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iii

I would like to thank to my master thesis advisor Pavel Chalmovianský for his
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Abstract

This work considers the problem of surface reconstruction from unorganized set of points.
We use local polynomial approximations and we blend them to the implicit surface. We
survey the recent work in this area. We discuss the sampling requirements, various space
subdivisions, local approximations classes and blending techniques. We implement an
octree based algorithm based on work of Ohtake et al. that allows us to contruct error
controlled surface reconstruction. We discuss the problem of sharp features reconstruction.
We extend the model of implicit surface by minimum and maximum functions capable to
model sharp local features. Finally we give a technique for fairing of previously recon-
structed local features to eliminate the errors of certain type.

Keywords: Implicit Surface Reconstruction, Local Approximations, Sharp Features Re-
construction, Multi-level Partition of Unity Implicits, Edges and Corners

Abstrakt v slovenčine. Táto práca rieši problém rekontrukcie plochy z množiny bodov.
Použ́ıvame lokálne polynomiálne aproximácie, ktoré stmelujeme do implicitnej plochy.
Práca obsahuje prehl’ad literatúry. Rozoberáme požiadavky na vzorkovanie, rôzne techniky
na prerozdelenie priestoru, rôzne typy lokálnych aproximácíı a stmel’ovanie. Implementu-
jeme algoritmus (pochádza od Ohtake-ho) založený na oktálovom strome, ktorý dovol’uje
adapt́ıvnu chybou riadenú rekonštrukciu plochy. Rozoberáme tiež problém rekonštrukcie
ostrých čŕt. Rozširujeme model implicitnej funkcie o minimum a maximum tak, že sme
schopný rekonštruovat’ ostré lokálne črty. Nakoniec uvádzame techniku pre úpravu rekon-
štruovaných lokálnych čŕt za účelom odstránenia chýb určitého typu.

Kl’́učove slová: Rekonštrukcia implicitnej plochy, Lokálne aproximácie, Rekonštrukcia
ostrých čŕt, Multi-level Partition of Unity Implicits, Hrany a rohy
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Chapter 1

Introduction

The creation of 3D content is the goal of geometric modeling and it is deeply studied in

many ways. To solve this problem algorithmically, the various graphics pipelines has been

designed. Depending on the primitives used, it is from 0-dimensional (0D) points, 1D

wire-frame, 2D boundary representation including mesh and parametric surfaces, and at

last 3D volumetric approach which is represented by CSG or implicit surfaces. To create

a 3D model we can use standard geometric modeling techniques which are widely studied

domain.

The alternative to this artificial process is to reconstruct it from measured data which

is a natural way how to get 3D model from physical world. This process is converse to the

direction of modeling pipeline. We want to reconstruct the original object. To do it we

infer the parameters which are the best description of original object. When the pipeline

is restarted with reconstructed parameters we should get the result similar to the original.

We view the surface reconstruction in the context of modeling of physical forms such

as image, movie, sound, shape. In the life cycle of modeling of such form, there are

two important transformations: acquisition to an intermediate form (representation) and

instantiation back to the physical form. The degree of successfulness always depends on

the amount of user interaction. In the 3D shape acquisition, the fully automatic process

needs the collaboration of the 3D scanner device and the surface reconstruction method.

The instantiation transformation of 3D shape can be executed by NC milling or stereo

lithography.

Why Implicit Surfaces? We decide to choose implicit surface as the main surface

representation because in contrast of parametric surfaces it has many good properties. For

example it has easy accessing to evaluation, good modeling properties, good extrapolation

features and the ability to represent object of any topology. The drawback of implicit

surface is a problematic rendering. Best frequent methods are conversion to polygonal

model, but it must be restarted each time when the original implicit surface is changed.

1



CHAPTER 1. INTRODUCTION 2

From this follows unpractical user interaction and using it in virtual reality. The discussion

about the alternative representations of implicit surfaces are in section 3.1.4.

1.1 Problem Statement

As input, we have an unorganized set M of points in 3 dimensional euclidean space E3. The

input set can include some error. The points come from a sampling process, for example

merged range data from 3D scanner:

M = {xi | xi ∈ R3, i = 1, . . . , n }.

We want to reconstruct surface and to have a mathematical model that approximates the

points. The approximation will not be necessarily the best one but we want to find an

algorithm that is reasonable for use. The more exact conditions are stated bellow. We

consider that points are well sampled from surface of a single object. It means that points

are sufficiently dense sampled and with low noise. We use implicit surfaces. Hence, the

output is a function

f : R3 → R
that represents a volume object. The surface is defined as the zero-level set

S = {x ∈ R3 | f(x) = 0 }

and should be an approximation to the set of points M .

1.1.1 Main Requirements

We use the local approximations because this way we get a true picture of the shape even

we are using an approximation technique.

Topology. We want to be able to reconstruct an object of any topology. The implicit

surfaces have this ability.

Sampling. We want to manage the variability of the sampling and we want to cover the

small holes.

Numerical Stability and Noise resistance. We want to have an algorithm that is

numerically stable. It means that small change in input data does not affect reconstructed

surface.

To manage it we need preserve the noise at reasonable level. With this knowledge we

can control and adjust the reconstruction algorithm to get better results with respect to

the noise.
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1.1.2 Fundamental Steps

We give a brief outline of algorithm. It works in two phases:

1. Approximate surface locally, most likely with an algebraic surface of the low degree.

2. Blend them to one global smooth implicit function. This step is evaluated each time

when the global implicit function is evaluated.

1.1.3 Related Subproblems

To design a solution we deal with several principal subproblems.

Space subdivision technique. We use a technique to divide space to smaller parts

to better reconstruction of small details and to get fast algorithm. We want to use the

multi-resolution technique. The octree technique is outlined as a good choice but it is not

geometric invariant to the rotation.

Local approximation. We use an algebraic surface of the low degree. The normalization

is needed to avoid degeneration of the solutions. Then, we use standard numerical method

for solving the least-squares problem. The fitting can produce artifacts such as singularities

or additional unwanted branches. We need to avoid them.

Blending. We need the blending to obtain the smooth result. This method blends the

neighboring local approximations to smooth surface preserving the continuity of any order

– it depends only on the blending functions that were used. Furthermore, if the compactly

supported basis of the blending functions is used then it preserves the principle of locality.

Edges and corners. To improve the quality of approximation we may use non-polynomial

approximation functions. For the objects with sharp edges and corners we extend the

implicit surface model. The features reconstruction is one difficult problem in reverse

engineering.

Normals estimation. Normals are important in reconstruction not only for resolving

orientation of object. They help to obtain more accurate result and help to detect sharp

features. The 3D scanning often produces normals, but if they are not included in the

input data, then we need to estimate them.
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1.2 Applications

There are numerous applications of implicit surface reconstruction techniques.

3D scanning. The reconstruction of surface from range data that come from the optical

triangulation [Cur97], is an easy way how to obtain the 3D model of any object. Nowadays,

the scanning devices produce accurate high-density samples so this way is an alternative

to computer modeling of virtual object.

Computer Aided Geometry Design. The modeling by sample points is an alternative

way to CAGD parametric surfaces. Since it abstracts from the many parameters this

approach is more robust and user friendly than standard CAGD.

Point based CG. The rendering point clouds, re-sampling point set surfaces, hole fill-

ing (tutorial on Eurographics 2002 [AGP+02] is about Point-based Computer Graphics),

in Pauly’s dissertation thesis [Pau03] is studied point primitives in context of computer

graphics pipeline.

Volume description. In the medicine area, it is used for volumetric visualization of data

acquired from various measurement devices (Computer Tomography, Ultrasound, X-rays).

Using an implicit function, we can describe also natural phenomena in meteorology and

run computer simulations.

The following examples are specific applications.

Digital Michelangelo. It is an interesting project [Mic] at Stanford University computer

graphics lab. The goal was to reconstruct the statue of David. It was a great technological

challenge. The large amount of range data was generated so the accuracy of sampling was

at a very good level.

3D fax project. It is an idea how to transfer physical form from one place to another

through data channel for example a computer network. It was already mentioned in the

previous section, the description can be found in [Cur97].

1.3 Thesis Outline

This thesis is organized as follows:
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• Chapter 1 introduces to the problem of surface reconstruction. Chapter 2 gives a

brief survey of selected important previous work in surface reconstruction depending

on the various representations: simplicial, parametric and implicit.

