
Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics
Department of Computer Graphics and Image Processing

Master Thesis

Author: Peter Szinek
Supervisor: RNDr. Pavel Chalmovianský, PhD.

Bratislava, April 2003

I honestly declare that I have written the submitted mater thesis by myself
and I have used only the literature mentioned in the bibliography

.......................
Peter Szinek

I wish to thank to my supervisor Pavel Chalmovianský
for his assistance in the preparation of my master thesis

Contents

1 Introduction 5
1.1 Overview of Surface Generation 5
1.2 Advantages of Subdivision Surfaces 8
1.3 Disadvantages of Subdivision Surfaces 9

2 Mathematical Backgrounds of Subdivision 11
2.1 Cell Complexes . 11
2.2 Refinement of Cell Complexes 14
2.3 Subdivision Scheme . 15

3 Basic notions 17
3.1 The Idea of Subdivision . 17

3.1.1 Subdivision Example on Uniform B-splines 19
3.2 Terminology and Basic Properties 21
3.3 Overview of Existing Subdivision Schemes 24

3.3.1 Subdivision Classification 24
3.3.2 Detailed Subdivision Schemes 25

4 Optimized Subdivision Surface Displaying 26
4.1 Preliminaries . 26
4.2 Input Data and Constraints 26
4.3 Basic Definitions . 27

4.3.1 Basic Geometric Formulas 27
4.3.2 Triangle Characteristics 28

4.4 Intuitive Description of Algorithm 30
4.5 Preprocessing the Input . 31
4.6 Partitioning the Mesh . 31
4.7 Optimizing Triangle Sets . 34

4.7.1 Calculating Transformation Matrices 35
4.7.2 Real Time Rendering Phase 36

4.8 Results . 37

3

4.9 Future Work . 37

4

Chapter 1

Introduction

1.1 Overview of Surface Generation

There is a lot of surface generation methods in area of geometric modeling.
We briefly review them in order to see their important features. After intro-
ducing some other commonly used surface generation methods, we focus on
subdivision surfaces and their rendering time improvements.

1. Implicit surfaces:
The set of surface points Sc is defined

Sc = {[x, y, z] ∈ R3 | f(x, y, z) = c}, f : R3 → R (continuous)

(e.g. Sc : f(x, y, z) = x2+y2+z2 over the domain R3 for some parameter
c - represents sphere with radius c. Implicit surface representation
defines the surface as the zero contour of 3 variables.
Advantages of this approach are:

• we can easily check whether the point is ’inside’ or ’outside’ the
surface - if f(x, y, z) < 0 the point is ’inside’, if f(x, y, z) > 0 it is
’outside’

• we can relatively easily calculate the tangent plane, normals, cur-
vature explicitly at any given point

• good at operations such as space deformation, blending or mor-
phing

Disadvantages are the following:

• it is difficult to look for points on the surface

5

• hard (or impossible) to define bounded portion of an implicit sur-
face

• problem to join piecewisely such surfaces, while maintaining smooth-
ness and continuity

Other popular usage of implicit surfaces are metaballs or blobby ob-
jects. We can imagine a metaball object as a particle surrounded by
a density field, where the influence of the density decreases from the
particle location. The really powerful feature of metaballs is that they
can be combined easily (See figure 1.1) by summing the influences of
each metaball on a given point, producing smooth blendings of the two
spherical fields. Metaballs are widely used for creating organic models

Figure 1.1: Combining of two ’metaball’ objects

(trees, creatures...) but due to their hard explicit parametrization they
are not used much in geometric modeling.

2. Parametric surfaces - defined as

Q : Ω ∈ R3 → S ∈ R3

Q(u, v) = [x(u, v), y(u, v), z(u, v)], u, v ∈ [0, 1],

where x, y, z are real functions defined over the plane Ω[0, 1]× [0, 1] ⊆
R2. Although these surfaces are easy to visualize (simply by evaluat-
ing the function f in sufficiently many points and joining the resulting
points with polygons) the way of visualization is relatively expensive.
Among the advantages are the ability to calculate derivates at any
given point, compute intersections. The drawbacks include expensive
visualization and bad local control of the generated surface.

3. Surfaces defined over a net of control points:

Bézier patches If we are having (n+1)∗(m+1) control points Pi,j ar-
ranged in a control grid, we are defining the Bézier tensor-product
patch as

Q(u, v) =
n∑

i=0

m∑
j=0

Pi,jB
n
i (u)Bm

j (v), u, v ∈ [0, 1],

6

where Bk
i are the Bézier basis functions:

Bk
i (t) =

(
k
i

)
ti(1− t)k−i, t ∈ R, k ∈ N0, i ∈ {0, 1, . . . , k}

Bézier patches are easy to model by the aid of the control grid,
easy to differentiate at any given point. It is also relatively easy
to compute intersections of such surfaces.

Problems arise when trying to join two patches (with prescribed
continuity) into a single surface - special rules are needed on the
boundaries (defined by the boundary control points) to preserve
the required smoothness. Another common disadvantage is the
limited variety of shapes that can be modeled with Bézier patches
- some quadrics (such as sphere or ellipsoids) are not available.
The local control of the generated surface is also not sufficient -
by changing the coordinates of one control point, the whole shape
is affected.

B-spline surfaces, defined as

Q(u, v) =
n∑

i=0

m∑
j=0

Pi,jN
n
i (u)Nm

j (v), u, v ∈ [0, 1],

where Pi,j, i ∈ {0, 1, . . . , n} j ∈ {0, 1, . . . ,m} are the control
points and Nk

i are the B-spline basis functions:

N0
i (t) =

{
1 ti ≤ t < ti+1

0 otherwise

Nk
i (t) =

(t− ti)

(ti+p − ti)
Nk−1

i (t) +
(ti+p+1 − t)

(ti+p+1 − ti+1)
Nk−1

i+1 (t)

k is the order of the polynomial segments of the B-spline curve

t ∈ [tk−1, tn+1), {ti : i = 0, . . . , n + k}

B-spline surfaces have many advantages over the previously de-
fined Bézier patches: Mainly local control (changing the coordi-
nates of a control point does not affect the entire surface, just a
smaller portion around the control point). Also these surfaces are
invariant with respect to affine transformations.

Non Uniform Rational B-Spline (NURBS) surfaces Defined over
B-spline basis functions as

Q(u, v) =

∑n
i=0

∑m
j=0 wi,j Pi,j Nn

i (u)Nm
j (v)∑n

i=0

∑m
j=0 wi,j Pi,j Nn

i (u)Nm
j (v)

, u, v ∈ [0, 1],

7

where Pi,j are the control points and wi,j are the weights for each
control point. If the denominator equals to zero, Q(u, v) = 0 by
definition. The usage of the rational coefficients makes possible
the generation of even larger variety of surfaces as in the case of
B-splines - conic/spherical sections for example, such as quadrics.

