sx)
Sylvester’s matrix for the polynomials f(x) =

∑m
i=0 aix

i of degree m and g(x) =∑n
i=0 bix

i of degree n has the form

Sx(f, g) =



am am−1 · · · a1 a0 0 0
am am−1 · · · a1 a0 0

0
. . . . . . . . . . . .

0 0 am am−1 · · · a1 a0

bn bn−1 · · · b1 b0 0 0
bn bn−1 · · · b1 b0 0

0
. . . . . . . . . . . .

0 0 bn bn−1 · · · b1 b0


, (2.3)

where n lines are constructed using the coefficients of f(x) and m lines using the
coefficients of g(x).

Theorem 2.1 (Sx)
The determinant of Sylvester’s matrix Sx(f, g) is the resultant of the two polynomials
f(x) and g(x).

Proof.
The matrix representation can be easily derived [6, 4] by thinking of polynomials as
linear equations in powers of x. Let us start with polynomial equations

f(x) = 0 ,

g(x) = 0 .
(2.4)

1 The naming comes from [25].
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This system only has a solution when f and g have a common root. We will add
more equations to come up with a matrix equation involving a square matrix. There
is no harm in adding equations of the form xkf(x) = 0 or xkg(x) = 0 to the system
(2.4) because the enlarged system will have exactly the same solutions as the original
system of two equations. Consider the system

xn−1f(x) = 0 ,

xn−2f(x) = 0 ,
...

f(x) = 0 ,

xm−1g(x) = 0 ,

xm−2g(x) = 0 ,
...

g(x) = 0 .

This system may be written as the matrix equation

Sx(f, g)


xm+n−1

...
x0

 =


0
...
0


using Sylvester’s matrix defined in (2.3).

An important property of matrix equations involving square matrices is that they
only have non-trivial solutions when the determinant of the matrix vanishes. Hence,
the determinant of Sylvester’s matrix will vanish whenever f and g have a common
root. 2

The resultant can also be derived using a method invented by Euler. For details,
see [10].

2.2.2 Sylvester’s matrix for Bernstein basis

The scaled Bernstein basis is also considered, since the corresponding definitions
and proofs serve as a base for their Bernstein basis equivalents.

Definition 2.3 (Sα)
Sylvester’s matrix for the scaled Bernstein polynomials p(x) of degree m and q(x) of
degree n has the same form as the matrix in (2.3), constructed using the coefficients
{pi}m

i=0 and {qi}n
i=0 for the scaled Bernstein basis.

Theorem 2.2 (Sα)
The determinant of Sylvester’s matrix Sα(p, q) is the resultant of the scaled Bernstein
polynomials p(x) and q(x).
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Proof.
Analogous to the proof of theorem 2.1.
Consider the following system of equations:

α
[n−1]
0 p(x) = 0 ,

...

α
[n−1]
n−1 p(x) = 0 ,

α
[m−1]
0 q(x) = 0 ,

...

α
[m−1]
m−1 q(x) = 0 .

According to (1.3), this system may be written as the matrix equation

Sα(p, q)


α[m+n−1]

0
...

α[m+n−1]

m+n−1

 =


0
...
0


which has a solution if and only if p and q have a common root, thus, when the
determinant of Sα(p, q) is not zero. 2

Definition 2.4 (Sβ)
Sylvester’s matrix for the Bernstein polynomials r(x) of degree m and s(x) of degree
n has the form

Sβ(r, s) = Sα(r, s) T
[m+n−1]
αβ ,

where

• {ri}m
i=0 and {si}n

i=0 are the coefficients of r and s in the Bernstein basis,

• Sα(r, s) has the form (2.3) for elements
{
ai := ri

(
m
i

)}m

i=0
and

{
bi := si

(
n
i

)}n

i=0
,

• T
[m+n−1]
αβ defined in the theorem 1.1 is the diagonal matrix with elements{

1

(m+n−1
i )

}m+n−1

i=0

on its diagonal.

Theorem 2.3 (Sβ)
The determinant of Sylvester’s matrix Sβ(r, s) is the resultant of the Bernstein poly-
nomials r(x) and s(x).

Proof.
The equations α

[n−1]
i r(x) for 0 ≤ i < n and α

[m−1]
i s(x) for 0 ≤ i < m form the

matrix equation

Sα(r, s)


α[m+n−1]

0
...

α[m+n−1]

m+n−1

 =


0
...
0

 ,
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where the elements of Sα(r, s) include the combinatorial factors in addition to the
Bernstein coefficients of r(x) and s(x). Tαβ is diagonal, being equal to its transpose,
thus (1.6) implies the basis conversion

α[m+n−1]

0
...

α[m+n−1]

m+n−1

 = T
[m+n−1]
αβ


β [m+n−1]

0
...

β [m+n−1]

m+n−1

 .

This yields the conclusion

Sα(r, s)


α[m+n−1]

0
...

α[m+n−1]

m+n−1

 = Sα(r, s) T
[m+n−1]
αβ︸ ︷︷ ︸

Sβ(r, s)


β [m+n−1]

0
...

β [m+n−1]

m+n−1

 =


0
...
0


proving that the matrix product SαTαβ satisfies the requirement for the Bernstein
form of Sylvester’s matrix. 2

2.2.3 Transformation of the Sylvester’s matrix
between the power basis and the Bernstein basis

Below, the transformation of the Sylvester’s matrix between the power basis and
the Bernstein basis is developed, using a similar technique as presented in [6].

To make the notation more compact, define the following matrices:

X [k]
x =


1
x
...
xk

 , X
[k]
β =


β

[k]
0

β
[k]
1
...

β
[k]
k

 ,

Fx = f(x)X [n−1]
x =


f(x)
xf(x)

...
xn−1f(x)

 , Fβ = f(x)X
[n−1]
β =


β

[n−1]
0 f(x)

β
[n−1]
1 f(x)

...

β
[n−1]
n−1 f(x)

 ,

Gx = g(x)X [m−1]
x =


g(x)
xg(x)

...
xm−1g(x)

 , Gβ = g(x)X
[m−1]
β =


β

[m−1]
0 g(x)

β
[m−1]
1 g(x)

...

β
[m−1]
m−1 g(x)

 ,

for which the equation (1.6) for the transformation matrix Txβ implies 2

Xx = TxβXβ . (2.5)

2 For the transpose in (1.6), note that Xx and Xβ are column vectors.
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The definitions 2.2 and 2.4 of the representations Sx(f, g) and Sα(f, g) of the Sylvester’s
matrix and the identity (1.3) yields the following equations:(

Fx

Gx

)
= Sx(f, g)X

[m+n−1]
x , (2.6)

and (
Fβ

Gβ

)
= Sβ(f, g)X

[m+n−1]
β . (2.7)

On the other hand, from (2.5) we have

Fx = f(x)X [n−1]
x = f(x) T

[n−1]
xβ X

[n−1]
β = T

[n−1]
xβ Fβ ,

Gx = g(x)X [n−1]
x = g(x) T

[m−1]
xβ X

[m−1]
β = T

[m−1]
xβ Gβ ,

which is the same as the combined equation

(
Fx

Gx

)
=

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

( Fβ

Gβ

)
. (2.8)

Now, (2.6) and (2.8) together lead to

Sx(f, g)X
[m+n−1]
x =

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

( Fβ

Gβ

)

and according to (2.7)

Sβ(f, g)X
[m+n−1]
β =

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

−1

Sx(f, g)X
[m+n−1]
x .