• Chapter 3 considers the implicit surface reconstruction problem and discusses the

related subproblems, it gives a possible solution for each subproblem.

• Chapter 4 considers the feature detection and reconstruction problem with implicit

surfaces, especially the sharp features like edges and corners. We propose an original

solution for this problem.

• Chapter 5 concludes the thesis by giving results, summarizing the contribution and

outlining the future work.

• Appendix A outlines the software specification.

• Appendix B contains a description of the included compact disc.



Chapter 2

Recent Work

There are several groups of interest in surface reconstruction depending on the represen-

tation used – simplicial, parametric, implicit surfaces. Even though there are various

representations, there are some common problems. We are going to give a brief survey to

the surface reconstruction techniques, with focus on the implicit ones.

We discuss how to get local approximations of whole surface. We concentrate on two

ways how to get smooth implicit surface. The first case is to connect small patches that

must satisfy continuity conditions. The construction of such constraints can be problem-

atic. The second case is to blend patches assuming the patches overlap.

2.1 Simplicial Surfaces

The reconstruction of simplicial surfaces can be defined as finding the subgraph of Delaunay

complex of points [EM94]. Many algorithms follow this idea and differ mostly in how they

identify triangles that belong to surface.

Crust algorithms [ABK98] use vertexes of Voronoi diagram as an approximation to

medial axis. Sufficient sampling guarantees a reconstruction of the original topology. Co-

cone algorithm [DGH01] has similar guarantees but eliminates the step of adding Voronoi

vertexes to the point set. Still, constructing the Delaunay complex of millions of points is

costly and some algorithms rather use local triangulations of the points [BMR+99].

Hoppe et al. [Hop94] defines an implicit function that is dual to Delaunay-type re-

construction: For each point a normal direction is estimated from neighboring points and

all normals are oriented consistently. The signed distance to surface is defined as normal

component of the distance to the closest point. Thus, the surface consists of planes through

the points bounded by the Voronoi cells of the adjacent points.

In many practical cases, one has multiple point samples for the same region. A way to

consolidate this information is to build a distance function in volumetric grid by properly

6
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weighting the points [Cur97].

2.2 Parametric Surfaces

The simplicial surface is defined as a set of planar pieces resulting in C0-continuous approx-

imations. To achieve smoother approximations, one can either build a smooth surface over

the triangulation [Hop94] or fit smoother functions but when there is a vertex of degree 4

and higher, then raises the problem of guaranteeing the Ce-continuity, for e ≥ 1.

There are methods that reconstruct the smooth parametric surfaces. The object domain

has to be divided into smaller parts because the parametric surface cannot represent the

object of more complex topology. To ensure the continuity there must be set some border

conditions. The problem defined in such way has been examined but however there exist

some solutions they are not direct [Hop94].

2.3 Implicit Surfaces

Most implicit shape reconstructions from point sets are based on Blinn’s idea of blend-

ing local implicit primitives [Bli82]. Blobs, as he called the implicit surfaces, create an

interesting meta-balls blending effect and were used to model molecular shapes.

The implicit surfaces are now widely used in surface reconstruction methods. They

have several benefits like very good modeling properties or ability to represent surface of

any topology.

In [JF02], the points and associated normals are simultaneously approximated. The

described algorithm is geometrically invariant, it requires no artificial normalization in

parameter space and the normalization is done by normals. There are also some error

bounds for approximation.

There is much work in global algebraic surface fitting that uses one polynomial to fit

the point cloud. Taubin in [Tau91] has reconstructed algebraic curves and surfaces in

2D and 3D space. He has defined an improved algebraic distance function normalized by

gradient. This is an approximation to the Euclidean distance. This method is invariant

under rigid transformations. He has proved that problem of implicit polynomial fitting

leads to generalized eigenvalue problem.

More effective reconstruction algorithm can be achieved by space domain decomposi-

tion. Bajaj et. al uses piecewise algebraic curve segments defined on triangles in Bernstein-

Bézier basis. The continuity and smoothness is gained by blending on near borders or

by constraints to derivative on borders. Self-contained material is given in the trilogy

[XBX00, XBC00, BX01].
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Figure 2.1: 2D Illustration of MLS Projection

Savchenko et. al. [SPOK95] analyze using F-representation in surface reconstruction

from scattered surface points and contours. The discussion about F-representation is in

section 3.1.4.

In next sections, we describe the three most used methods in implicit surface recon-

struction – Moving Least Squares, Radial Basis Functions and Partition of Unity Implicits.

All of them uses the paradigm of space decomposition and local approximations.

2.3.1 Moving Least Squares

Moving least squares (MLS) method fits globally smooth function locally and then blend

these local surface approximations. MLS approximation brings it to the extreme by build-

ing a local fit for every point on the surface. We give the definition from [Pau03] in chapter

2, section 3.

Given a set P = {pi}, the MLS surface S(P ) is defined as the stationary point set of

projection operator ψP , i.e.,

S(P ) = {x ∈ R3 | ψP (x) = x },

where ψP (x) is defined by a two step-procedure illustrated on the figure 2.1:

1. Compute local reference plane (defined by normal ~n ∈ R3 and offset d ∈ R)

H = {y ∈ R3 | y · ~n− d = 0 }

by minimizing the weighted sum of squared distances∑
i∈I

(pi · ~n− d )2 φ( ||pi − q|| ),

where q is orthogonal projection of x onto H. The reference plane defines a local

coordinate system with q at origin. Let (ui, vi, fi) be the coordinates of the point

pi in the coordinate system, i.e. (ui, vi) are the parameter values in H and fi is the

height of pi over H.
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2. Compute a bivariate polynomial p(u, v) that minimizes∑
i∈I

( p(ui, vi)− fi )
2 φ( ||pi − q|| ).

The kernel function φ controls the shape of the surface S(P ). A suitable choice for ψ

is the Gaussian, i.e., φ(x) = e−
x2

h2 , x ∈ R3 where h is a global scale factor that determines

the kernel width.

This method can be used for noise removal and object smoothing. It is used in point set

surfaces [AGP+02] to object re-sampling and rendering. It allows also accurate raytracing

of point-based objects. Foundations of this method can be found in the [ABCO+02].

2.3.2 Radial Basis Functions

Radial Basis Functions (RBF) rise by assigning local approximations to points in space but

they often use non-compactly defined blending functions. This computation traditionally

involves the solution of large linear system, however, it is nowadays tackled using compactly

supported functions, multiple expansions, thinning, or hierarchical clustering.

We explain this method according to [CBC+01]. Given a set of distinct nodes P =

{pi}N
i=1 ⊂ R3 and a set of function values F = {fi}N

i=1 ⊂ R, we need to find an interpolant

s : R3 → R such that:

s(pi) = fi, i = 1, . . . , N

The set P = {pi} contains zero-valued surface points f(pi) = 0, (i = 1, . . . , n), and the

off-surface points f(pi) = di 6= 0, (i = n+ 1, . . . ,m). We construct a RBF function of this

form:

s(x) = p(x) +
N∑

i=1

λi φ(|x− pi|),

where p is a polynomial of low degree and the basic function φ is a real-valued function on

[0,∞), usually unbounded and with non-compact support. In this context, the points xi

are referred to as the centers of the RBF.

Popular choice for basic function φ is the Gaussian φ(r) = e−cr2
, where c is a con-

stant. For purpose of extrapolation of incomplete input data, it is suitable to choose

non-compactly supported basic function, for example φ(r) = r.

We find the solution by minimization of thin-plate energy function which measures the

deviation from linear surface and therefore it expresses the smoothness of the function

s(x):

∫
p∈R3

(
∂2s(p)

∂x2

)2

+

(
∂2s(p)

∂y2

)2

+

(
∂2s(p)

∂z2

)2

+2

(
∂2s(p)

∂x∂y

)2

+2

(
∂2s(p)

∂x∂z

)2

+2

(
∂2s(p)

∂y∂z

)2

dv.
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Figure 2.2: An Example of Radial Basis Functions

For polynomial p of degree m, this leads to boundary conditions:

N∑
i=1

λi q(pi) = 0, for all polynomials q of degree at most m

These boundary conditions along with interpolation conditions lead to linear system for

the coefficients that specify the RBF.