4. Procedural surface representations
The formerly introduced methods described the surface with different
mathematical methods. The approach of procedural representations
is different - the input is a mesh (mesh - net of points in the object
space defining a solid body - for more rigorous definition please refer to
section 2.1) and a set of rules working on this mesh, producing finer ap-
proximation of the desired object. Typical application of this model are
subdivision surfaces, fractal generation methods, Lindermayer systems
(L-systems). In the next sections we will go through the advantages
and disadvantages of subdivision surfaces, and compare them with the
introduced ones.

Figure 1.2: Example of a berry created with Procedural shape synthesis on
subdivision surfaces

1.2 Advantages of Subdivision Surfaces

Constructing surfaces through subdivision brings a lot of advantages over the
formerly described methods:

Arbitrary topology Subdivision generalizes classical spline patch approaches
to arbitrary topology. In practice this means efficient solution of prob-
lems introduced joining two or more patches together with a desired

8

continuity (C2 or higher, since C1 is always possible) or curve trimming
for instance.

Uniformity of representation There are two mainstream approaches of
solid modeling in traditional CAGD1: polygonal meshes or spline patches.
Subdivision offers the ”golden ratio” between these two approaches:
Surfaces can behave as if they are made of patches, or as if built up
from polygons.

Numerical stability The surfaces produced by subdivision have a lot of
the ”nice” properties that finite element solvers require. As a result
of this, subdivision surfaces are highly suitable for various numerical
simulation tasks.

Multiresolution surfaces generation Because of its recursive structure,
subdivision naturally accommodates LOD2 rendering and adaptive ap-
proximation with error bounds. Therefore subdivision algorithms are
able to work depending on the hardware configuration, thus producing
sufficient results also in the case of limited hardware resources.

Special surface features Modified subdivision schemes have been proposed
(for example combined subdivision schemes, see [8]) to control the
shape and size of features, such as creases, grooves, sharp edges, cusps,
darts and more by manipulating the subdivision coefficients. For more
details see also [10].

Code simplicity is very important for implementation and practical usage.
Although the mathematical machinery behind subdivision is of high
level, implementation and run time performance is efficient.

1.3 Disadvantages of Subdivision Surfaces

Bad explicit parametrization is the source of a lot of disadvantages sub-
division surfaces come with.

Determining various geometric properties such as length, curvature,
explicit analytical formulas for tangent vectors and surface normals. At
the moment there are no known general formulas for computing these
values, although formulas for determining the end positions of vertices,
computing the normal and tangent vectors have been proposed for each

1Computer Aided Graphics Design
2Level-of-Detail

9

subdivision scheme, these are working only at the control points of the
mesh at arbitrary level. Therefore if one wants to determine these
values at a random surface point, approximative methods have to be
used.

Continuity of the generated surface Schemes proposed so far produce
C2 or even C3 continuous surface almost everywhere - problems arise
with continuity at extraordinary3 vertices, where only C1 continuity
is ensured, which is not sufficient in most of the cases. There have
been proposals for C2 continuous schemes, it has been proved that
such schemes have large support or necessarily have zero curvature at
extraordinary vertices.

Computing intersections, differences and other boolean operations
widely used in geometric modeling (e.g. in CSG 4 or F-rep) is still an
open question - no general solution of this issue exists at the moment.

Joining of subdivision surfaces with required smoothness is a related
problem. To achieve smooth connections, special rules have to be used
at the boundaries - combined subdivision themes (see [8]) and piecewise
smooth subdivision surfaces with normal control (see [2]) are proposals
for the solution of this issue.

Large amounts of data Basically there are two main types of subdivision
schemes: primal (face split) or dual (vertex split). In either case, the
number of faces of the mesh grows linearly in each subdivision step
based on the number of faces (primal scheme) or number of vertices
(dual scheme). This fact and the recursive structure of subdivision
implies the polynomial growth of the number of faces during the subdi-
vision process. Therefore either adaptive refinement rules or variational
schemes have to be used.

3Vertices with valence (number of edges meeting at this vertex) more or less than 4
(for quadrilateral meshes) or 6 (for triangular meshes)

4Constructive Solid Geometry

10

Chapter 2

Mathematical Backgrounds of
Subdivision

Before describing subdivision surfaces and it’s properties, we will take a look
at the mathematical description of subdivision process. For more detailed
work refer to [12], [3].
Subdivision is defined upon the cell complex theory, therefore in the next
chapter we will define this structure in detail. Based on these definitions, we
will define the mesh as an application of this abstract structure - embedding
in to vector space R3.

2.1 Cell Complexes

Let A denote a set. The set of all possible selections of n elements created
from the elements of the set A without repetition will be denoted An. By
(a0, . . . , an−1) we denote the elements of A, called ordered n− tuples. Let
A[n] be the set of all cyclically and reverse unordered n − tuples. The
elements of A[n] are denoted [a0, . . . , an−1], where ai ∈ A, i ∈ Zi. The set
A[n] is the setAn factored by relation of equivalence ' generated by relations:

(a0, . . . , an−2, an−1) ' (a0, an−1, . . . , an−2)

(a0, a1, . . . , an−2, an−1) ' (an−1, an−2, . . . , a1, a0)for all (a0, . . . , an−1

According to this A[n] = An/'.
We say that the element [b0, . . . , bk−1] is a subelement of [a0, . . . , an−1], ai ∈

A, k ≤ n and denote [b0, . . . , bk−1] ⊂ [a0, . . . , an−1], iff there exist elements
c0, . . . , cn−k−1 ∈ A such that (a0, . . . , an−1) ' (b0, . . . , bk−1, c0, . . . , cn−k−1.
We say that [b0, . . . , bk−1] is incident with [a0, . . . , an−1] and vice versa.

11

Definition 2.1.1 An abstract 2-dimensional cell complex C = (V , E ,F)
is a triple of sets:

V 6= ∅ is a countable set of vertices - called also the set of 0-faces,

E ⊂ V [2] is a set of edges - called also the set of 1-faces,

F ⊂ ⋃∞
i=3 V [i] is a set of faces, or 2-faces,

satisfying the following conditions:

1. if u ∈ V, there exists v ∈ V , u 6= v such that [u, v] ∈ E (that is, there
are no isolated vertices),

2. if [v0, v1, . . . , vk−1] ∈ F , then [v0, v1], [v1, v2], . . . , [vn−2, vn−1], [vn−1, v0] ∈
E (E must contain all edges of a face)

3. [u, v] ∈ E, then there is a face F ∈ F such that [u, v] ⊂ F (all edges are
contained in a face),

4. if [u, v] ∈ E, there are no more than two faces F1, F2 ∈ F such that
[u, v] ⊂ F1 and [u, v] ⊂ F2 (maximally 2 faces are sharing an edge),

5. if v ∈ V and the set Loop(v) = {u ∈ V | ∃F ∈ F ∧ v ∈ F ∧ u ∈
F ∧ u 6= v} is finite with k elements u0, . . . , uk−1, then there exists an
ordering of elements (u0, . . . , uk−1) of Loop(v) so that [ui, ui+1] is edge
of F ∈ F with v ∈ F ∀i = 0, . . . , k − 2.