Using (2.5), we further derive thatSβ(f, g)−

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

−1

Sx(f, g) T
[m+n−1]
xβ

X [m+n−1]
β = 0 .

Hence,

Sβ(f, g) =

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

−1

Sx(f, g) T
[m+n−1]
xβ + Z(x) ,

where Z(x) is an arbitrary matrix that satisfies Z(x)X
[m+n−1]
β = 0. Since the ranks

of
(

Fβ

Gβ

)
and

(
Fx

Gx

)
match, the ranks of Sβ(f, g) and Sx(f, g) must match too, so it

follows that Z(x) = 0. Thus, the equation

Sβ(f, g) =

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

−1

Sx(f, g) T
[m+n−1]
xβ (2.9)
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defines the transformation for Sylvester’s matrix between the power basis and the
Bernstein basis.

The matrix Txβ is block diagonal 3, and this property guarantees that the transfor-
mation (2.9) is scale invariant. That is, for polynomials f, g and constants c, d the
following is true:

Sβ(cf, dg) =

(
cIn 0n×m

0m×n dIm

)
Sβ(f, g) =

=

(
cIn 0n×m

0m×n dIm

) T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

−1

Sx(f, g) T
[m+n−1]
xβ =

=

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

−1 (
cIn 0n×m

0m×n dIm

)
Sx(f, g) T

[m+n−1]
xβ =

=

 T
[n−1]
xβ 0n×m

0m×n T
[m−1]
xβ

−1

Sx(cf, dg) T
[m+n−1]
xβ

proving the scale invariance of the transformation.

2.3 Companion matrix resultant

Before the companion matrix is defined, see a few elementary definitions for matrices:

Definition 2.5 (row echelon form)
A matrix is in row echelon form if it satisfies the following requirements:

• All non-zero rows are above any rows of all zeroes.

• The leading coefficient of a row is always to the right of the leading coefficient
of the row above it.

Note that the second requirement implies that all entries below a leading coefficient,
if any, are zeroes. For examples, see [26].

Definition 2.6 (eigenvalues, eigenvectors)

• Given an n×n matrix A, its eigenvalues and eigenvectors are the solutions of
the equation Ax = λx, where λ is the eigenvalue and x 6= 0 is the eigenvector.

• Given two n×n matrices A,B, the generalized eigenvalue problem corresponds
to Ax = λBx.

The eigenvalue λ and its corresponding eigenvector x form the eigenpair {λ, x}.
3 A (square) matrix is block diagonal if it can be divided into smaller, diagonal square matrices.
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The eigenvalues of a matrix are the roots of its characteristic polynomial, corre-
sponding to det(A−λI). As a result, the eigenvalues of a diagonal matrix, or upper
triangular or lower triangular matrix, are the elements on its diagonal.
If B is non-singular and its condition number is low (that is, the numerical error
of multiplication with B−1 is negligible), the generalized eigenvalue problem can be
reduced to the eigenvalue problem (B−1A)x = λx.

Definition 2.7 (companion matrix)
A companion matrix Cp of a polynomial p(λ) of degree n, expressed in an arbitrary
basis φ(λ) = {φi(λ)}n

i=0, is defined by

p(λ) = det(Cp − λI) =
n∑

i=0

aiφi(λ) ,

where the structure of Cp is defined for each basis.

Clearly, the eigenvalues of Cp are identically equal to the roots of p(λ).

2.3.1 Companion matrix and resultant for the power basis

This section is meant as an introduction to the companion matrix resultant for the
Bernstein basis. Therefore, only the most important definitions and theorems are
presented.

According to the comment in [5], the companion matrix of a polynomial expressed
in the power basis has the form

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . .

...
...

0 0 0
. . . 1 0

0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1


for suitable {ai}n−1

i=0 .

Theorem 2.4
Let f(x) and g(x) be two polynomials of the form

f(x) =
n∑

i=0

fix
i, g(x) =

m∑
i=0

gix
i, fn = 1 .

If P is the companion matrix of the polynomial f(x) and the eigenvalues of P are
{λi}n

i=1, then

det(g(P )) =
n∏

i=1

g(λi)

and thus the determinant of g(P ) is equal to zero if and only if λi is a root of g(x).
Since the eigenvalues {λi}n

i=1 are the roots of f(x), it follows that g(P ) is a resultant
matrix for the polynomials f(x) and g(x).
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Proof.
Consider the matrix polynomial

g(P ) =
m∑

j=0

gjP
j

If the eigenpairs of P are {λi, xi}n
i=1, then the eigenpairs of P j are {λj

i , xi}n
i=1, so

P jxi = λj
ixi for i = 1, . . . , n ,

m∑
j=0

gjP
jxi =

m∑
j=0

gjλ
j
ixi for i = 1, . . . , n .

Thus, the eigenvalues of g(P ) are

g(λi) =
m∑

j=0

gjλ
j
i , for i = 1, . . . , n .

It is concluded that

det(g(P )) =
n∏

i=1

g(λi) .

2

2.3.2 Companion matrix for Bernstein polynomials

The companion matrix is highly dependent on the basis to which the coefficients of
its polynomial belong. Below, an expression for a companion matrix of a Bernstein
polynomial is developed. For details, see [5], [8] and [13].

Theoretical development

Let b0, . . . , bn−1 be arbitrary coefficients with no further meaning at this point.
Consider the square matrices A, E, F of the order n as follows:

A =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . .

...
...

0 0 0
. . . 1 0

0 0 0 · · · 0 1
−b0 −b1 −b2 · · · −bn−2 −bn−1


,

E =



(n
1)

(n
0)

1 0 · · · 0

0
(n

2)
(n

1)
1 · · · 0

...
...

. . .
...

0 0 · · · ( n
n−1)

( n
n−2)

1

−b0 −b1 · · · −bn−2 −bn−1 +
(n

n)
( n

n−1)


,

F = diag
[

(n
1)

(n
0)

(n
2)

(n
1)

· · · ( n
n−1)

( n
n−2)

(n
n)

( n
n−1)

]
.
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E = A+ F

The matrix A is in the form of a companion matrix of a power basis polynomial.

The analogous companion matrix for scaled Bernstein polynomials is obtained by
replacing F by the identity matrix and redefining the coefficients bi to include the
combinatorial factor

(
n
i

)
. For the derivation in the scaled Bernstein basis, see [13].

For δ = 1− λ, consider the matrix

A− λE =



−λ(n
1)

(n
0)

δ 0 · · · 0 0

0 −λ(n
2)

(n
1)

δ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −λ( n
n−1)

( n
n−2)

δ

−b0δ −b1δ −b2δ · · · −bn−2δ −bn−1δ − λ
(n

n)
( n

n−1)


.