Because of global fit the computation costs is high, and nowadays, it is still unusable

to bigger data acquired from high-density range scans. There are many methods how to

speed up the evaluation of RBF, we cite the Fast Multipole Method [BG97]. There are also

some new methods how to construct adaptive approximation with RBF [OBS04]. Turk

examines the modeling properties of RBF based on interpolation [TO02].

2.3.3 Multi-level Partition of Unity

The work [OBA+03] combines more techniques previously mentioned techniques. The

detailed description of this technique is in chapter 3.6 so here we give only three key

ingredients to this approach:

• Piecewise quadratic functions that fit the local shape of the surface.

• Weighting functions (partitions of unity) that blend them together.

• An octree subdivision method that adapts to variations in the complexity of the local

shape.

This approach gives the flexibility in the choice of local shape functions. Moreover, it

is able to represent sharp features such as edges and corners by an extension of shape

functions.

Ohtake et al. continue on his own work and construct adaptive RBF surface [OBS04]

that uses MPUI for coarse approximation and Xie et al. [XMQ] extends this work.
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2.4 Features Reconstruction

We mention some papers related to reconstruction of features. Not all papers are dealing

with our problem of feature reconstruction in the context of implicit surfaces.

Already mentioned MPUI implicits can reconstruct sharp local features such as edges

and corners. It uses the work of Kobbelt et al. [KBSS] and he solves the problem of

feature preserving in polygonal model by extending implicit function by normals and then

the extended marching cubes algorithm can polygonize the sharp features more accurately.

Pauly et al. [PKG03] is inspired by the rule: ”If the edge occurs in different scales, then

the edge corresponds to the real edge”. They do it by local analysis the surface by Principal

Component Analysis and they reconstruct the feature lines. They have also implemented

a non-photorealistic point renderer to visualize point set surfaces.

Song et al. [SVD02] proposes a free-form surface design based on feature reconstruction.

He introduces a free-form feature library that is a basis of the system. The features can

either be extracted from existing regions or be constructed by designers. The effective

free-form designs are constructed by boolean-like operations using the library of features.

Varadhan et at. [VKKM] designs a isosurface reconstruction sensitive to features. He

achieves it by using a contouring algorithm on the Kobbelt’s directed distance field. For

boolean operations he uses an adaptive subdivision sensitive to sharp features.



Chapter 3

Implicit Surface Reconstruction

3.1 Introduction to Implicit Surfaces

3.1.1 Basic Definitions

The implicit surfaces in geometric modeling raised from the idea of Blinn’s blobby models

[Bli82]. The fundamentals about implicit surfaces is can be found in Bloomenthal’s book

[Blo97]. We follow the definitions quoted here.

We define the implicit surface implicitly as a zero-level set of an implicit function, in

contrast to the parametric surface that is embedding of surface to 3D space. First, we

define the implicit surface function, also known as scalar field or field function.

Definition 1 Implicit Surface Function is function F : R3 → R. The function F must be

at least C0 continuous.

We can evaluate it at any point p = (x, y, z) ∈ R3 to return a scalar value F (x, y, z). The

function F is usually C2, that means the first or the second order derivatives exist for each

point p.

Definition 2 Implicit Surface S is a set of all points p ∈ R3 that evaluates to zero, i.e.

F (p) = 0.

Hence, the notation S = F−1(0) can be used instead of S. Points in space p ∈ R3 not on

the surface S can be divided into two categories according to the positive or the negative

evaluation into: the inside and the outside of object.

Definition 3 The set of points p = (x, y, z), such that F (x, y, z) > 0 is called interior

volume of S.

12
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F is typically specified either by mathematical functions, in which one or more equations is

evaluated or by procedural methods, in which an algorithmic process evaluates F . Our pri-

mary representation use functional representation composing polynomials and building the

whole surface. The evaluation of functional representation is done using an algorithmical

process.

The function F can be extended by other attributes defining additional implicit func-

tion, like color Fcolor : R3 → RGB, or gradient Fgradient : R3 → R3, and so on.

Example. We introduce an example of comparison of parametric representation to im-

plicit representation. For example let us compare a hemisphere definition with unit radius

in parametric form

px(u, v) =
(1− u2)(1− v2)

(1 + u2)(1 + v2)
, py(u, v) =

2u

(1 + u2)
, pz(u, v) =

2v

(1 + v2)
, u, v ∈ [−1, 1]

and a sphere with unit radius in implicit form which is simpler

f(x, y, z) = x2 + y2 + z2 − 1 = 0, (x, y, z) ∈ R3

As this example shows, the implicit representation of the surface is often simpler than the

parametric form.

3.1.2 Continuity and Differentiability

For a given point in space p, the partial derivatives define the gradient ∇F = (∂F
∂x
, ∂F

∂y
, ∂F

∂z
)

of the function F . If the gradient is non-zero at a point p, then p is said to be regulars.

The unit-length gradient ∇f(p) in a regular point p is normal to the surface at p. If the

gradient is equal zero, then the point is singular. If the whole surface is regular, it is a

manifold.

Implicit Function Theorem. Unbounded 2-manifold is a surface embedded in R3 such

that a neighborhood around any interior point on the surface is homeomorphic to a disk.

The manifold can be bounded (or closed), then the boundary parts can be homeomorphic

to an half-disc. All other surfaces are non-2-manifold.

The next theorem says that when we take first derivatives of nonsingular implicit sur-

face, then we can use a parametric surface to describe the surface for small neighborhood

of point 0. We note that arbitrary point can be chosen in which the implicit function is

regular.

Theorem 1 For every function f : Rn → R which is Ck-continuous (k ≥ 1) such that

satisfies ∇f(0) 6= 0 and f(0) = 0, exists such small ε > 0 and a unique function p :

(−ε,+ε)n−1 → Rn, such that p is Ck-continuous, and f(p(t)) = 0.



CHAPTER 3. IMPLICIT SURFACE RECONSTRUCTION 14

Figure 3.1: Modeling with Implicit Surfaces

3.1.3 Modeling with Implicit Surfaces

From the implicit surface function can be determined not only the surface but also the

solid object and algebraic distance. From this fact follow some useful modeling properties

of implicit surfaces.

We divide the modeling functions in dependence on the count of input arguments into

nilary, unary, binary, and the others. We consider each implicit surface as nilary if it does

not need any input argument and we view it as original surface. We call unary modeling

functions as deformators because it usually takes one implicit surface and transforms it

into another shape. It is for example adjusting isolevel, smoothing, scaling and skewing.

With the binary modeling functions can be easily modeled boolean operations such as

union, difference, intersection. They are capable to blend two surfaces either in space or

in time. Using min and max functions we can model the sharp edges that are to be used

in feature modeling.

Adding more dimensions to input arguments of implicit surface we are able to model

surface material and also the change of object in time and create animations.

On the figure 3.1, the examples of various modeling operations like difference, skewing

and union.

3.1.4 Alternative Representations

Because of problematic rendering of the implicit surfaces there is always appearing a ques-

tion if there is more suitable representation. Leaving the model in implicit representation

does not allow a real-time interaction. We can get high-quality output by raytracing but if

we want to change the view we need to start it again and it is very slow because it evaluates

the implicit surface for each pixel to find the solution of algebraic equation implied by the

implicit surface.
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uniform grid non-uniform grid Voronoi diagram

Figure 3.2: Various Spatial Subdivisions in 2D

Polygonal

For many applications, it is useful to approximate an implicit surface with a mesh of

triangles or polygons. Well known polygonization algorithms are marching cubes [Blo87].

They use exhausting evaluation of space so its complexity is in worst case cubic in number of

samples in one dimension. The result can be used for user interaction like view transform

or further modeling. Marching triangles [HI97, Har98, SA01] algorithm generates more

uniform set of triangles. It needs to start from initial seed point and its complexity is

O(S
s
), where S is the size of surface and s is size of basic triangle.

F-rep

More advanced representation than black-box approach is Functional representation. This

idea has been developed by A. Pasko et al. [PASS95]. They have developed the language

Hyperfun to describe the implicit surface for geometrical modeling. To visualize the model,

they use Bloomenthal’s polygonizer [Blo87] or POV-Ray [POV] ray tracer. Hasan [Has03]

solves the problem of visualization of certain subclasses of implicit surfaces. He achieve

near-realtime visualization by precompiling Hyperfun model.