Definition 2.1.2 A Mesh M(V,E,F) is a special case of cell complex - the
vertex set is made up from points in R3. An edge e is called a boundary edge
of M(V,E,F) if it is not shared by two faces. A vertex v is called boundary
vertex if it belongs to a boundary edge. The mesh is said to be closed if it has
no boundary edges. Otherwise, M(V,E,F) is an open mesh.

The valence of a vertex is the number of edges meeting at this vertex.
There are 2 types of vertices: regular or extraordinary. If the valence of a
vertex equals with the preferred vertex valence of the scheme (6 for triangu-
lar, 4 for quadrilateral) the we say that the vertex is regular, otherwise it is
extraordinary.

Similar definition of the can be found in [5]. For an illustration see Figure
2.1.

Definition 2.1.3 Let C = (V , E ,F) be a cell complex. The cell complex
Cdual = (V ′, E ′,F ′) is called an abstract dual cell complex to complex
C if and only if:

12

Figure 2.1: A mesh

1. V ′ = F ,

2. [u′, v′] ∈ E ′ ⇔ ∃[u, v] ∈ E , [u, v] ⊂ u′ ∧ [u, v] ⊂ v′

3. for each v ∈ V there is corresponding face Fv ∈ F ′ such that v′ ∈ Fv ⇔
v ⊂ v′.

There are various special kinds of cell complexes based on the above defi-
nition. Let us mention a few that are used in the later presented subdivision
schemes:

• If each face F ∈ F is a 2-simplex (face is a 2-simplex if F ⊂ V [3]), we
say that the cell complex is an abstract simplical complex

• If each face F ∈ F is a quadrilateral complex (that is, F ∈ V4), the
cell complex is called a quadrilateral cell complex

• The number of edges incident with every non-boundary vertex is four.
This type of cell complex is called dual quadrilateral complex

Definition 2.1.4 A subcomplex C ′ = (V ′, E ′,F ′) of a complex C = (V , E ,F)
is a complex satisfying V ′ ⊆ V, E ′ ⊆ E ,F ′ ⊆ F .

Definition 2.1.5 Let C = (V , E ,F) be a complex. An 1-neighborhood
N1(V) = (V ′, E ′, F ′) of a set of vertices V ⊂ V is the subcomplex of C,
where

F ′ = {F ∈ F | ∃v ∈ V incident with F}

13

E ′ = { e | e ⊂ F ′ }

V ′ = { v | v ∈ F ′ }

Based on this definition, we define the k-neighborhood (or k-ring neigh-
borhood Nk(V) of a set of vertices V ⊂ V recursively as the 1-neighborhood
of all the vertices of (k-1)-neighborhood of the set V.

For an example see Figure 2.2

Figure 2.2: The 1-ring and 2-ring neighborhoods of a vertex

2.2 Refinement of Cell Complexes

In section 3.2 the concept of face and vertex split refinement is defined, which
is used by the majority of stationary schemes. However, there are some
recently proposed schemes that are not obtained using these (

√
3, Velho’s

4-8, Honeycomb). To extend the refinement rules to be able to handle a
bigger variety of schemes we will introduce tilings of the plane.

The starting point for refinement rules are the isohedral tilings (see 2.3)
and their dual tilings, called also Archimedian tilings. A tiling is called
isohedral (or Leaves), if all tiles are identical and for any vertex the angles
between successive edges meeting at the vertex are equal.

Definition 2.2.1 Every cell complex is homeomorphic to a set of connected
n-gons in sufficiently large space, therefore every cell complex can be im-
mersed into the space. We will call the immersion a realization of C and
denote it |C|.

Definition 2.2.2 We say, that two cell complexes C = (V , E ,F) and C ′ =
(V ′, E ′,F ′) are homeomorphic, if there is a homeomorphism between their
realizations |C| and |C ′|.

14

Figure 2.3: Isohedral (Leaves) tilings

2.3 Subdivision Scheme

Before going to define the notion of subdivision scheme, we will define the
embedding of cell complexes into the Euclidean affine vector space over some
special field (usually R). Cell complexes are used as a mathematical tool to
describe topology as an abstract domain and define topological operations at
it - especially refinement process for obtaining finer domain.

The need for embedding of cell complexes into the vector space arises
when we want to define a smooth surface over this domain - mostly a mesh.
We prescribe this embedding in the following definition:

Definition 2.3.1 Let C = (V , E ,F) be an abstract cell complex, B a vector
space over field R. Function defined over the cell complex C is a map
f : V → B. We will denote the vector space of all these functions over the
field R as P(V).

15

The function over a cell complex can be thought of as a mesh, which is
the embedding of the graph into the modeling space. There is an infinite
possibility to perform such embedding. The set of all such embeddings forms
a vector space. Figure 2.4 illustrates one possible mesh M = (V, E, F) as the
embedding of the cell complex C = (V , E ,F):

Figure 2.4: Cell complex and its corresponding mesh

Definition 2.3.2 Let G be a set of cell complexes together with continu-
ous maps between them, let < : G → G be the refinement operator and
L[C] : P(V) → P(V ′) the set of all linear operators for C ∈ G. Further we
denote L[G] =

⋃
C∈G L[C], and let = : G → L[G] be an operator for each

C ∈ G such that =[C] ∈ L[C].
Subdivision scheme S is a pair (<,=) with topological operator < and
relaxation operator = defined over G.

Definition 2.3.3 Let S = (<,=) be the subdivision scheme over G, C0 ∈ G
and f0 ∈ P(V). The sequence {(Ci, fi)}∞i=0 with Ci+1 = <(Ci) and fi+1 =
=[Ci](fi) for i ∈ N is called subdivision process of a pair (C0, f0).

Definition 2.3.4 Let C0 ∈ G and f0 ∈ P(V), over the vector space B, for a
given set G of cell complexes together with continuous maps between them.
We say that the subdivision scheme S=(<,=) is convergent if there exists
a continuous function f : C∗ → B for the subdivision process {(Ci, fi)}∞i=0

such that
lim
i→∞

sup
v∈Vi

‖fi(v)− f(v∗)‖ = 0,

where v∗ ∈ V∗ corresponding to v ∈ Vi in homeomorphism of C0 and Ci in the
refinement, and C∗ = limi→∞ Ci (supposing topology of Ci does not change
the limit). The function f is called the limit function of the subdivision
scheme for the specified starting function f0 and starting cell complex C0, or
the subdivision surface of (C0, f0).