The determinant

det(A− λE) = (−1)n
n∑

i=0

bi

(
n

i

)
(1− λ)n−iλi, bn = 1 (2.10)

is obtained in [5] by a recursive definition of the determinant, involving the method
of Horner for the nested multiplication of polynomials.

det(−λE) = lim
λ→∞

det(A− λE) = lim
λ→∞

(−1)n
n∑

i=0

bi

(
n

i

)
(1− λ)n−iλi ,

and

detE =
n∑

i=0

(−1)n−ibi

(
n

i

)
, bn = 1 . (2.11)

The condition bn = 1 is a normalization constraint that is equivalent to the monic
property of the characteristic polynomial of a companion matrix for a power basis
polynomial. Thus, the more general implication of this condition is that the coef-
ficient bn of xn of the polynomial in (2.1) is non-zero, which implies that x0 = 1
is not a root of the polynomial. However, if bn = 0, then a polynomial of degree
n− 1 is considered by removing the factor (1− x). A similar situation arose in the
substitution of (2.2) into the polynomial (2.1).

If E is non-singular, the eigenvalues of E−1A = (F +A)−1A are identically equal to
the roots of p(λ), where, from (2.10),

p(λ) = (−1)n
n∑

i=0

bi

(
n

i

)
(1− λ)n−iλi, bn = 1, (2.12)

and thus E−1A is the companion matrix of the polynomial p(λ).

The Sherman–Morrison formula, as stated in [13], enables the inverse of E to be
defined rather than computed numerically:
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Theorem 2.5 (Sherman–Morrison formula)
For the square non-singular matrix P of rank n and vectors u, v of length n, the
inverse of P + uvT equals

(
P + uvT

)−1
= P−1 − 1

τ
P−1uvTP−1, τ = 1 + vTP−1u .

The application of this formula requires the matrix E to be written in the requested
form.

Let en be the nth standard basis vector, b be the n-length vector of coefficients bi
and C = E + enb

T , as shown below:

en =


0
...
0
1

 , b =


b0
b1
...

bn−1

 , cij =


(n

i)
( n

i−1)
, i = j ,

1, i+ 1 = j ,

0 otherwise .

Now for E = C − enb
T , theorem 2.5 says that the inverse of E is given by

E−1 = C−1 +
1

τ
C−1enb

TC−1, τ = 1− bTC−1en . (2.13)

It is shown in [5] that the matrix C−1 = D consists of elements

di, k+i =


(−1)k∏i+k
m=i cmm

1 ≤ i ≤ n, 0 ≤ k ≤ n− i ,

0 otherwise

and also that this formulation of D together with (2.13) and (2.11) leads to
τ = detE. So finally, (2.13) can be written as

E−1 = D +
1

detE
Denb

TD . (2.14)

This allows the companion matrix E−1A of the polynomial p(λ) to be computed.

Computational implementation

As stated in [13], a companion matrix of a power basis polynomial has the form
of the matrix A. According to (2.14), the companion matrix of a Bernstein basis
polynomial has the form

M = E−1A =
(
I +

1

detE
Denb

T
)
DA = HDA .

Hence, the computational cost for the Bernstein basis is higher. Since the closed
form expressions for the elements A, D, b and en have been developed, the cost of
constructing M can be reduced. In particular, D is an upper triangular matrix and
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enb
T is a matrix with only the last row being non-zero, filled with the members of b.

It follows that the elements of the matrix H can be explicitly defined. Similarly, the
matrix DA is the product of an upper triangular matrix and a companion matrix
in the power basis form, and the elements of this product can also be defined. The
computation of M can therefore be reduced to two matrix multiplications and the
addition of the identity matrix.

2.3.3 Companion matrix resultant
for Bernstein polynomials

The following theorem shows how the companion matrix presented in the previous
section may be used to construct a resultant matrix for two Bernstein polynomials
[5]. The same method, described in [13], is used to construct a resultant matrix for
scaled Bernstein polynomials.

Theorem 2.6
Let r(x) and s(x) be two Bernstein polynomials of the form

r(x) =
n∑

i=0

riβ
[n]
i , s(x) =

m∑
i=0

siβ
[m]
i , rn = 1 .

If M is the companion matrix of the polynomial r(x) and the eigenvalues of M are
{λi}n

i=1, then

det(s(M)) =
n∏

i=1

s(λi) ,

and thus the determinant of s(M) is equal to zero if and only if λi is a root of s(x).
Since the eigenvalues {λi}n

i=1 are the roots of r(x), it follows that s(M) is a resultant
matrix for the polynomials r(x) and s(x).

The condition rn = 1 denies only the polynomials having rn = 0, because divid-
ing the coefficients by the non-zero rn does not change the roots. Therefore, the
assumption is equivalent to that x0 = 1 is not a root of r. Dealing with the root
x0 = 1 has already been considered in the paragraph right after (2.11).

Proof.
Consider the matrix polynomial

s(M) =
m∑

j=0

sj β
[m]
j (M) =

m∑
j=0

sj

(
m

j

)
(I −M)m−jM j .

If the eigenpairs of M are {λi, xi}n
i=1, then the eigenpairs of (I − M)m−jM j are

{ (1− λi)
m−jλj

i , xi }n
i=1, so

(I −M)m−jM jxi = (1− λi)
m−jλj

ixi, for i = 1, . . . , n ,

β
[m]
j (M) xi = β

[m]
j (λi) xi, for i = 1, . . . , n .
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It follows that

m∑
j=0

sj β
[m]
j (M) xi =

m∑
j=0

sj β
[m]
j (λi) xi, for i = 1, . . . , n

and thus the eigenvalues of s(M) are

s(λi) =
m∑

j=0

sj β
[m]
j (λi), i = 1, . . . , n .

We conclude that

det(s(M)) =
n∏

i=1

s(λi) .

2

It is possible to obtain the degree and coefficients of the GCD of r(x) and s(x) from
s(M) as declared by the following theorem:

Theorem 2.7
Let w(x) be the GCD of r(x) and s(x). Then

• the degree of w(x) is equal to n decreased by the rank of s(M),

• the coefficients of w(x) are proportional to the last non-zero row of s(M) after
it has been reduced to row echelon form.

Let ˜s(M) denote the row echelon form of s(M).

To determine the GCD from the polynomial constructed from the last row of ˜s(M),
a factor of the form (1− x)xq must be deleted. This factor arises because M , which
is of order n×n, is a companion matrix of a polynomial of order n. This polynomial
is defined by n+ 1 basis functions, and the coefficient bn of xn does not occur in M
but arises from the term −λI in the expression M − λI. It follows that M contains
only the coefficients {bi}n−1

i=0 of the basis functions {β[n]
i }n−1

i=0 , and thus a factor of the
form (1− x)xq arises in the GCD.

For the scaled Bernstein basis, such manipulation is not required because the ba-
sis stable polynomial functions {αi}n

i=0 do not contain combinatorial factors. Since

α
[n]
i = (1−x)α[n−1]

i , the GCD can be constructed directly from the last row of ˜s(M),
if, of course, M was constructed using the scaled Bernstein basis.

Below, the example of computing the GCD is taken from [5].