3.2 Space Subdivision

We assign a domain of effect for each local approximation. Hence we build decomposition

of space U ⊂ R3 to elementary cells {Ui}W
i=1. The decomposition must cover the whole

space domain
⋃W

i=1 Ui ⊃ U . It can be ambiguous, so for one point p in the space U there can

be more than one local approximation Ui1 , . . . Uik . The overlapping of local approximation

is often desired effect because further blending produces more reliable result.
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3.2.1 Uniform Subdivision

It works without any additional information about sampling of points. Each elementary

cell is of the same shape or there are more than one elementary cells that regularly vary

over space. We can change the density of cells by adjusting the size and shape of elementary

cell. Some cells may remain empty. We omit computing approximations for such cells. We

estimate the computation complexity for computing the approximations for all non-empty

cells. It is O(n2), where n is number of samples in one dimension because we consider the

surface to be 2-manifold.

Regular Grid. Regular grid decomposes space U to uniformly positioned cubes or boxes

of equal size. If we consider the space to be a unit cube U = [0, 1]3, then the decomposition

is

U =
⋃

i=1...p, j=1...q, k=1...r

[
i− 1

p
,
i

p

)
×
[
j − 1

q
,
j

q

)
×
[
k − 1

r
,
k

r

)
.

We adjust the size of box element by adjusting the number of cells p, q, r ≥ 1 in one

dimension. The dimensions of each box is (1
p
, 1

q
, 1

r
). The task is to adjust the level of

density of grid to achieve the best effect. We can estimate the density of grid from count

of all points.

3.2.2 Non-uniform Subdivision

In this type of space subdivision, we consider also points and their normals. This type

of subdivision is able to adapt to varying density of sample points. Similarly to uniform

subdivision we omit the empty cells.

Non-uniform Grid. Uses non-equal sized boxes for elementary cells. It is defined using

grid lines sx = {x0, . . . , xp}, sy = {y0, . . . , yq}, sz = {z0, . . . , zr}, where x0 < x1 < . . . < xp,

y0 < y1 < . . . < yq, z0 < z1 < . . . < zr. The decomposition of domain U is

U =
⋃

i=1...p, j=1...q, k=1...r

[xi−1, xi)× [yi−1, yi)× [zi−1, zi) .

The estimation of p, q, r ≥ 1 and the placement of grid lines should respect the distri-

bution of points in each dimension.

3.2.3 Hierarchical Subdivision

Above mentioned subdivision techniques offer no feedback. With the hierarchical subdivi-

sion we can refine the global approximation on selected place without affecting the rest of

local approximations. This technique allows us to construct iterative approximation that

adapts to the error of previous approximation.
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Octree. This is a well-known tree structure. Each node of shape of cube N = [x0, x1]×
[y0, y1]× [z0, z1] has either 8 children N1, . . . , N8 with equal dimensions or it is a leaf with

no children. Domain U = [0, 1]3 is the single root.

This approach is simple and therefore it allows us to construct efficient algorithm.

3.2.4 Voronoi Diagram

Voronoi diagram is a theoretical structure well-known from computational geometry [CFGN01].

For the set of distinct points {pi}n
i=1 in space U ⊂ Ed, it decompose U to Voronoi cells⋃

i=1...n V (pi), where V (pi) = {r ∈ U |∀j = 1 . . . n, j 6= i : d(r,pi) ≤ d(r,pj)} is a part of

space with the nearest point pi.

Vector quantization [VQ] was originally made for lossy data compression. It computes

Voronoi diagram for the case with number of cells m less than number of points n. The

resulting decomposition contains approximately equal number of points in each Voronoi

cell.

Hence, the Voronoi diagram is an ideal structure for space decomposition. But the

computation costs are too high for using it for the surface reconstruction because it works

with many input points. The heuristic space decomposition (such as Radial Basis Func-

tions, section 2.3.2) that respects the rule of approximatively uniform space subdivision

intuitively approximates the Voronoi diagram structure.

3.3 Sampling Requirements

A major difficulty is that the topological type of surface is unknown and must be inferred

from the points. Nowadays 3D scanners generate large amount of sample points, so the task

of inferring topological type can be managed. The goal is to design sufficient conditions

that must be satisfied to run algorithm successfully and be able to correctly infer the

topological type.

Our task is for assumptions given in section 1.1.1 to quantify the maximum allowed

level of noise. The density of sampling can vary over space. We notice that first item is

solved by the construction of algorithm and choosing appropriate representation of surface.

We follow the conception presented in [Hop94, p. 19-21]. It answers to the question of

minimal sampling density and maximum allowed noise level.

Sampling Density and Noise Level. To assume the sample points to be noisy means

that each point xi ∈ X can be moved at most by distance δ. Such sample X is called

δ-noisy. To capture the notion of sampling density we use following definition. Let Y be a

noiseless sample of unknown surface U . The sample Y is said to be ρ-dense if any sphere

with radius ρ and center in U contains at least one point in Y . A δ-noisy sample X ⊂ R3
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Figure 3.3: Assumption on the Size of Features

of surface U is said to be ρ-dense if there exists a noiseless ρ-dense sample Y ⊂ U such

that points of Y originate from noiseless sample X.

Let us consider the set of sample points X. For noiseless sample we can infer that p

with d(p, X) > ρ cannot be a point of U . Intuitively, the sample points do not leave holes

of radius larger than ρ. If the sample is δ-noisy, the radius of the holes may increase. We

therefore conclude for given a ρ-dense, δ-noisy sample X of U , a point p cannot be a point

of U if d(p, X) > ρ+ δ.

Size of Features. Small details (compared to either ρ or δ) can be left. The critical is

to infer correct topology. We must assume that no two parts of U come too close together.

In other words, no two sheets of U may come within distance ρ+ 3δ of each other.

An estimation of δ can be computed in most applications (e.g., the accuracy of the laser

scanner). Similarly, analysis of the scanning procedure can also provide an estimation for

the sampling density ρ.

3.4 Local Approximations

We give a theoretical introduction and then discuss various approximation techniques. This

is used for local approximation – each local approximation is fitted as an algebraic surface.

Weierstrass Theorem This is fundamental knowledge of approximation theory. It says

that there are no theoretical obstacles to construct a good algorithm.

Theorem 2 (Weierstrass, 1885): Let f be a continuous real function f : R → R. Then,

for every ε > 0, there is a polynomial p such that ∀x ∈ R : | f(x)− p(x) | < ε.

Every smooth function G can be approximated by infinite set of polynomials gi, or equiva-

lently function G can be approximated with demanded error by finite set of polynomials gi.

There are also approximations based on non-polynomial basis, for instance trigonometric

series and the Fourier series analysis. We leave the discussion about these theorems and
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refer reader the relevant literature [Car98]. Our goal is to give algorithm for solving surface

reconstruction problem.

3.4.1 Parameter Space

For better understanding of the surface fitting we provide some facts about the parameter

space of surfaces that we fit. We give definitions inspired by [Pra87].

To define the plane we need 3 non-collinear points, to define the sphere or the axis-

oriented ellipsoid we need 4 non-coplanar points. Generally the implicit polynomial surface

can be defined by certain sample of points. When the number of points is more than degree

of freedom of surface, then no exact fit is possible. We want to find the surface that is as

close to the sample points as it gets.

Definition 4 Basis of parameter space is a set of functions {gi : R3 → R| i ∈ I} such

that gi is independent mutually, i.e. no one is can be expressed as linear combination of

others. Set of all linear combinations constitute the parameter space GI .

Correctly defined parameter space GI for finite index set I constitutes a vector space so we

identify parameter space with parameters. System G also constitutes a ring, we call it a

shape. Subsets H ⊂ G can be defined as an ideal of this ring, we call it a subshape.

Parameter space of implicit polynomials of degree at most d can be defined using

polynomial basis:

Qd(cijk)(x, y, z) =
∑

0≤i+j+k≤d

cijkx
iyjzk

Set of all combinations of ci,j,k constitutes its parameter space Qd.