16

Chapter 3

Basic notions

3.1 The Idea of Subdivision

Subdivision is a method for generating smooth surfaces by producing denser
and denser net of surface points. Although originally it was introduced as an
extension of splines to arbitrary topology control nets it is much more general
than the knot insertion algorithm used for spline generation and therefore it
offers a wider variety of surfaces with specific properties.

We can say that the subdivision is based on iterated transformations. Let
Gi, i ≥ 0 be a sequence of geometrical shapes. Let F be a function defined
on shapes, that maps geometrical shape Gi into another geometrical shape
Gi+1. If G0 is the initial mesh, we define the infinite sequence of meshes as

Gi+1 = F (Gi).

If F meets certain requirements, there exists a limit mesh G that is a fixed
point of F :

G = F (G)

Based on the above definition, we can think of the basic idea of subdivision
as follows:

Subdivision method defines a smooth curve or surface as the limit of a
sequence of successively refined polyline or polyhedral meshes.
See figure 3.1 for an illustration.
The refined meshes are generated by adding new vertices to the mesh and
connecting them to form new edges and new faces according to special rules
(see Section 3.2 for an overview of different approaches). There are many
possible ways to determine this, as far as we consider the following rules:

Efficiency: The speed of the real-time performance is one of the most im-
portant characteristics of a subdivision scheme. Therefore, the loca-

17

Figure 3.1: An example of Loop’s subdivision scheme applied on a very
rough geosphere (4 iteration steps are shown - left: the initial mesh, middle:
3 successive refinement steps, right: the 4th level of the subdivision)

tion of the new points should be computed with the least small possi-
ble number of processor-demanding operations (typically floating point
operations).

Local definition: The rules for determining the position of new vertices
should depend only on the structure of a finite part of neighborhood of
this point. This also means that for parts of the mesh with the same
structure we can use the same rules.

Compact support: We say that the scheme is of compact (or finite) sup-
port if the region over which a point influences the resulting mesh is
finite. Moreover this region is required to be as small as possible.

Simplicity of subdivision rules: Determining the rules should be prefer-
ably an offline process. The rules should be as simple as possible from
the mathematical point of view. Also we require a small number of
rules.

Another important properties of a subdivision scheme should be: affine
invariance, continuity (At least C1) everywhere, and convergence.

For more detailed work on this topic one should consult [12], [9], [13], [8].

18

3.1.1 Subdivision Example on Uniform B-splines

Before moving on the 3D setting, let us see an example of subdivision defined
on curves. Chaikin’s corner cutting algorithm (for further details refer to [4],
invented in 1974 is the oldest (and one of the simplest) known subdivision
scheme working on a polyline (for illustration see Figure 3.2. The position of
the new points at level k is computed as a linear combination of old points
at level k − 1:

Figure 3.2: Chaikin’s corner cutting algorithm

pi+1
2k =

3

4
pi

k +
1

4
pi

k+1 pi+1
2k+1 =

1

4
pi

k +
3

4
pi

k+1 (3.1)

It is a proven fact that the introduced scheme converges to a C1 quadratic
B-spline curve.

Now we will have a look at the subdivision property, offered by uniform B-
splines. For the derivation of the equations and related work one is referred
to [11] pp.11-17 or [13] pp.22-29. Let us have a look at the definition of
the quadratic B-spline basis functions defined over uniformly spaced knot
sequence [. . . , 0, 1, 2, 3, . . .].

N2
i (t + ti) =

1
2
t2 ti ≤ t < ti+1 0 ≤ t ≤ 1
−3
2

+ 3t− t2 ti+1 ≤ t < ti+2 1 ≤ t ≤ 2
1
2
(3− t)2 ti+2 ≤ t < ti+3 2 ≤ t ≤ 3

0 otherwise

For an illustration, see figure 3.3. Our aim is to define the same linear space

Figure 3.3: Uniform quadratic B-spline basis function

19

over refined knot sequence [. . . , 0, 1, 2, 3, . . .] (see figure 3.4) and determine
the matrix of transformation from one space to the other. In [13] we can
found the definition of the refinement equation for B-splines of degree n:

Figure 3.4: Uniform quadratic B-spline basis function defined over refined
knot sequence

Nn(t) =
1

2n

n+1∑
k=0

(
n + 1

k

)
Nn(2t− k)

It can be proven that the old basis function satisfies the above presented
refinement equation for n = 2:

N2(2t) =
1

4
N2(2t) +

3

4
N2(2t− 1) +

3

4
N2(2t− 2) +

1

4
N2(2t− 3),

in terms of dilates

N2
i (2t) =

1

4
N2

2i(2t) +
3

4
N2

2i+1(2t) +
3

4
N2

2i+2(2t) +
1

4
N2

2i+3(2t).

If N2(t) denotes a row vector whose i-th component is N2
i (t), we can

express the last equation in terms of matrices as

N2(t) = N2(2t)S,

where a finite portion of S is:

S−4...3,−4...3 =
1

4

0 1 3 0 0 0 0 0
0 0 3 1 0 0 0 0
0 0 1 3 0 0 0 0
0 0 0 3 1 0 0 0
0 0 0 1 3 0 0 0
0 0 0 0 3 1 0 0
0 0 0 0 1 3 0 0
0 0 0 0 0 3 1 0

20

Now consider p, the vector of control points of a given curve:

p =

...
p−2

p−1

p0

p1

p2
...

The B-spline curve can be denoted as

spline(t) = N2(t)p = N2(2t)Sp

By repeating this process

spline(t) = N2(t)p0

N2(2t)p1 = N2(2t)Sp0

...
N2(2jt)pj = N2(2jt)Sjp0

We can derive easily the relationship between the control points at dif-
ferent levels:

pj+1 = Spj

The relation between the old control points pj
i and the new control points

pj+1
i is a subdivision formula and the matrix S is called the subdivision matrix

associated with the above described process. We can see that transforming
the old control points with the subdivision matrix S the resulting control
points are determined as specified in Chaikin’s algorithm (see equation 3.1).

3.2 Terminology and Basic Properties

In this chapter we will describe the basic properties of subdivision surfaces,
introducing the terms used in subdivision theory.

A subdivision scheme working on a mesh M(V, E, F) is producing a new
mesh in each step M ′(V ′, E ′, F ′). Therefore we need rules to calculate the
new vertices, edges and faces. During the subdivision process, each new
vertex V ′ is calculated as a weighted average of vertices of V . The set of
weights is called a stencil or stencil mask (see figure 3.5).