Example

Consider the Bernstein polynomials

r(x) = 3 β
[3]
0 − 5

6
β

[3]
1 − 1

2
β

[3]
2 + 1 β

[3]
3 roots: 1

2
, 2

3
, 3

s(x) = 2 β
[2]
0 − 3

2
β

[2]
1 + 1 β

[2]
2 roots: 1

2
, 2

3
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the GCD of which is s(x).
The companion matrix of r(x) and the resultant matrix are:

M = −1

3

 −3 5
6
−1

3

9 −11
2

1
−9 11

2
−4

 , s(M) =

 8 −4 4
3

−36 18 −6
54 −27 9

 ∼
 6 −3 1

0 0 0
0 0 0


Since the rank of ˜s(M) is 1, the degree of the GCD of the two polynomials is
3− 1 = 2. The GCD is calculated from the first row of this matrix:

6β
[3]
0 − 3β

[3]
1 + 1β

[3]
2 = 3(1− x)

(
2β

[2]
0 − 3

2
β

[2]
1 + β

[2]
2

)
= 3(1− x)s(x)

The factor (1− x) is ignored, and the GCD is therefore proportional to s(x).

Now, start with the other polynomial. The companion matrix of s(x) and the
resultant matrix are:

N = −1

3

(
1
3

1
12

−2
3

5
6

)
, r(N) =

(
0 0
0 0

)

The rank of r(N) is zero, so the degree of the GCD is 2− 0 = 2. Since s(x) is also
of degree two, the GCD is proportional to s(x).

Numerical issues

The issue of the implementation of resultants in a floating-point environment is not
a trivial problem because the degree of the GCD is equal to the rank deficiency
of the resultant matrix, but the rank of the matrix is not stable to compute ina
floating-point environment.

The difficulties of computing resultants in a floating-point environment arise from
the requirement that the determinant of a result matrix be exactly zero for the
polynomials to have a non-constant common divisor. Since the coefficients of a
polynomial may be multiplied by an arbitrary non-zero constant without changing
its roots, the determinant of the resultant matrix may be scaled arbitrarily, and thus
a non-zero determinant does not yield any information on the proximity of the roots
of the polynomials.

The numerical condition of the resultant matrix s(M) is investigated in [5] and [8].

2.3.4 Transformation of the companion matrix resultant
between the power basis and the Bernstein basis

A simple way to transform a resultant matrix from the power basis to the Bern-
stein basis is by the transformation of each polynomial, and then the employment
of theorem 2.6. This strategy is not satisfactory because each polynomial is treated
independently, but a resultant matrix contains cross product terms of the form risj



2.3 Companion matrix resultant 30

and the error analysis of the transformation of each polynomial does not consider
error terms of such form [12]. This section is concerned with a basis transformation
of a function of the polynomials, that is, their resultant, and not a basis transfor-
mation of the polynomials.

The transformation is defined by the following theorem [3]:

Theorem 2.8
Let f(x) and g(x) be the power basis representations of the Bernstein polynomials
r(x) and s(x), respectively, holding 4

n∑
i=0

fix
i = f(x) = r(x) =

n∑
i=0

riβ
[n]
i ,

m∑
i=0

gix
i = g(x) = s(x) =

m∑
i=0

siβ
[m]
i . (2.15)

If P is a companion matrix of f(x), M is a companion matrix of r(x) and

M = B−1PB , (2.16)

then g(P ) and s(M) are resultant matrices that are related by

s(M) = B−1g(P )B . (2.17)

Proof.
The transformation (2.16) between the companion matrices M and P enables the
transformation between the resultant matrices s(M) and g(P ) to be derived:

I −M = I −B−1PB = B−1(I − P )B

(I −M)m−i = B−1(I − P )m−iB

(I −M)m−iM i = B−1(I − P )m−iP iB

Then,

s(M) =
m∑

i=0

si

(
m

i

)
(I −M)m−iM i =

=
m∑

i=0

si

(
m

i

)
B−1(I − P )m−iP iB =

= B−1

[
m∑

i=0

si

(
m

i

)
(I − P )m−iP i

]
B =

(2.15)
= B−1

[
m∑

i=0

giP
i

]
B = B−1g(P )B .

2

The numerical condition of the transformation equation (2.17) is described in [3].

4 Note that different symbols are used for the same polynomial in different basis to indicate
which coefficients are meant.
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Theorem 2.9
Using the same assumptions for f , g, r, s, P and M from theorem 2.8, we have for
M = B−1PB, the elements of B = (bij) and B−1 = (b ′ij) are

bij =


n−j+1

n

(j−1
i−1)

(n−1
i−1)

, i ≤ j

0, i > j

b ′ij =

 (−1)j−i
(

n
i−1

)(
n−i
j−i

)
, i ≤ j

0, i > j

i, j = 1, . . . , n .

The matrices B and B−1 are upper triangular. Moreover, the matrix B is a totally
non-negative matrix (all its minors of all orders are non-negative). The theorem is
proved in [3], including a deep investigation of properties of the matrices M and B.

2.4 Other popular resultant matrices

In addition to Sylvester’s matrix, the Bézout matrix 5 is also frequently referenced
in many publications. To give a brief description, this section presents two of its
representations for the power basis.

2.4.1 Bézout’s formulation

The following is one of the possible expressions of the Bézout matrix [14]:

Definition 2.8 (Bézout’s resultant)
The resultant of the polynomials

f(x) =
m∑

i=0

aix
i and g(x) =

n∑
i=0

bix
i

is the determinant of matrix R of order l = max(m,n), defined as follows:

R =
(
rij

)
, i, j = 1, . . . , l ,

rij =
min(l, 2l+1−i−j)∑

k = max(l−i, l−j)+1

vk, 2l+1−i−j−k ,

vi,j =

∣∣∣∣∣ ai aj

bi bj

∣∣∣∣∣ = aibj − ajbi .

5 also called the Bézoutian matrix
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Most of the definitions in the literature define the Bézout matrix for polynomials of
the same degree. According to [24], if m = n, the definition can be reformulated to

rij =
∑
p, q

p>max(n−i, n−j)
p+q=2n−i−j+1

vpq .

[24] also presents the Bézout resultant for Bernstein polynomials, obtained by the
parameter substitution (2.2), and shows that the number of common roots and the
roots themselves can be computed from the Bézout matrix.

For polynomials of roughly the same degree, the Bézout matrix is half-sized in
comparison to the Sylvester matrix. Thus, the Bézout determinant is generally
faster to compute. But whereas the non-zero entries of the Sylvester resultant
are just the coefficients of the original two polynomials, the entries of the Bézout
resultant are much more complicated expressions in these coefficients. For degree n,
standard techniques based on explicit formulas require O(n3) additions and O(n3)
multiplications to compute the entries of the Bézout matrix. A recursive algorithm
for computing these entries, transforming the Sylvester matrix to the Bézoutian,
requires only O(n2) additions and O(n2) multiplications [16].