As an example sphere shape Ssphere can be defined as subshape of general shape Q2 by

basis {x2 + y2 + z2, x, y, z, 1}, or shape of cylindrical surface aligned to z-axis Rcylinder by

basis {x2 + y2, x, y, 1}.
To achieve best reconstruction it helps to have some additional information such as

normals. The knowledge of shape is also one of the additional information. Generally, by

choosing an appropriate basis we get more accurate result. An additional condition for

improvement the stability can be the orthogonality of the polynomials in the basis.

3.4.2 Distance Measurement

To build the metric space we define general distance of two points. Later, the distance of

point to the implicit surface is introduced.

Definition 5 The general distance function of two points x and y in space U must satisfy

1. dist(x,y) = 0 ⇐⇒ x = y for all x,y ∈ U
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euclidean distance algebraic distance

Figure 3.4: Euclidean and Algebraic Distance

2. dist(x,y) ≥ 0 for all x,y ∈ U

3. dist(x, z) ≤ dist(x,y) + dist(y, z) for all x,y, z ∈ U

For the purposes of surface fitting we need to measure the distance of point to the

surface. We give two approaches how to do it: the Euclidean distance and the algebraic

distance (figure 3.4).

Euclidean Distance. This is the intuitive notion of this the distance. To find the

distance of point p to surface S, we find the point q on surface such that dist(p,q) is

minimal.

distS(p) = min
q∈S

dist(p,q)

The finding of the closest point q in euclidean metric space may be too expensive operation.

Algebraic Distance. The algebraic distance is an approximation to Euclidean distance.

The definition

distS(p) = F (p)

satisfy the conditions for metric space. It uses the evaluation of implicit function F of

surface S. The value of F (p) is increasing for the points near surface as we go away from

the surface. In our implementation we use this distance.

Taubin’s Distance. It is modified algebraic distance that is divided by size gradient

vector:

distS(p) =
F (p)

|∇F (p)|
It suppresses the effect of uneven speed of growth of distance. It is a first order approxi-

mation to the euclidean distance.
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To find the function that is relatively close to all sample points we define objective

function which is also called the error function. The objective function of surface S given

by parameters {ci}i∈I to set of points P and usually has the form:∑
pi∈P

(distS(pi))
2

It expresses the cost of approximation summing the error of each point. Consider a shape

of unknown parameters ci. To find them we must minimize the objective function. We get

the approximation to the discrete sample of points.

3.4.3 Normalization

When we are fitting an implicit polynomial it can degenerate to constant zero F = 0, then

all parameters are zero. We solve this problem by saying that implicit polynomial must be

a nonzero point in the parameter space. We call this method as normalization. We know

various types of normalization. We give two classes of constraints.

• Linear constraints – lead to simple least squares or finding eigenvalues.

• Quadratic constraints – lead to solving of generalized eigenvalue system.

There exists many methods how to manage the normalization. Some of them are described

in [Zha97]. It also depends on the definition of distance function, for example in division

by gradient must be used an iterative technique.

The objective function can contain additional functionals that form surface to desired

shape. An example is thin-plate energy used in RBF (section 2.3.2) expressing of the

smoothness of surface. Another example is the normalization by given normals at points

used in [JF02].

Here are some examples of normalization for quadric of form F (x, y, z) = ax2 + by2 +

cz2 + 2dxy + 2exz + 2fyz + 2gx+ 2hy + 2iz + j = 0:

1. a+ b+ c = 1

2. a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2 + i2 + j2 = 1

3. j = 1

We notice that using these normalizations we restrain the parameter space and define new

shape – the subclass of general quadric.

Solving the minimization problem
∑N

i=1 F (xi, yi, zi)
2 can be done by least squares fitting

by pseudo inverse technique in first case and third case. In the second case the solution

can be found using eigenvalue finding.
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3.4.4 Algebraic Surface Fitting

The purpose of local approximation is to capture local shape of the surface. It is always

done by minimizing some energy functional and finding the best parameters for describing

reconstructed surface. In general it takes a set of points from relatively small area. We can

consider also the weights for each point. To make the approximation reliable the number

of selected points in set should be at least Nmin. We set this value experimentally to

Nmin = 15. The algebraic surface fitting method should be simple enough to allow us to

construct effective and fast algorithm.

In the next section there are some classes of algebraic surfaces.

Algebraic Surface Classes. Algebraic surface is a surface defined by an equation f = 0

where f : R3 → R is a polynomial.

Tensor-product algebraic B-spline surface. The tensor-product parametric sur-

faces can be generalized to implicit surfaces by adding third basis function. Tensor product

algebraic B-spline surface of order (m1,m2,m3) with uniformly distributed knot vector is

Q(x, y, z) =
∑

(i1,i2,i3)∈I

ci1,i2,i3 B
m1
i1 (x)Bm2

i2 (y)Bm3
i3 (z), x, y, z ∈ [0, 1]

where Bm
i (x) is i-th B-spline basis function of order m, I is the index set I = {(i1, i2, i3)|0 ≤

i1 ≤ m1, 0 ≤ i2 ≤ m2, 0 ≤ i3 ≤ m3} and ci1,i2,i3 are constants.

Bajaj’s Algebraic Surfaces. Algebraic surfaces are defined on the domain simplex,

in 2D it is a triangle, in 3D it is a tetrahedron. Their definition and properties can be

found in [XBX00, XBC00, BX01].

Notation for fitting of various shapes. To define the problem exactly we give common

formal definitions. As an input we have set ofN points pi ∈ R3, associated normals ~ni ∈ R3

and weights wi ∈ R for i ∈ {1, . . . , N}. To express the coordinates of point p or we use

following notation p = (px, py, pz). The coordinates of normal ~n are expressed similarly

~n = (nx, ny, nz).

The symbol || · || means the size of vector in Euclidean space and it is computed as

follows ||p|| =
√
p2

x + p2
y + p2

z.

3.4.5 Plane Fitting

The task is for input points and normals to compute an approximating plane. To define

the implicit function of the plane we use dot product of reference point b and the normal
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n of the plane:

F~n,b(p) = (p− b) · ~n = 0,

where the normal ~n and the base point b (the one that lies on the surface) are the unknown

parameters of this function that have to be estimated.

Simple Estimation. The simplest estimation of the plane can be done by averaging the

input points and normals:

b =

∑n
i=1wi pi∑n

i=1wi

, ~n =

∑n
i=1wi ~ni∑n

i=1wi

.

Least Squares Method. This version uses the least squares fitting of points and also

normals with weights. To make the equations simpler we rewrite the normal ~n = [a, b, c]

and the constant factor to d. We get implicit function of plane in this form:

Fa,b,c,d(x, y, z) = a x+ b y + c z − d = 0

The derivatives in all directions are:

∂F (x, y, z)

∂x
= a,

∂F (x, y, z)

∂y
= b,

∂F (x, y, z)

∂z
= c.

To compute the coefficients for approximation we have to find the minimum of this objective

function:

fobj(a, b, c, d) =
N∑

i=1

wi F (pi)
2 +W

N∑
i=1

wi || 5 F (pi)− ~ni| |2,

where variable W > 0 is used to adjust the weight of normals, the default value is 1.

We solve it as the linear least squares problem. Then all partial derivatives
∂fobj

∂a
,

∂fobj

∂b
,

∂fobj

∂c
,

∂fobj

∂d
should be equal to 0.

∂fobj

∂a
=

N∑
i=1

wi 2
(
pix a+ piy b+ piz c− d

)
pix +W

N∑
i=1

wi 2 (a− nix) = 0,

∂fobj

∂b
=

N∑
i=1

wi 2
(
pix a+ piy b+ piz c− d

)
piy +W

N∑
i=1

wi 2
(
b− niy

)
= 0,

∂fobj

∂c
=

N∑
i=1

wi 2
(
pix a+ piy b+ piz c− d

)
piz +W

N∑
i=1

wi 2 (c− niz) = 0,

∂fobj

∂d
=

N∑
i=1

wi 2
(
pix a+ piy b+ piz c− d

)
(−1) = 0.
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From these 4 equations with 4 unknowns a, b, c, d we get following linear system:

AX = B,

where

A =


∑

iwi (pi
2
x +W )

∑
iwi pix piy

∑
iwi pix piz

∑
iwi pix∑

iwi pix piy

∑
iwi

(
pi

2
y +W

) ∑
iwi piy piz

∑
iwi piy∑

iwi pix piz

∑
iwi piy piz

∑
iwi (pi

2
z +W )

∑
iwi piz∑

iwi pix

∑
iwi piy

∑
iwi piz

∑
iwi

 ,

B =
[ ∑

iwi nix

∑
iwi niy

∑
iwi niz 0

]T
,

X =
[
a b c −d

]T
.