A very important aspect of a subdivision scheme is whether it is interpolating
or approximating. If the vertices of the control net do not lie on the surface

21

Figure 3.5: Stencil mask

itself, we are saying that the scheme is approximating. The main advantage
of an approximation scheme that it produces very smooth surfaces, smooth-
ing out ripples and undulations, even if the original control net was dense
with sharp points. On the other hand, modeling can be more difficult to
that of an interpolating scheme, because it is hard to envision the result by
looking at the shape of the control net, and hard to model ripples and sharp
artifacts as the scheme tends to smooth them out. Another advantage of
approximating schemes is that they converge faster to the limit surface than
interpolating ones (see [13] for more details).

If the vertices of the control net lie on the limit surface, the scheme is
interpolating. This means that the rules of an interpolating scheme do not
move the points of the control net at any subdivision level. The quality of
surfaces produced with interpolating schemes is lower compared to approxi-
mating schemes.

Another interesting point is the subdivision shape of the scheme, which
defines how a refined tiling is related to the original tiling. Most of the exist-
ing schemes are triangular or quadrilateral, although the most quadrilateral
schemes have rules for subdividing n sided polygons, for n > 4. If one wants
to use a triangular scheme on a non-triangular mesh, has to triangulate it in
advance. This task seems to be trivial, but in fact it is not, as some schemes
produce slightly different results with different triangulations of the same
mesh.

Once the used tiling is chosen, we have to define the relation between
the subdivided tiling and the original one. There are two main approaches:
face split (also called primal) schemes and vertex split (or dual) schemes (see
figure 4.1), but also different types are available (

√
3, Velho’s 4-8, Honeycomb

and more).
Primal schemes split every face into 3 (in case of triangular mesh) or 4

(in case of quadrilateral mesh). New vertices are inserted on the edge (in the
case of a quadrilateral setting one vertex is added in the middle of each face).

22

Figure 3.6: Different refinement rules

After this setup, the new vertices are joined to create the refined mesh (old
vertices are retained). In the second case, new vertices are created around
every old vertex, one for each face adjacent to the vertex. A new face is
created for every edge, the old faces are retained - and finally, a new face is
created for each vertex.

For primal schemes, we call the new vertices created at the edges odd ver-
tices, while the inherited vertices from the previous level are called even. For
quadrilateral schemes, some vertices are inserted when edges of the coarser
mesh are split and some are inserted for a face. Therefore these two types of
odd vertices are called edge and face vertices, respectively.

The method of applying the subdivision rules introduces some more terms:
If we apply the same set of rules throughout the whole mesh, we are using an
uniform scheme. If (at least) two different rules are used to subdivide the
mesh, we are talking about a non − uniform scheme. Stationary schemes
use the same set of rules in every subdivision step, whereas non−stationary
schemes might subdivide the mesh with different set of rules at each step.

The mainstream subdivision schemes are all fundamentally uniform and
stationary. There are extensions and modifications of these schemes that
make them non-uniform or non-stationary, but only a few schemes exist that
are fundamentally non-uniform or non-stationary. The problem is that the
majority of the mathematical tools used for defining and analyzing schemes
are unable to work with dynamically changing rules.

23

3.3 Overview of Existing Subdivision Schemes

In this section we will give basic classification of present known subdivision
schemes generating C1-continuous surfaces on arbitrary meshes. Later we
will give a detailed description classic triangular schemes - mostly the ones
used in the software attached to this book.

3.3.1 Subdivision Classification

At first sight, the classification might look difficult because of the wide variety
of existing schemes. We will use four key characteristics, already defined in
the previous section:

• the type of refinement rule (face split or vertex split)

• the type of generated mesh (triangular or quadrilateral)

• whether the scheme is interpolating or approximating

• smoothness of the limit surfaces for regular meshes (C1, C2,. . .)

Based on these criteria, the following table summarizes the mostly used
known subdivision schemes:

Face split schemes
Triangular meshes Quadrilateral meshes

Approximating Loop(C2) Catmull-Clark(C2)
Interpolating Modified Butterfly (C1) Kobbelt(C1)

Overview of face split subdivision schemes

Vertex split
Doo Sabin (C1), Bi-quartic (C3), Midedge (C1)

Overview of vertex split subdivision schemes

Smoothness Ci means that the scheme produces Ci smooth surface in the
regular setting, but only C1 smoothness is achieved near extraordinary ver-
tices.

The above presented list of schemes is by far not exhaustive - it mentions
only the major stationary triangular and quadrilateral schemes. Besides this

classification, a lot of other schemes exist -
√

(3) scheme by L. Kobbelt, 4-
8 scheme by L. Velho and J. Gomes, Honeycomb by E. Akleman and V.
Srinivasan, some de Rahm generalizations of Doo-sabin like schemes.

24

So far we were talking about stationary schemes only. Now we will briefly
mention some other, non-stationary schemes:

Combined subdivisions were introduced by A. Levin (See [Lev00] for fur-
ther details). They play a great role in prescribing finer behavior at
the border and the interior - sharp features for example, which are
normally unavailable. These schemes introduce combination of surface
generation with arbitrary curves. By the refinement step the regard
for boundary conditions is taken to compute the new vertices. The
combination of the vertices of refined mesh are mixed with the exact
point location of the bounded curve to obtain requested conditions.

Variational subdivisions: Some geometric modeling applications measure
the smoothness of surfaces on physically based energy functionals.
The basic idea of variational subdivision is that after the first step,
where more vertices are introduced, the smoothing operation follows,
where the vertices are shifted in order to increase smoothness. The
variational schemes try to minimize the energy function which controls
surface quality. For more details on this topic see [Kob96, Kob96b].

3.3.2 Detailed Subdivision Schemes

Tu by som detailne opisal par schem (najma Loopovu, kedze to pouzivam v

softe a potom triangularne schemy (butterfly,
√

(3)) a mozno doo-sabina -
tieto su implementovatelne s opisanym algoritmom.

25

Chapter 4

Optimized Subdivision Surface
Displaying

4.1 Preliminaries

The aim of this chapter is to present the input we are going to work with,
along with its properties and requirements. We will also introduce the basic
geometrical tools needed for the description of the algorithm.

4.2 Input Data and Constraints

mesh M - For the basic algorithm we must ensure that all of the faces are
triangular.

Subdivision algorithm (further denoted as A) - This can be any tri-
angular scheme - although the proposed algorithm will differ in the
case of vertex and face split subdivision schemes, and parts the offline
process will have scheme-specific algorithms. The family of face split
algorithms (Loop, modified butterfly) is more intuitive to handle with
the proposed method - therefore for the first demonstration I will use
Loop’s method.