2.4.2 Cayley’s formulation

A nice derivation of Bézout’s resultant is due to Cayley [20]. Having f(x) of degree
m and g(x) of degree n, without loss of genereality, we assume that m ≥ n. Let us
consider the bivariate expression

p(x,w) =
f(x)g(w)− f(w)g(x)

x− w
(2.18)

which is a polynomial of bidegree (m−1, m−1) in x and w. This is proved by some
algebraic manipulation presented in [10]. Consider the following representation:

p(x,w) = p0(x) + p1(x)w + p2(x)w
2 + . . .+ pm−1(x)w

m−1

where pi(x) is a polynomial of degree m − 1 in x. The polynomials pi(x) can be
written as follows:

p0(x)
p1(x)

...
pm−1(x)

 =


p0,0 p0,1 . . . p0,m−1

p1,0 p1,1 . . . p1,m−1
...

...
. . .

...
pm−1,0 pm−1,1 . . . pm−1,m−1


︸ ︷︷ ︸

P


1
x
...

xm−1

 . (2.19)

Let us assume that x = x0 is a common root of the two polynomials, thus, p(x0, w) =
0 for all w. As a result, pi(x0) = 0 for 0 ≤ i ≤ m. This condition corresponds to
the fact that P is singular and v = [1 x0 x

2
0 . . . xm−1

0 ]T is a vector in the kernel of
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the matrix P . In other words, if we substitute x = x0 in (2.19), the product of P
and the right-hand side vector v is the null vector:

p0,0 p0,1 . . . p0,m−1

p1,0 p1,1 . . . p1,m−1
...

...
. . .

...
pm−1,0 pm−1,1 . . . pm−1,m−1




1
x0
...

xm−1
0

 =


0
0
...
0


Therefore the determinant of P is the resultant of f(x) and g(x).

Cayley’s formulation highlighted above is used for implicitizing parametric curves
and eliminating a variable from a pair of bivariate algebraic equations representing
algebraic plane curves. It can also be used to implicitize Bézier curves [24]. More-
over, this formulation of the Bézout matrix can be extended to the case of three
bivariate polynomials, leading to the Dixon resultant [10].



Chapter 3

Intersection

The problems of computing the intersection of parametric and algebraic curves are
fundamental to geometric and solid modeling. Parametric curves, like B-splines and
Bézier curves, are extensively used in the modeling systems and algebraic plane
curves are becoming popular as well.

It is universally recognized that the parametric representation is best suited for gen-
erating points along a curve or surface, whereas the implicit representation is most
convenient for determining whether a given point lies on a specific curve or surface
[25]. This motivates the search for a means of converting from one representation
to the other.

3.1 Definition of parametric and algebraic curves

3.1.1 Parametric curves

Definition 3.1 (barycentric combination)
Let {Pi = [Xi, Yi]}n

i=0 be points in the plane and {ci}n
i=0 be constants satisfying

ci ≥ 0, i = 0, . . . , n ,
n∑

i=0

ci = 1 .

Then the point

P = [X,Y ] =

[
n∑

i=0

ciXi,
n∑

i=0

ciYi

]
=

n∑
i=0

ciPi

is the barycentric combination of the points {Pi}n
i=0 with barycentric coordinates

[c0, . . . , cn]. Analogous definition holds for higher dimensions.

The barycentric combination always lies in the convex hull of the control points. This
property becomes more obvious after transforming the n+1 barycentric coordinates
to the system with the center Pk and n basis vectors {Pi − Pk | 0 ≤ i ≤ n, i 6= k }.
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Definition 3.2 (rational Bézier curve)
A (uniform) Bézier curve is of the form

P (t) =
n∑

i=0

Piβ
[n]
i (t), 0 ≤ t ≤ 1 (3.1)

and a rational Bézier curve is of the form

P (t) =

∑n
i=0wiPiβ

[n]
i (t)∑n

i=0wiβ
[n]
i (t)

, 0 ≤ t ≤ 1 (3.2)

where Pi are the control points of the curve, wi is the weight of the control point
Pi (such that the denominator of (3.2) is non-zero), and β

[n]
i (t) are the Bernstein

polynomials from definition 1.2.

Both of the two formulations can be transformed to the other, because both are
represented by a polynomial of the given degree. Uniform Bézier curves correspond
to rational Bézier curves with equal weights (results from theorem 1.2), and the
polynomials of rational Bézier curves are implicitly in the form of a uniform curve.
Thus, for a suitable transformation of the control points, the two definitions are
treated equivalent.

Other rational formulations like B-splines can be converted into a series of Bézier
curves by knot insertion algorithms (see the reference in [20]). Thus, the problem
of intersecting parametric polynomial curves can be reduced to intersecting Bézier
curves.

A Bézier curve is described by its corresponding control polygon. The curve starts
at the first control point (P0) and ends at the last one (Pn). The lines P0P1 and
Pn−1Pn are the tangents of the curve at the two ends. The most important property
in term of the intersection problem, stated by the theorem below, is that the curve
is bounded by the convex hull of the control polygon. Several other important
properties are known and described in the literature of geometry and computer
graphics [21].

Theorem 3.1 (convex hull property)
A uniform Bézier curve, or a rational Bézier curve with positive weights, is always
contained in the convex hull of its control points.

Proof.
Let W (t) =

∑n
i=0wiβ

[n]
i (t). In (3.2) the coefficients of Pi are 1

W (t)
wiβ

[n]
i (t), the sum

of which is
n∑

i=0

1

W (t)
wiβ

[n]
i (t) =

∑n
i=0wiβ

[n]
i (t)∑n

i=0wiβ
[n]
i (t)

= 1 .

Further, the product wiβ
[n]
i (t) is non-negative, since so are the Bernstein polyno-

mials on [0, 1]. Therefore, according to definition 3.1, the points of the curve are



3.1 Definition of parametric and algebraic curves 36

Figure 3.1: The convex hull property of Bézier curves

The Bézier curve is always contained in the
convex hull of its control points.

barycentric combinations of the control points. Since barycentric combinations are
always contained in the convex hull of the control points, the same is true for the
Bézier curve. 2

Theorem 3.1 implies that that the intersection of the convex hull of two Bézier curves
is a necessary condition for the intersection of the curves.

3.1.2 Algebraic curves

Definition 3.3 (algebraic curve)
Let f(x, y) be a polynomial 1. Let Z(f) = { [x, y] ∈ R2 | f(x, y) = 0 }. The set Z(f)
is called an algebraic plane curve, the one defined by the polynomial f .

From this point, the polynomial of the algebraic curve and the curve itself (in terms
of geometric representation) are considered to be equivalent.

The problem of intersection corresponds to the computing of the common points on
curves in a particular domain. The problem is equivalent to finding the roots of the
system

f(x, y) = 0 ,

g(x, y) = 0 .
(3.3)

For determining the number of intersections, a simple version of Bézout’s theorem
is used [9]:

Theorem 3.2 (Bézout)
Let f, g ∈ R[x, y] be polynomials of bidegree (m,n). If f and g have no common
factor of degree > 0, then there exist at most mn solutions of the system (3.3).

Written alternatively, the theorem says that if the curves have no component in
common, then they intersect at mn or less points, counted properly with respect

1 The polynomials for algebraic curves are most commonly expressed in the power basis.
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to multiplicity. Figure 3.2 based on [26] shows three pairs of curves with several
multiplicity of intersection points.