The matrix A is symmetric and positive definite, and all normals are of unit size. To solve

it we use the Cholesky decomposition to lower and upper diagonal matrix A = LLT . First

we solve LY = B by back substitution, then from LT X = Y we obtain X (again by

backsubstitution). The brief description of Cholesky decomposition and the algorithm can

be found in Numerical Recipes [PTVF92].

3.4.6 General Quadric Fitting

The task is to compute an implicit quadratic surface approximating the input points and

normals with weights as it was stated earlier. We use following equation for the quadratic

implicit surface function:

FA(p) = a0 p
2
x +a1 px py +a2 p

2
y +a3 px py +a4 px pz +a5 py pz +a6 px +a7 py +a8 pz +a9 = 0,

where the normal A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9] is the unknown vector of parame-

ters.

The derivatives of F in all directions are:

∂F (p)

∂x
= a0 2 px + a3 py + a4 pz + a6,

∂F (p)

∂y
= a1 2 py + a3 py + a5 pz + a7,

∂F (p)

∂z
= a2 2 pz + a4 py + a5 pz + a8,

To compute the coefficients we need to find the minimum of this objective function:

fobj(A) =
N∑

i=1

wi F (pi)
2 +W

N∑
i=1

wi |5F (pi)− ~ni|2 ,
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where variable W > 0 is used to adjust the weight of normals, the default value is 1.

We solve it as the linear least squares problem using the same technique as it was in

previous section. Finally we get a symmetric positive definite matrix A. To solve it we use

again the Cholesky decomposition.

3.4.7 Bivariate Quadric Fitting

It is a function that returns height for some 2D coordinate.

F (u, v) = a0 u
2 + a1 uv + a2 v

2 + a3 u+ a4 v + a5

To transform to 3D we need to define the local coordinate system. We do it by fixing

a point, and two base direction vectors ~a and ~b. These vectors are of unit size. Then

the evaluation an implicit function is following. For a point p = [x, y, z] firstly the [u, v]

coordinates is computed:

u = p · ~a = px ax + py ay + pz az,

v = p ·~b = px bx + py by + pz bz

w = p · ~n = px nx + py ny + pz nz

Then the function F (u, v) is evaluated as follows: F (x, y, z) = F~a,~b(u, v)− g.

We compute the approximation similarly we have done it in two previous sections. The

difference is that we do not use normals because it is not necessary to normalize the surface,

it cannot degenerate. We use our local coordinate system defined by ~a, ~b and ~n and each

point pi is transformed to ui, vi and gi using the formulas above. We find the minimum of

this objective function:

fobj(A) =
N∑

i=1

wi (FA(ui, vi)− gi)
2

where variable A is the unknown vector of coefficients.

Finally we get the linear system A ·X = B with symmetric matrix A that can be solved

using Cholesky decomposition, again.

Note about this shape class. It avoids artifacts because this kind of surface always

only consists of one segment continuous and connected.

3.4.8 Ohtake’s Fitting of Quadric

Solution we use was described in [OBA+03] and it improves fitting of general quadric. It

uses extraordinary points placed in the space out of surface. We are given a are set of
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candidate positions {qj}j. For each point qj, 6 nearest points pji is collected. If not all 6

associated normals have same orientation (~nji1 · ~nji2 < 0, for all i1 6= i2), then the point qj

is removed. For all remaining points (let us call them {r1, . . . , rm} ⊂ {qj}j) the estimated

distance from surface is computed

d(rj) =
1

m

m∑
i=1

~nji · (rj − pji) .

To compute the coefficients we need to find the minimum of this objective function:

fobj(A) =
1∑
wi

N∑
i=1

wi F (pi)
2 +

1

m

m∑
j=1

(F (pj)− d(rj))
2 ,

and find parameters describing F (x).

Note about this shape class. It avoids artifacts such as unwanted branches very good.

During the testing it there were no such artifacts generated.

3.5 Blending

The blending in general is used to achieve smooth transition of some objects, said in

mathematical language, functions. The purpose of surface blending is to achieve smooth

final surface using a mathematical formula. We are given two or more pieces of surfaces

that may be disconnected. The level of smoothness is measured in the degree of continuity.

The degree of continuity depends on used blending functions and also on blended functions.

The final degree of continuity in one point of space p is equal to minimal degree of all used

functions f .

The blending functions can be divided into two main categories according to their

definition scope – the support.

• Compactly Supported – they have nonzero value only on the finite bounded space.

This class allows to construct fast reconstruction algorithm and fast evaluation algo-

rithm too because of their compactness but we need to set proper radius of support

more carefully (to preserve the approximative uniform covering).

• Uncompactly Supported – they can be evaluated to nonzero value in any point of

infinite space. The whole space where they are nonzero is infinite. This class of

blending functions have good extrapolation properties and therefore they are suitable

for reconstruction of larger holes.
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linear piecewise quadratic gauss

Figure 3.5: Blending Functions

There is another important property of blending functions. If we compare Bernstein-

Bézier or B-spline blending functions to rational blending, the first group has a nice prop-

erty that the blended result cannot exceed the convex hull of input arguments. If we use

rational blending function then the result may slightly exceed and an unnatural curvature

is created.

In spite of this fact, we use rational blending functions because they allows easy con-

struction of result function instead the local approximations are not placed in regular shape

(such as uniform grid). If we want to blend n local approximating functions fi : R3 → R
with associated weighting functions wi : R3 → R, then we use this formula:

f(x) =

∑
iwi(x)fi(x)∑

iwi(x)

where the evaluation of f(x) is usually centered to ci and the weighting functions usually

have adjustable radius (r > 0). Here are some variants of blending functions: (figures 3.5)

• Linear form:

w(||x− ci||) =

{
(1− ||x−ci||

r
), if ||x− ci|| < r

0, otherwise

This function is compactly supported of continuity of degree 0.

• Piecewise quadratic form that is derived from B-spline basis function of second order:

w(||x− ci||) =


3
4

(
1− 3

(
||x−ci||

r

)2
)
, if ||x− ci|| ≤ r

3

9
8

(
1−

(
||x−ci||

r

))
, if r

3
< ||x− ci|| ≤ r

0, if ||x− ci|| > r

This function is compactly supported of continuity of degree 1.
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• Exponential form of gauss curve used for normal distribution:

w(||x− ci||) =
1√

2πσ2
e−

||x−ci||
2

2σ2

This function is uncompactly supported of infinite continuity. For this function the

parameter variance σ2 is adjustable.

Use of basis function with compact support preserves the principle of locality and

therefore it is suitable to use it with local approximations. All blending methods should

hold that there is no difference in blending of different local approximations over space.

The blending parameters is allowed to change only depending on the geometry of the cell

of local approximation.

The representation we choose depends on blending we are using. If we choose the

partition of unity blending, then we do this assignment by defining sphere of effect. This

sphere is defined by its center and radius. Other parameters for blending functions can be

included.

RBF blending. In our algorithm we use the octree subdivision. RBF blending [CBC+01]

uses spherical compact support. For each local approximation fi(x), a center ci and radius

ri is assigned. Our algorithm places the centers to the leaf of octree.

We notice that this approach places the centers approximately uniformly distributed.

Therefore it is one of the heuristic approximations to Voronoi diagram (section 3.2.4).

3.6 Multi-level Partition of Unity Implicits

In this section we give detailed description of used algorithm. It based on [OBA+03] with

some implementation improvements. We write about the mathematical model of implicit

surface, the possible generalization of the model and the modifications we can create. At

the end we add our comments on this method and we refer to results that can be found

chapter 5.

We have already described some parts of our algorithm. Local surface fitting is in

section 3.4.4, the sampling requirements has been described in section 3.3, estimation of

normals are described in next chapter 3.7, octree subdivision technique is in section 3.2.3.

We use these references in next description of MPUI algorithm.