Level of subdivision (further denoted as l) - An integer greater or equal
to 1 - (level 0 represents the initial mesh)

Distance from the viewer (further denoted as d) - a real number rep-
resenting the distance of the viewer from the mesh in the virtual world.
This is optional. It plays a great role in the case we want to introduce
some LOD to the method.

26

4.3 Basic Definitions

It was mentioned in the earlier chapters that it is crucial for the algorithm to
know whether the mesh is ”suitable” for the proposed method. To achieve
this we will define a set of property functions for analysis of the different
properties of the triangles that make up the mesh M. Besides the suitability
of the mesh they are the basic building stones of the algorithm itself as well.

4.3.1 Basic Geometric Formulas

We will denote a triangle by three points: A, B, C ∈ R3. Further, we will
denote |B − A| = c; |C −B| = a; |A− C| = b.

We will recall certain basic geometry functions that are essential for the
rest of the work.

• Calculating the inner angles of the triangle: using dot product:

< B − A, C −B >= |B − A|.|C −B|. cos β,

β = arccos
< B − A, C −B >

|B − A|.|C −B|
, where β is the angle between the vectors B−A and B−C Analogously
we can calculate the other two angles of the triangle.

• Calculating the radius of the in-circle of the triangle, further denoted
as r : using the formula

r =
1

2

√
(b + c− a)(c + a− b)(a + b− c)

a + b + c

• The radius of the circum-circle of the triangle, further denoted as R is
described by the formula

R =
abc√

(a + b + c)(b + c− a)(c + a− b)(a + b− c)

• And finally, using either of the above described formulas, the area of a
triangle, denoted as S is given by the formula

S =
abc

4R
= rs

27

Figure 4.1: The circumscribed an inscrbed circles of a triangle

4.3.2 Triangle Characteristics

In this chapter we will define a set of functions working on a single triangle,
or in some cases pair of triangles. They will be used later for:

• determining different properties of the mesh; most importantly suit-
ability of the mesh

• partitioning the mesh into disjunct sets of triangles

• Miscellaneous auxiliary functions (for example sorting of the polygons
in the pre-processing phase)

The testing functions are defined as boolean functions (binary if describing
some property of a single triangle and ternary if working on two triangles)
based on the result of a corresponding geometrical function.

1. ε-angle similarity based on geometrical function: Sum of the squares
of the differences of angles. This property describes how similar are
the two triangles compared to each other - for ε = 0 we say that the
two triangles are similar (in the classical geometrical sense of similar-
ity). The bigger is the value of ε, the less similar are the two triangles
compared to each other.

f1(∆1, ∆2) = (α1 − α2)
2 + (β1 − β2)

2 + (γ1 − γ2)
2 (4.1)

F1(∆1, ∆2, ε) =

true for f1(∆1, ∆2) ≤ ε, we say that the two triangles

are ε-similar
false for f1(∆1, ∆2) > ε

(4.2)
The next three property functions are describing how ’big’ are the two
triangles compared to each other in the geometrical sense.

28

2. ε-side similarity based on geometrical function: Sum of the squares of
the difference of length of the sides. We assume that the sides of the
triangle are sorted based on the side length from the shortest to the
longest one. For ε = 0 the two triangles are congruent.

f2(∆1, ∆2) = (a1 − a2)
2 + (b1 − b2)

2 + (c1 − c2)
2 (4.3)

F2(∆1, ∆2, ε) =

true for f2(∆1, ∆2) ≤ ε, we say that the two triangles

are ε-side similar
false for f2(∆1, ∆2) > ε

(4.4)

3. ε-area- similarity based on geometrical function: Difference of the area
of two triangles

f3(∆1, ∆2) = (S(∆1)− S(∆2))
2 (4.5)

F3(∆1, ∆2, ε) =

true for f3(∆1, ∆2) ≤ ε, we say that the two triangles

are ε-area− similar
false for f3(∆1, ∆2) > ε

(4.6)

4. ε-area/ similarity based on geometrical function: Ratio of the area of
two triangles:

f4(∆1, ∆2) = (S(∆1)/S(∆2)− 1)2 (4.7)

F4(∆1, ∆2, ε) =

true for f4(∆1, ∆2) ≤ ε, we say that the two triangles

are ε-area/ similar
false for f4(∆1, ∆2) > ε

(4.8)

5. Further we will define an auxiliary function, used in the definition of the
next geometry function. It describes the ’equilateralness’ of a triangle:

f5(∆) = (r(∆)/R(∆)− 1)2 (4.9)

The function is used later to sort the triangles of the mesh.

29

6. Finally a function that yields 0 if the two triangles are congruent in the
sense of equilaterality:

f6(∆1, ∆2) = (f5(∆1)− f5(∆2))
2 (4.10)

F6(∆1, ∆2, ε) =

{
true for f6(∆1, ∆2) ≤ ε
false for f6(∆1, ∆2) > ε

(4.11)

To move further in the description of the algorithm, we are going to define a
weighted function of the above geometric functions:

f(∆1, ∆2, k1, . . . , k6) = k1f1(∆1, ∆2) + · · ·+ k6f6(∆1, ∆2) (4.12)

ki ∈ R; ki ≥ 0; 1 ≤ i ≤ 6, i 6= 5;
6∑

i=1;i6=5

ki = 1

F (∆1, ∆2, k1, . . . , k6, ε) =

true for f(∆1, ∆2, k1, . . . , k6) ≤ ε) we say that

the two triangles are ε− similar
false for f(∆1, ∆2, k1, . . . , k6) > ε

(4.13)
The above defined property function (13) is a highly flexible geometric

tool for analyzing different qualities of triangles sets (e.g. a mesh, as in our
case). The variety of functions which define the final function gives us large
flexibility through the modification of the parameters.

4.4 Intuitive Description of Algorithm

Fast(er) rendering of subdivision surfaces is still an interesting question in
modeling and computer graphics. To be more formal, we want to propose
a method for speeding up the rendering of the mesh that is in distance d
from the viewer achieved by applying subdivision method A to the mesh M ,
l levels deep.

Let us have a look at the pseudocode of the classical algorithm. The
pseudocode presented here is very rough and high level but it captures the
main drawback of the method compared to the one proposed.

void subdivideMesh (Mesh M, Algorithm A, int l) {
1. for every triangle T in M do
2. while (reached level l)
3. subdivideTriangle(T, A);

30

}
The reader may here notified that in the above algorithm we have not used

the variable d (the distance from the viewer) because the classical algorithms
does not use any LOD directly. They calculate the new mesh and LOD
modifications are applied in the rendering pipeline (if needed).