Figure 3.2: Intersection points with several multiplicity

Intersection of the circle f(x, y) with the curves gi(x, y)

f(x, y) = x2 + y2 − 1

left: two intersections of multiplicity 2, g2(x, y) = x2 + 4y2 − 1

middle: an intersection of multiplicity 3, g3(x, y) = 6x2 + 6xy + 5y2 + 6y − 5

right: an intersection of multiplicity 4, g4(x, y) = 4x2 + y2 + 6x+ 2 = 0

3.1.3 Numerical versus algebraic computations

Suppose we are given two parametric curves f(u) and g(v) and we want to find
the intersection points, that is, pairs of parameter values (u0, v0) such that f(u0) =
g(v0). We consider 2D curves, so we can write f(u) = [fx(u), fy(u)]

T and g(v) =
[gx(v), gy(v)]

T . Then u0 and v0 satisfy

fx(u0)− gx(v0) = 0 ,

fy(u0)− gy(v0) = 0 .

Generally, there are two approaches to solve such polynomial equations.

1. Algebraic approach using exact arithmetic. This approach is robust, but slow.

2. Numerical approach, using approximate calculations with machine accuracy.
This approach is not robust, as illustrated in figure 3.3.

3.2 Algebraic approach

In this section we use elimination theory and express the resultant of the equations
of intersection as a matrix determinant. The matrix itself rather than its symbolic
determinant, a polynomial, is used as the representation. The problem of intersec-
tion is reduced to computing the eigenvalues and eigenvectors of a numeric matrix.
The main advantage of this approach lies in its efficiency and robustness [7].
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Figure 3.3: Numerical approach is not robust

left: two curves with one intersection point
middle, right: after small perturbation, two

or zero intersections can occur

3.2.1 Implicitizing parametric curves

Definition 3.4 (proper parametrization)
A parametric curve has proper parametrization if the points of the curve have unique
preimages, with the exception of finite number of points.

Given a parametric polynomial curve of degree m, we express it in homogeneous
form:

P (t) = [ x(t), y(t), w(t) ] .

For example, a rational Bézier curve of degree n with control points {Pi = [Xi, Yi]}m
i=0

and weights {wi}m
i=0 can be expressed as

P (t) =
( m∑

i=0

wiXiβ
[m]
i (t),

m∑
i=0

wiYiβ
[m]
i (t),

m∑
i=0

wiβ
[m]
i (t)

)
.

We assume that P (t) has proper parametrization and that the GCD of x(t), y(t), w(t)
is a constant. To implicitize the curve we consider the following system of equations:

f(t) : Xw(t)− x(t) = 0 ,

g(t) : Y w(t)− y(t) = 0 .
(3.4)

Consider them as polynomials in t and let X, Y be indeterminates. The implicit
representation corresponds to the resultant of (3.4), expressed below.

The computation of the resultant matrix involves symbolic computation. Let

P (t, s) =
f(t)g(s)− f(s)g(t)

t− s
= (3.5)

= X
w(s)y(t)− w(t)y(s)

t− s
+ Y

w(s)x(t)− w(t)x(s)

t− s
+
x(t)y(s)− y(s)x(t)

t− s
.

Just as in (2.18), each term of the form (3.5) corresponds to a polynomial and can
be expressed as product of matrices and vectors, as shown in (2.19). Thus,

P (t, s) =


1
s
...

sm−1


(
XM1 + YM2 +M3︸ ︷︷ ︸

M

)


1
t
...

tm−1

 ,
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where M1, M2 and M3 are m × m matrices whose entries are reals. The implicit
representation of the curve is given as the determinant of the matrix M , where M
is defined as

M = XM1 + YM2 +M3 . (3.6)

An algorithm for computation of M is presented in [20].
See [25] for another guide for implicitization, including implicitization of surfaces.

3.2.2 Intersecting parametric curves

Given the two parametric polynomial curves P (t) and Q(u) of degree m and n,
respectively, the intersection algorithm proceeds by implicitizing P (t) and obtain-
ing an m × m matrix M of the form (3.6), whose entries are linear combinations
of indeterminates X, Y . The second parametrization Q(u) = (x(u), y(u), w(u)) is
substituted into the matrix formulation (3.6) as

X =
x(u)

w(u)
, Y =

y(u)

w(u)
.

The entries of the resulting matrix are rational functions in terms of u and we
multiply them by w(u) to obtain the matrix M(u) with polynomial entries. It
follows from the properties of the implicit representation and resultants that the
intersection points correspond to the roots of

detM(u) = 0 .

The problem of computing roots of the above equation can be reduced into an
eigenvalue problem. Further details see in [20].

3.2.3 Intersecting algebraic curves

In this section we consider the intersertion of two algebraic plane curves, represented
as zeros of polynomials f(x, y) and g(x, y) of degree m and n, respectively. Let the
points of the intersection be [xi, yi], i = 1 . . .mn. To simplify the problem, we
compute the projection of these points on the x-axis. Algebraically, the projection
corresponds to the computing the resultant of f(x, y) and g(x, y) by treating them
as polynomials in y and expressing the coefficients as polynomials in x. The resul-
tant r(x) is a polynomial of degree mn.

One such case corresponding to the intersection of two ellipses has been shown in
figure 3.4. In this case the resultant is a polynomial r(x) of degree 4 in x, such that
r(xi) = 0 for i = 1, 2, 3, 4. Thus, given r(x), the problem of intersection reduces to
finding its roots.

Let us express f(x, y) and g(x, y) as polynomials in y with their coefficients as
polynomials in x. That is,

f(x, y) = f0(x) + f1(x)y + . . .+ fm(x)ym ,

g(x, y) = g0(x) + g1(x)y + . . .+ gn(x)yn ,
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where fi(x) is a polynomial of degree mi and gj(x) is a polynomial of degree n− j.
The problem of intersection corresponds to computing the common roots of f and
g by one of the available resultant methods from chapter 2.

Figure 3.4: Intersection of algebraic curves: ellipses

x
1

x
2

x
3 x

4

The projection on the x-axis corresponds to expressing the ellipses
as polynomials in y with coefficients that are polynomials in x, leading

to the resultant r(x). The values x1, x2, x3, x4 are the roots of r(x).

3.3 Numerical approach

Let us see a numerical solution for the intersection problem [7]. We start with a
simple case to illustrate some general paradigms in the intersection algorithms. After
computing the intersection of a Bézier curve with a line, we show how to compute
the intersections of two curves. In addition, a method for surface intersection is also
briefly presented.