Iterative Model. We use build the reconstructed surface iteratively. We start with first

approximation F0 : R3 → R of general quadric to the set of points P = {pi}i. Then we
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recursively refine the surface Fi in the places where the error of approximation is large and

we create a new approximation Fi+1.

F0 → F1 → . . .→ Fk

We use octree subdivision scheme so we replace the nodeN with eight new nodesN1, . . . , N8.

We continue with refining until the error of approximation is below the desired level. This

process converges to the implicit surface Fk : R3 → R when the input points P are sampled

from 2-manifold object. In practice we restrict the maximum level recursion.

3.6.1 Local Approximations

For local approximations we use following shape classes: general quadric, bivariate quadric

and piecewise quadric for sharp features. We use only second degree polynomials because

it is enough to capture the curvatures which are noticeable to human eyes. It is usual in

geometrical modeling to use piecewise quadratic polynomials.

To make local approximation reliable we set the minimum required count of points

Nmin = 15 for computation of local approximation. If there are not enough points the

radius is iteratively increased (look in section 3.6.3).

The local shape function is chosen according to analysis of points and normals. If the

number of points in current cell is large (|P| > 2Nmin) then one of the quadric is fitted. If

the number |P| ≤ 2Nmin, then the set of points is tested for the presence of sharp feature.

Error measurement. For the measurement of error we use the modified Taubin distance

[Tau91]

ε = max||pi−c||<r
F (pi)

||∇F (pi)||
,

where pi are the sample points, c is center of cell, r is radius of support sphere, and F is

implicit function of local approximation.

General Quadric. It is for capturing of general shapes like parabolic, hyperbolic but

also elliptic surfaces. We use this shape class for coarse approximations in lower levels of

subdivision tree.

For this shape class is characteristic that the maximum deviation of normals θ is large.

Therefore the condition for fitting

|P| > 2Nmin and θ ≥ π

2
.

includes the test for this angle. The fitting of this shape class was described in section

3.4.8.
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For better result of fitting we use the improved technique supposed by [OBA+03]. He

uses 8 auxiliary points away placed away from surface, in the corners of current cube cell.

In these points the estimated distance was approximated so the resulting surface was more

relevant and the number of unwanted branches of implicit surface was reduced to minimum.

During our testing of this method no such artifact was created.

Bivariate Quadric. It is for capturing local shape with simple topology that can be

projected to plane and the local shape function is the function of height in local coordinates.

This shape class consists of one segment. We suppose that the maximum deviation of

normals θ is not big. The conditions for fitting this shape class are

|P| > 2Nmin and θ <
π

2
.

The fitting of this shape class was described in section 3.4.7.

Piecewise Quadric. It is used for sharp features like edges and corners, this is discussed

in chapter 4.

This shape class is used only for set with fewer points that Nmin

|P| ≤ 2Nmin,

and the test for features presence was successful. The tests are described in detail in

chapter 4 in sections 4.3.1 and 4.3.3. If no conditions for sharp feature is satisfied then

bivariate local shape is used.

3.6.2 Description of Algorithm

In this section we describe the algorithm with help of the pseudo-code in the figure 3.6 and

we discuss the properties of algorithm implied by our construction.

Parameters. The algorithm evaluates the implicit function in a point by traversing all

relevant cubes in octree. Except the point there are two other parameters: max error and

max depth. They are used for condition for stopping subdividing of current cell (figure 3.6,

function Cell.MPU approx(), line 5). Subdivision continues until error of approximation

in current cell is more that max error and the depth of recursion is less than maxDepth.

Compact evaluation. The algorithm traverses only relevant cells. The cell is relevant

if the evaluation point is in the support sphere of the cell. If the point is out of this sphere,

then the cell can be missed in evaluation (figure 3.6, function Cell.MPU approx(), line 1).

The support sphere is computed in local approximation.
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Evaluate_MPU_approx(point, max_error, max_depth)

1: sum_values = 0;

2: sum_weight = 0;

3: root.MPU_approx(point, max_error, max_depth, sum_values, sum_weight);

4: return (sum_values / sum_weight);

Cell.MPU_approx(point, max_error, max_depth, sum_values, sum_weight)

1: if (|point - this.center| > this.radius) then

2: return;

3: if (this.local_approx is not computed yet) then

4: compute this.local_approx;

5: if (this.error > max_error) and (this.depth <= max_depth) then

6: if (children not created) then

7: create 8 children;

8: for each child do

9: child.MPU_approx(point, max_error, sum_values, sum_weight);

10: else

11: sum_values += this.weight(point) * this.local_approx(point);

12: sum_weight += this.weight(point);

Figure 3.6: Pseudo-code of Algorithm

Rational evaluation. The algorithm compute sum up all evaluations in variable sum values

and all weights in variable sum weight in leafs of octree (figure 3.6, function Cell.MPU approx(),

line 11-12). The resulting value is computed as the total sum divided by total weight (figure

3.6, function Evaluate MPU approx(), line 4).

Evaluation on demand. Another important property of this algorithm is that the

octree is built on demand. The tree can be built only partly, the cell is subdivided (figure

3.6, function Cell.MPU approx(), line 6-7), when the conditions are satisfied. This can be

used for example when we want to ray-trace the image of one side of object, then only

visible part of object if reconstructed.

Reuse. Another property is that the octree structure can be reused. The evaluation can

be run on the previously created structure with more strictly parameters max error and

max depth and the refined reconstruction can be achieved.

Locality. The design of this algorithm preserves the locality principle of local approx-

imations and blending. It is optimized to speed of reconstruction and evaluation. The
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algorithm use octree subdivision that is the simplest subdivision scheme. The comput-

ing of local approximations is optimized, and the evaluation of global implicit surface is

performed on demand.

3.6.3 Blending

We have decided to use RBF blending with radial support that was described in section

3.5. We use octree subdivision which is usually considered with cube cells but we use

sphere cells. The overlapping of spheres makes no problems because the rational blending

can manage any count of blended functions.

Moreover we use that support spheres can overlap and set the larger radius than diag-

onal of cube
√

3
2

. We use 1.5 of this value so the radius is equal to

r =
3
√

3

4
· d,

where d is the size of side of cell cube;

In the section we have defined the minimum number of points in the support sphere

Nmin. If the support sphere does not contain enough points, then the sphere is increased

by multiplication.

R = R (1 + λ) ,

where λ > 0 and usually λ < 0.5, we use λ = 0.2.

3.7 Normals Estimation

Description of algorithm of orientation propagation based on Kruskal’s minimum spanning

tree finding. Start from one point where we are sure with the orientation of normal.

Expand the set of correctly oriented normals using MST. For each adding of edge we check

if orientation of two groups is synchronized. If not then swap one of the group. (figure 3.7)

Algorithm. Normal estimation is done locally by linear regression plane by least-squares

fitting of plane to set of points.

The error of orientation can occur, that is that the direction of estimated normal is

correct but the orientation is opposite (figure 3.7, left).

We need to synchronize the orientation of all normals and we use the information about

neighboors. Two neighbooring points p and q with normals ~np and ~nq have synchronized

orientation of normals if

~np · ~nq > 0.
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Figure 3.7: Normals Orientation Propagation

In the construction of algorithm we use the fact that we have the points are well sampled

from surface and the deviation of directions of normals is not very large for neighboring

points.

The algorithm considers the set of correctly oriented normals O, and it propagate the

orientation of this set in this way. It adds the point that is not in set and it is one of the

closest neighbors to set S. Each time the new point p is processed the orientation of this

point is compared with the closest point in set O. If the orientation is opposite, then the

normal ~np is inverted. Finally the point p is added to the set O.

The analysis of this algorithm leads us to the observation that it works like algorithm for

finding minimum spanning tree (MST). The fashion of expanding is equal to construction

of MST for weighted graph where vertexes are points and the weight of edge between two

points p, q is:

weight(E(p,q)) = dist(p,q).

We can replace the algorithm with the Kruskal’s one and we get change of fashion of

orientation propagation. Instead of expanding set O like it was in previous case, we observe

that more clusters are expanding concurrently. Each time when two clusters are merged,

two closest points p and q from neighboring sets O1 and O2 are checked if their orientation

is synchronized. If this is not true, then all normals in one group (we take that one where

are fewer points) must be inverted.