The basic idea of the proposed method is altering line 1. Although the
subdivision methods are in most of the cases very simple, the number of their
required application is the factor that raises the time cost: it grows exponen-
tially because of the recursive nature of the subdivision rules. Therefore we
could reduce the overall rendering process by leaving some triangles unsub-
divided, but calculating them from other, already subdivided ones. It is the
aim of the following chapters to describe this algorithm in details, along with
its analysis of effectiveness on different types of meshes (also presenting The
skeleton of a general framework for arbitrary (manifold) meshes effectiveness
analysis) and show some practical results of the method.

4.5 Preprocessing the Input

The algorithm is divided into two parts: The pivot point of the whole method
is the preprocessing phase, where the raw mesh data is loaded, turned into
an internal representation called half-edge structure, processed with the pro-
posed algorithm and then handed over to the real time rendering phase. The
aim of this chapter is to describe the preprocessing phase, which can be
very time consuming without proper optimization, careful design of object
architecture and implementation.

4.6 Partitioning the Mesh

Definition 4.6.1 We say that two triangles are strictly ε− similar with
respect to the subdivision scheme S if they are ε-similar and the topological
conditions (usually ε-similarity of neighboring faces, valence of neighboring
vertices - for details one has to refer to a concrete scheme) defined for S are
met.

Some explanation to figure 4.2: The color of the triangles being processed
is red and green respectively. vi’s and wi’s are are the valences of the cor-
responding vertices. Two triangles ∆1, ∆2 are considered to be strictly ε-
similar with resect to the Loop scheme if and only if F (∆1, ∆2) = true,
F (∆1neighbori

, ∆2neighbori
) = true and moreover vi = wi for i = 1, . . . , 9.

31

Figure 4.2: Topological conditions for the Loop scheme

∆jneighbori
denotes the i-th neighbor of the j-th triangle for j = 1, 2 and

i = 1, . . . , 9.
This simple fact is going to be the basis of the algorithm: If we can find

two triangles that are strictly ε-similar we can subdivide any of them and
map it to the other one. This holds for a set of triangles as well: If all the
triangles in the set has the property described before, after choosing and
subdividing one triangle the others can be calculated with the corresponding
affine transformation between two triangles.

After turning the loaded mesh into a set of triangles, we are going to
apply the function F, defined in section 4.3.2 to all pairs of triangles that can
be created from the triangle set (not considering the order of triangles in the
pair) setting ε=0 and the vector for the coefficients is (1, 0, 0, 0, 0).

There are f subsets of triangles at the beginning of the algorithm: Every
subset contains exactly one triangle and every triangle is member of exactly
one subset. Applying the function F to a pair of triangles (considering the
equality of the valences as well) is expressed with the following pseudocode:

List splitMesh(List triangleSets)
{
1. for every pair(∆1 ∈ T1, ∆2 ∈ T2; T1, T2 ∈ triangleSets; T1 6= T2) do
2. if F (∆1, ∆2, 1, 0, 0, 0, 0, 0) then

32

{
3. T1 = T1

⋃
T2;

4. triangleSets = triangleSets \ T2

}
5. return triangleSets;
}
The described process is executed for all possible pairs of triangles.After

going through the described process, the original set of triangles is partitioned
so that the following holds:

As the result of partitioning (by executing the procedure splitMesh())
we have divided the original triangle sets into k disjunctive subsets with the
following properties:

{T1, . . . , Tk}, 1 ≤ k ≤ f ;
⋃

1≤i≤k

Ti = M (1)

Moreover, for every subset of triangles Ti:

∀|Ti| ≥ 2 : ∀∆1, ∆2 ∈ Ti: F (∆1, ∆2, 1, 0, 0, 0, 0︸ ︷︷ ︸, 0︸︷︷︸) is true (2)

the vector k1, . . . , k6 ε

Proof Before the start of the procedure splitMesh() we have arranged f tri-
angles of the mesh so that every triangle belongs to exactly one set and every
set contains exactly one triangle. Thus before the execution of splitMesh()
the input list triangleSets is in the following form by definition:

triangleSets = {T1, . . . , Tf};∀Ti, Tj, i 6= j, Ti ∩ Tj = ∅;
⋃

1≤i≤f

Ti = M

If there are no ε− similar triangles
The if statement in row 2. of the procedure splitMesh() is never true)
rows 3,4 will be not executed and hence the output list will be equal
to the input list, so both (1) (for k = f) and (2) (because |Ti| = 1, 1 ≤
i ≤ f) hold trivially.

If there are at least two similar triangles
1o) After the first pair ∆1 ∈ Ti, ∆2 ∈ Tj is found: Ti = Ti

⋃
Tj and Tj

is removed from the list triangleSets; (1) holds because⋃
1≤i≤f

Ti =
⋃

1≤i≤f ;i6=j

Ti ∪ Tj

33

(2) holds because the only set with at least 2 elements is Ti = {∆1, ∆2}
and we know that F (∆1, ∆2, . . .) = true
k − 1o) after k-1 pairs have been found:

triangleSets = {T1, . . . , Tf−k+1},∀Ti, Tj, i 6= j, Ti ∩ Tj = ∅;⋃
1≤i≤f−k+1

Ti = M

ko) after k pairs have been found:

triangleSets = {T1, . . . , Tf−k},∀Ti, Tj, i 6= j, Ti ∩ Tj = ∅;⋃
1≤i≤f−k

Ti = M

We have to prove k − 1o) ⇒ ko) DOKONCIT TOTO..... Hadam to
nebude problem ale teraz je 5:03 a mam este milion veci opravit...

Partitioning of the mesh is by far the most time consuming part of the
process - quadratic complexity, depending on the number of faces.

4.7 Optimizing Triangle Sets

The concept of optimizing the triangle sets before further processing relies on
one of the properties of the manifold mesh: Faces sharing a common vertex
can be always ordered so that two subsequent faces always share an edge.

The idea is to find the biggest possible patches that are built up from
similar triangles with the same topology - called strictly similar patches (see
figure 4.3)

Finding such patches can significantly speed up the real time rendering
process described in 4.7.2 Once two (or more) strictly similar patches are
discovered, the following process takes place:

The triangles in the patches are ordered according to a previously chosen
rule which has the following properties:

1. If P1 and P2 are two strictly similar patches with ordered triangles, then
the triangle at the i-th place in P1 is strictly similar with the triangle
at the i-th place in P2

2. In every patch with ordered triangles, the i-th triangle and the (i+1)-th
triangles share an edge

34

Figure 4.3: Strictly similar patches - Two strictly similar patches are marked
with red - they must fulfill the following requirements: ∆1 and ∆′

1 must be
strictly similar, ∆2 and ∆′

2 must be strictly similar, ϕ = ϕ′ angle between
the planes containing ∆1, ∆2 and ∆′

1, ∆
′
2 respectively

After ordering the triangles in the patches, do the following:

1. The first triangle of the first patch is subdivided and the first triangle of
the second patch is calculated by transforming the subdivided triangle

2. The i-th triangle is calculated from the (i − 1)-th one so that the ex-
isting points are not duplicated (The existing points are the common
boundary of the i-th and (i− 1)-th triangle.