3.3.1 Solving a non-linear equation

Consider the non-linear equation

f(u) = 0 (3.7)

where f(u) is a polynomial. Several geometric problems, including the curve inter-
section problem, can be reduced to this equation. Unfortunately, for degrees higher
than five, there are no explicit formulas to express explicitly the solutions. Even for
cubic equations, concerning Bézier curves of degree 3 that are used so frequently,
the formula is relatively complex and not that easy to evaluate numerically in a
stable way. In practice, iterative methods [17] are typically used to solve equations
of degree as low as three. Newton’s method is probably the most known iterative
method used for solving non-linear equations.
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Newton’s method

Newton’s method of solving f(u) = 0 for an arbitrary continuous function f(u)
consists of picking up an initial value u0 and applying the iterative formula

un+1 = un −
f(un)

f ′(un)

unless the required precision is achieved. The precision is expressed by the means
of the error tolerance ε > 0. When such un is reached for which |un−un−1| < ε, the
value is considered to be the root of the equation within the tolerance. Figure 3.5
illustrates how the method works. The exact algorithm is shown in figure 3.6.

Figure 3.5: Newton’s method

f(u )
0

u
0u

1 u

f(u)

u1 = u0 −
f(u0)

f ′(u0)

Figure 3.6: Newton’s method – algorithm

input: f, f ′, u0, ε, steps

1. if steps ≤ 0 then fail
2. if f ′(u0) = 0 then fail
3. u1 := u0 − f(u0)/f

′(u0)
4. if |u1 − u0| < ε then return u1

5. steps := steps− 1
6. u0 := u1

7. goto 1

Newton’s method is easy to implement, but it has potential problems:

• It is not guaranteed to converge, if f is not twice differentiate, or the initial
value is too far from the root, or f ′(0) = 0 at the root.

• It finds one solution, not all possible solutions.

For other methods of solving non-linear equations, as well as for a more detailed
description of the Newton’s method, see [17].
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3.3.2 Bézier clipping

We introduce a method for solving (3.7) called Bézier clipping which guarantees
convergence and finds all solutions under certain conditions [7]. Since f(u) is a
polynomial, it can be expressed in the Bernstein basis. Let {bi}n

i=0 be the coefficients
of the Bernstein form:

f(u) =
n∑

i=0

biβ
[n]
i (u) .

We will add one dimension, in which the curve will progress linearly. This leads to
the following form of (3.8):

n∑
i=0

[
i

n
, bi

]
β

[n]
i (u) = [u, 0] .

The identity for the first component can be directly verified by recalling the defini-
tion of β

[n]
i (definition 1.2). So, instead of solving the original equation, we look for

the intersecting points of the newly constructed curve with u-axis.

Initially, we know that the u value of the intersection points, if it exists, is inside the
interval [0, 1]. Using theorem 3.1 about the convex hull property of the Bézier curve,
we observe that the intersection points have to be in the intersection of the convex
hull of the control points and the u-axis. If the convex hull and the u-axis does
not intersect, then the equation (3.7) does not have a solution within the inspected
interval.

Suppose the convex hull intersects the u-axis at two points with the corresponding
parameter values u1, u2, such that 0 ≤ u1 ≤ u2 ≤ 1. Then, all the intersection
points of the Bézier curve and u-axis will be inside [u1, u2]. Now we subdivide the
curve into three segments, with u ranging in [0, u1], [u1, u2], and [u2, 1], respectively.
The segments [0, u1] and [u2, 1] can be safely discarded. The process is iterated
by replacing [0, 1] by [u1, u2], until the required precision u2 − u1 < ε is achieved.
Figure 3.7 shows the first step of the iteration.

For single intersection, the convergence is implied by the convex hull property. In
case that the difference u2−u1 converges to a nonzero value, the curve has multiple
intersections with the line, because of multiple roots of (3.7). Then, divide the
interval into two parts and search for an intersection in both of them.

3.3.3 Intersection of a Bézier curve with a line

Let ax + by + c = 0 be the implicit equation of the line. In case that the line is
expressed in parametric form, the constants a, b, c can be evaluated as follows. Let
the parametric form of the line be

L(t) = Q+ ~rt .

Here, Q is a fixed point on the line and ~r is the direction vector. The normal of
the line is ~n = [−ry, rx]. The implicit equation of the line for the non-fixed point
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Figure 3.7: Bézier clipping

[1/3, ]P1

[2/3, ]P2

[1, ]P3

[0, ]P0

u

u1

u2

The one-dimensional Bézier curve with control points
{P0, P1, P2, P3} after extension to 2D. The u-axis is searched

for intersections u1, u2 with the convex hull of the control points.

L = [x, y] can be written as ~n.(L−Q) = 0, or

−ryx+ rxy + (ryQx − rxQy) = 0 ,

where a = −ry, b = rx and c = ryQx − rxQy.

Let the Bézier curve be expressed by the polynomial f(u) = [fx(u), fy(u)]. The
coordinates x, y of the intersection point of the curve and the line will be the solution
of the system

fx(u) = x ,

fy(u) = y ,

ax+ by + c = 0 .

Combining these equations, we obtain a single equation for u:

afx(u) + bfy(u) + c = 0 . (3.8)

Thus, the problem of intersection of a Bézier curve with a line was reduced to this
polynomial equation, which can be solved by Bézier clipping.

3.3.4 Intersection of curves

Suppose we want to intersect two Bézier curves f(u) and g(v). It results from the
convex hull property (theorem 3.1) that if f(u) intersects with g(v), then f(u) has to
intersect with convex hull of control points of g(v). Since the convex hull is bounded
by a few line segments, we can use Bézier clipping for the boundary lines to compute
the intersection with the convex hull. Once the minimal and maximal values u1, u2

within the convex hull are determined for the parameter u, we can use them to clip
f(u) to the shorter segment f2(u) for u ∈ [u1, u2] (see figure 3.8). Now we reverse
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the role of f and g: we clip g(v) against the convex hull of f2(u) to get g2(v).

By iteration, we get two sequences of curve segments: f(u), f2(u), f3(u). . . and g(u),
g2(v), g3(v). . . , both of them will converge to the intersection point.

Figure 3.8: Intersection of curves – clipping

f(u)

2
f (u)

g(v)

Searching for the intersection point of two Bézier curves.
f(u) is clipped against the convex hull of the control points of g(v)

to get a shorter segment f2(u) for the next step of iteration.

A little different Bézier clipping method, based on the same idea, is the fat line
version described in [23]. That algorithm tests whether one curve lies in the fat line,
which is a given range from the centerline of the other curve, clips the first curve
against this area, reverses the roles of the two curves and continues iterating.

3.3.5 Intersection of surfaces

The situation becomes more complicated since the set of intersections of two sur-
faces can have a complex topology. For curves, the topology is very simple: the
intersection is a finite set of isolated points, unless parts of the curves coincide. The
following method is taken from [7].

Let f(u, v) and g(s, t) be two surface patches. We make the following assumptions:

• a boundary curve e of f(u, v) intersects g(s, t),

• the intersection of f(u, v) and g(s, t) is a simple curve h.

Then we can find the intersection curve by the following steps (see figure 3.9):

1. Intersect the boundary curve e with g(s, t) to get a starting point P0 within
the intersection.

2. From Pi, step in the direction of the tangent to the intersection curve h.
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3. Locate the next point Pi+1 on h by solving the equation f(u, v)− g(s, t) = 0.

Comments:

• We can use Bézier clipping to evolve a method for intersection when we try to
locate P0.

• The intersection set may not be a simple curve. For example, it can loop. This
problem can be resolved by loop detection and subdivision, as it is discussed
in a paper referenced by [7]. Once a loop is detected, we subdivide the surface
patch, until all the loops are separated into simple curves (figure 3.10).

Figure 3.9: Intersecting surfaces

f u,v( )
g s,t( )

P0 e

h

Given two surfaces f and g, the intersection curve h is detected
by finding a starting point P0 on the boundary curve e of the surface f

and stepping towards the tangent of the intersection h.

Figure 3.10: Subdividing surfaces to remove intersection loops

If a loop is detected, the surface patch should be subdivided,
until all the loops are separated into simple curves.

An effective surface intersection algorithm, characterizing the surfaces algebraically
and using a complex tracing, is presented in [22].
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Conclusion

In this work, the properties of the Bernstein polynomial basis were examined, in con-
nection with the common roots of polynomials, needed to compute the intersection
of algebraic curves. The results cover the basic properties and basis transformations
of polynomials, the issues concerning numerical stability, the formulation and deriva-
tion of different resultant matrices for several polynomial bases, and transformation
of these matrices between bases. Moreover, algebraic and parametric curves were
introduced, and a method was presented for computing the intersection of curves,
both from algebraic and numerical approach. In addition, a surface intersection
algorithm based on numerical approximation was briefly described.

As a conclusion, the Bernstein polynomial basis was found to be more stable on the
interval of interest than other bases, therefore its usage is highly advised, along with
the matrix computations involving only the Bernstein basis. Concerning the resul-
tant matrices, the companion matrix resultant was found to be more appropriate
for determining the common roots of polynomials, because of the lower order than
the Sylvester and Bézout matrices have, and also because of the direct derivation
of the companion matrix in the Bernstein basis. For this reason, the companion
matrix resultant is considered to be more suitable for practical purposes and thus
it is recommended for usage.

This study has uncovered the more advanced intersection algorithms, giving only
a brief commentary on the surface intersection algorithm, and the lack of a more
deeper investigation of implicitization of curves is also considered to be a weak spot.

The main contributions are the description of the relations between the power ba-
sis, the Bernstein basis and the scaled Bernstein basis, the comparison of different
resultant formulations, and the unified exposition of recent progress in the area of
resultants. The formulations have become more clear, and a few proofs were made
more straight by introducing the requested transformation functions and the more
general formulations of the properties of polynomials.

Since the assignment for this work was the study and exposition of the Bernstein
polynomial basis and its properties, the main goals are considered fulfilled.

Future work should be concentrated on implicitization and surface intersection, as
these were already mentioned for the less covered areas.
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Súhrn

Táto práca zahŕňa výklad a odvodenie najmä týchto objektov a vlastnost́ı:

Bernsteinova báza

Bernsteinovu bázu polynómov stupňa n tvoria bázové funkcie β
[n]
i (x) = (1−x)n−ixi.

Pre interval záujmu [a, b] plat́ı, že Bernsteinova báza má na tomto intervale väčšiu
numerickú stabilitu ako iné bázy, ktoré sú s ňou porovnatělné. K porovnávaniu
stability sa definuje čiastočné usporiadanie, poďla ktorej jedna báza predchádza
druhú, ak jej korene sú menej citlivé na náhodné perturbácie v koeficientoch.

Rezultant polynómov

Rezultant množiny polynómov je výraz obsahujúci koeficienty polynómov, ktorý
je nulový práve vtedy, ak polynómy majú spoločný koreň. Rezultant je často vy-
jadrený v tvare determinantu nejakej matice. Najznámeǰsie formulácie rezultantu
pochádzajú z konca 19.storočia. Sú to: Sylvestrova matica, Bézoutova matica,
Cayleyho formulácia Bézoutovej matice a ďaľsie. Rozš́ırené sú hlavne tvary týchto
mat́ıc pre monomiálnu bázu, tvary pre iné bázy sa začali skúmať iba nedávno. V
poslednej dobe sa intenźıvne skúmajú sprievodné matice a k nim prislúchajúce rezul-
tanty.

Sprievodná matica

Sprievodná matica (companion matrix) polynómu p(x) je matica Cp, pre ktorú plat́ı
(Cp− λI) = p(x). Ak r(x) a s(x) sú polynómy, r(x) s vedúcim koeficientom 1, a Cr

je sprievodná matica polynómu r(x), potom determinant matice s(Cr) je rezultant
polynómov r a s. Rezultant prislúchajúci k sprievodnej matici (companion matrix
resultant) je nižšieho stupňa ako Sylvestrova matica a môže sa konstruovať priamo
v Bernsteinovej báze, preto pre praktické účely sa považuje za vhodneǰsiu ako iné
poṕısané matice.

Z upravenej matice rezultantu je možné vypoč́ıtať najväčš́ı spoločný delitěl polynómov
až na konštantný násobok. Najväčš́ı spoločný delitěl priamo súviśı so spoločnými
koreňmi týchto polynómov.



Parametrické krivky

Každá polynomiálna parametrická krivka v rovine môže byť vyjadrená v tvare
P (t) =

∑n
i=0 Piβ

[n]
i (t). Krivka tohoto tvaru je Bézierova krivka s riadiacimi vr-

cholmi Pi. Najdôležiteǰsou vlastnosťou Bézierovej krivky je, že sa celá nachádza
v konvexnom obale svojich riadiacich vrcholov. Táto vlastnosť môže byť využitá
pri ȟladańı prieniku dvoch kriviek, pretože všetky body prieniku sú obsiahnuté
v prieniku prislúchajúcich konvexných obalov.

Algebraické krivky

Algebraická krivka v rovine je vyjadrená polynomiálnou funkciou f(x, y). Krivku
tvoria body [x, y], pre ktorých f(x, y) = 0. Parametrické polynomiálne krivky sa
dajú previesť do tohto implicitného tvaru. Z polynómov dvoch algebraických kri-
viek je možné odvodǐt maticu, ktorej determinant je ich rezultantom. Krivky majú
spoločný bod práve vtedy, ak tento determinant je nulový.

Bézier clipping

Bézier clipping je metóda aproximačného riešenia polynomiálnej rovnice f(u) = 0.
Polynóm f(u) sa vyjadŕı v Bernsteinovej báze a rozš́ıri sa o ďaľsiu dimenziu s lineárne
rastúcou súradnicou. Takto sa źıska krivka v rovine s bodmi [u, f(u)], u ∈ [0, 1],
pričom korene rovnice zodpovedajú u-súradniciam prieniku krivky s osou u. Zistia
sa hraničné hodnoty u1, u2 prieniku osi u a konvexného obalu prislúchajúceho krivke.
Takto sa interval [0, 1] rozdeĺı na tri časti a prienik krivky s osou u sa ďalej ȟladá
na intervale [u1, u2].

Problém prieniku Bézierovej krivky s priamkou môže byť redukovaný na poly-
nomiálnu rovnicu a riešený metódou Bézier clipping. Metóda tým pádom môže byť
využitá pri ȟladańı prieniku dvoch kriviek pomocou postupného orezávania kriviek
pŕıslušnými konvexnými obalmi. Metóda môže byť využitá dokonca aj pri riešeńı
prieniku plôch.