This way all the shared edges are calculated only once.

4.7.1 Calculating Transformation Matrices

Once having the triangle subsets the calculation of matrices of affine transfor-
mations takes place - these matrices are describing the affine transformation
that maps pairs of similar triangles onto each other. Later these matrices
play an important role in the real time rendering process - they are used to
calculate some triangles from the already subdivided ones.

There are some basic methods for achieving this: Either finding and
mapping the normal vector of the first triangle to the second one, or (for
both triangles) find a point that is not a part of the triangle (more precisely,
it is not contained in the plane that is spanned by the three points of the
triangle) - thus creating a tetrahedron - and mapping these tetrahedrons onto
each other.

We will use the first one: Mapping the normal vector of the first triangle
onto the normal vector of the other one. We are going to describe every

35

triangle with a matrix containing its affine coordinates and its normal vector,
called the characteristic matrix of the triangles. See 4.4.

Figure 4.4: Matrix describing the position and orientation of a triangle

As the first step, we need to set up these matrices for every triangle that
is in a subset with 2 or more triangles The ’first’ triangle of the set that
is chosen in the algorithm is called a reference triangle. We us Gaussian
elimination to gain the matrices of transformations.

These steps are accomplished fully off-line, thus not contributing into the
time efficiency of the real time rendering. Still, for a bigger mesh the time of
the processing is quite long, so after the mesh is processed once, it is stored
in a file of a special format (capable of storing the subsets of triangles and
the matrices etc.) so before the real time rendering this file is just loaded and
ready for processing instead of going through this process in case of every
rendering.

4.7.2 Real Time Rendering Phase

The real time rendering process is the final result of the algorithm. In this
phase the original mesh is rendered after l steps of subdivision - hopefully
faster than with the classical algorithm, thanks to the data calculated in the
preprocessing part.

When the real time rendering begins, data are loaded from an external
file. Then the following algorithm (described by it’s pseudocode) is executed:

List renderTriangleSet(List triangleSets)

36

{
1. for every Ti ∈ triangleSets do
2. ∆i1 := Ti[1];
3. subdivide ∆i1 using algorithm A
4. for every Ti ∈ triangleSets with |Ti| ≥ 2 do

{
5. ∆i1 := Ti[1];
6. for every ∆ij , 2 ≤ ij ≤ |Ti| do
7. calculate ∆ij from ∆i1 using Mi1→ij

}
After having subdivided and transformed the triangles, there is just one

more thing left to do: pass it to the rendering pipeline and rasterize the
subdivided mesh.

4.8 Results

Figure 4.5: On the left: picture of an icosahedron in the initial form (20
faces). On the right, the icosahedron is subdivided 5 times (22345)

4.9 Future Work

There are rounding errors introduced during the transformation of the ver-
tices by floating point numbers, causing problems by the computation of the

37

Figure 4.6: Time needed for processing subsequent levels of subdivision steps.
The best result is achieved by subdividing the 4 th level: the speed is more
than doubled

normal vector (see figure 4.10). We need to approximate the required preci-
sion based on the distance from the viewer, so that the numerical errors are
not seen.

Solution of this problem is the merging of these vertices into one vertex.
This algorithm needs to be proposed so that the time needed for processing
is not increased drastically.

Further improvements include implementation of more subdivision schemes
(Doo-Sabin,

√
3, butterfly and more robust treating of special objects (bound-

aries, creases).
Tieto posledne 2 sekcie su vo velmi rannom stadiu - he to skor ukazka

toho ze co tu bude. ad1 som nemal cas ich poriadne napisat, ad2 som nemal
cas na poriadne testovanie, teda dufam ze pocas nasledujucich dni sa tieto
kapitoly vyrazne vylepsia co sa tyka kvantity aj kvality. (su este zaujimave
vysledky na vseliakych meshoch, a mam tolko napadov ze future work by
som mohol mat 5 stran bez toho aby tam boli haluze... aspon si ja myslim...

38

Figure 4.7: On the left: picture of a torus in the initial form (437 faces). On
the right, the torus is subdivided 2 times (16393 faces)

Figure 4.8: Time needed for processing subsequent levels of subdivision steps.
The speedup is smaller on the second level, but still 4.4* faster than the classic
algorithm

39

Figure 4.9: On the left: set of triangles of a torus needed to reproduce the
mesh - result gained by using the vector (1,0,0,0,0) On the right: the same
torus can be reproduced from one single triangle - using the vector (0,0,1,0,0)

Figure 4.10: Rounding errors

40

Bibliography

[1] Akelman, E., Srinivasan, V. Honeycomb subdivision. Texas A&M Uni-
versity (2002)

[2] Biermann H., Levin A., and Zorin, D. Piecewise Smooth Subdivision
Surfaces with Normal Control. Tech. rep, Courant Institute, New York
University, January (1999)

[3] Chalmovianský, P. Mathematical Methods in Subdivision Surfaces. Dis-
sertation thesis, Comenius University, Bratislava (2001)

[4] G. M. Chaikin. An algorithm for high-speed curve generation. Computer
Graphics and Image processing, 3 (1974), 346-349

[5] Kobbelt L., Tesse H., Prautzsch H., and Schweizerhof K. Interpolatory
subdivision on open quadrilateral nets with arbitrary topology. Com-
puter Graphics Forum, 15:409-420 (1996)

[6] Kobbelt, L. A variational approach to subdivision. CAGD 13, (1996),
743-761

[7] Kobbelt, L. Discrete fairing and variational subdivision for freeform sur-
face design. (1996)

[8] Levin, A. Combined subdivision schemes. PhD thesis, Tel-Aviv univer-
sity (2000)

[9] Reif, U. A degree estimate for polynomial subdivision surfaces of higher
regularity. Proc. Amer. Math. Soc. (1996), 124:2167-2714

[10] Schweitzer, Jean E. Analysis and Application of Subdivision Surfaces.
PhD thesis, University of Washington, Washington (1995)

[11] Warren, J. Subdivision methods for geometric design. Unpublished
manuscripts, November (1995)

41

[12] Zorin, D. Stationary Subdivision and Multiresolution Surface Represen-
tations. PhD thesis by Denis N. Zorin, California Institute of Technology
(1998)

[13] Zorin, D., Schröder, P., DeRose, T., Kobbelt, L., Levin, A and Sweldens,
W. Subdivision for modeling and animation. SIGGRAPH 2000 Course
Notes. July (2000), 13-114

42