This algorithm can be used also for analyzing the count of connected segments, if we set

the threshold maxdist for maximum distance of two points. In language of graph theory,

we remove all edges with value more than maxdist. We can count the segments during this

algorithm. The normals in result set are synchronized in each segment independently and

therefore we avoided the errors of synchronizing orientation between two distant segments.

The quality of result of this algorithm can be improved by setting of the weights of

graph considering also the dot product of normals. The weight of edge incident to two

points p and q with normals ~np and ~nq is set as follows:

weight(E(p,q)) =
dist(p,q)

|~np · ~nq|
.
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This formula increases the weight of points that have large deviation of normals. They can

be close to each other but if their normals are almost opposite then the weight is too large

to connect these two points in MST. Using this improvement made the implementation of

normal estimation algorithm more stable.

3.8 Conclusion

We have discussed the problem of surface reconstruction and we have presented a solution

that uses implicit surface representation. We have discussed the sampling requirements,

various space subdivision techniques, local approximations computing, blending techniques

and normals estimation. We have decided to implement the algorithm MPUI as it was

described in section 3.6. More about implementation is in appendix A. Results can be

found in chapter 5.



Chapter 4

Features Reconstruction

4.1 Introduction

The notion of feature is very common and it is used in many areas. We focus only on

the features in geometric modeling. The notion of feature in geometry is connected with

the notion of shape. The features are important for visual perception and recognition of

object. We can say that feature is anything that characterizes the shape of object.

Philosophy. Feature in general is some part of object that characterize object. After its

removal the object changes the characteristics. This is said under global view. In contrast,

the feature under the local view is a local shape and the library of features is the basis of

local shapes. The shape of whole object is built using this library. We follow the philosophy

of the local view. The common thing for these two views is that the feature is visible under

different scale levels.

Perception of Features. Human visual system detects features on low level and it

recognizes whole object from them on high level. It can reconstruct incomplete data and

it gives the interpretation of recognized data that may be also false. The techniques of

numerical approximation give sufficient result for a given error measurement. Our task is

to make efficient model for reconstruction of surface with sharp features that is plausible

not only for the error measurement but also for human visual system.

Modeling of features. We have recognized these steps in feature reconstruction:

1. Detection – testing if any feature is present in current set of data.

2. Reconstruction – identifying the segments and modeling the feature.

The detailed description of these two steps can be found in following sections.

35
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Our Direction. We deal only with the sharp features any sharp local shape such as

edges, corners. The sharp feature can be detected as a singular point or set of points. It

cannot be approximated by any finite sequence of polynomial functions. There is no match

with Weierstrass theorem mentioned in section 3.4.

Assumptions. We assume that the points are uniformly sampled over the whole surface

from small area and therefore there are no big holes. The segments are almost linear,

because the points are from small area. They can be curved but not very much so that

bivariate polynomial can be fitted to them. The important assumption is that we detect

only sharp features, where we are sure that it is a feature.

4.2 Various Approaches

We have identified three approaches for detection and reconstruction of features. All of

them analyze the input set of points and normals but in different way. We give only basic

idea of each of them.

Kobbelt’s Heuristic Approach. Kobbelt et al. [KBSS] use a heuristic approach. He

computes the maximum deviation θ of any two normals. If it is more than specified

threshold (he use θ = π
2
), then the feature is detected. Then follows the construction of

segments. This approach is described in section 4.3.2.

Principal Component Analysis. Pauly [Pau03, p. 13-14] uses analysis of the principal

component vectors q1, q2, q3. The flat surface area has the variance in two vector larger,

and in one it is significantly smaller. The feature is detected when this configuration does

not hold.

Minimum Spanning Tree. This approach analyzes the weighted graph of points. The

weights are created with respect to the distance of points and the deviation of normals. We

have used this technique for normals estimation (section 3.7). We will use this technique

for features fairing so the detailed description can be found in section 4.4.

4.3 Sharp Features

We deal only with sharp features that can be easily detected as singular values. The

implicit surface in such kind of values is continuous but it is not differentiable. We deal

with the certain local features as edges and corners.
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Figure 4.1: Reconstruction without and with Sharp Features.

When we try to construct polynomial approximation on the sharp parts the error is too

large. The theory of approximation says that for such singular values cannot be constructed

any finite polynomial approximation. We can see an attempt of reconstruction using only

polynomials on figure 4.1.

Therefore we propose to extend the model of implicit surfaces by sharp features. This

decision makes the problem simpler because we do not have to deal with the topology of

features that is often complicated. Using sharp features the count of local approximations

rapidly decreases. As we have said, we have recognized two main classes of local fea-

tures: edges (with two segments intersecting in singular line) and corners (three or more

intersecting segments).

4.3.1 Modeling of Features

When we model the sharp features with implicit surfaces, in contrast to parametric surfaces,

we do not need to know the exact position of edge but we need to know only the shape

of intersecting segments and their mutual position. The mutual position of two segments

can be either concave or convex. Depending on this configuration we construct the edge

using one of the binary functions min(a, b) (for concave) and max(a, b) (for convex) as it

is shown on the figure 4.2. For corner feature we have at least three segments. Except the

fully concave and fully convex corner there are lots of saddle cases that must be modeled.

The detailed description of the modeling of saddle corner can be found in section 4.3.3

4.3.2 Detection of Features

For the set of points S = {pi} with assigned normals ~ni we need to detect the presence of

a feature. If the maximum deviation of angle of two normals ~n1 and ~n2 is above specified

threshold θ = 25◦ (the value is a result of experiments), then we consider it as a feature.

Then we are testing if there is another segment by finding a normal ~n3 with maximally

deviating angle from both previously detected segment normals ~n1 and ~n2. If this angle is
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Figure 4.2: Edge Modeling in 2D.

bigger than θ, then we expect the presence of corner. We continue with the same detection

for the 4th normal ~n4.

The result of previous segment prediction is the set of normals of k segments. We

obtain the partitioning of the set of points S by assigning for each point pi one of the

segment Sj that has minimum deviation of normal ~ni to normal ~nj. Then we improve

the partitioning by following iterative algorithm. For each segment Sj, we compute new

normal ~n′j as an average of normals in segment. Then we compute again the partitioning

S ′j according to newly computed normals. We do this two times and on the end we obtain

good estimation of the partitioning to segments. To reduce the error of approximation

we remove the points that have deviation from the segment normal greater than 50◦ (the

value is a result of experiments).

4.3.3 Reconstruction of Features

Now we need to construct the implicit surface function for the local feature. For the case

with two segments we have already done it in section 4.3.1. We give a technique that

allows us to construct corner with any count of segments with the knowledge of convexity

of each pair of segments.

The convexity estimation for pair of planes defined by points p1, p2 and normals

~n1, ~n2 can be done by evaluation of implicit function of planes. The edge is convex iff

f1(p2) + f2(p1) > 0, otherwise the edge is concave.

The task is for k segments F1...k and convexity defined for each pair conv[Fi, Fj] = {1, 0}
to construct an implicit function F (x) modeling the shape of local feature that satisfy the

conditions:

conv[i, j] ⇒ F (x) ≤ min(Fi(x), Fj(x))

¬conv[i, j] ⇒ F (x) ≥ min(Fi(x), Fj(x))

The function F (x) can be constructed by collecting all convex pairs conv[Fi, Fj]:

F = min(max(Fi1 , Fj1),max(Fi2 , Fj2), . . .)
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Figure 4.3: Modeling of Settle Corners.

The conditions are satisfied because themin andmax function are monotonous in structure

addition:

min(. . . Fi . . . Fj . . .) ≤ min(Fi, Fj),

max(. . . Fi . . . Fj . . .) ≥ max(Fi, Fj),

The expression constructing function F can be optimized using DeMorgan rules:

min(A,max(B,C)) = max(min(A,B),min(A,C)),

max(A,min(B,C)) = min(max(A,B),max(A,C)),

because the algebraic structure (F (x),min,max) is an generalization of Boolean algebra.

On figure 4.3 on left the settle corner with the set of conditions conv[F1, F2], ¬conv[F1, F3],

¬conv[F2, F3] is modeled as the function F (x) = max(min(F1, F2), F3).

On figure 4.3 on right the settle corner with the set of 2 convex edges conv[F1, F2],

conv[F3, F4] is modeled as the function F (x) = max(min(F1, F2),min(F3, F4)).

4.4 Features Fairing

We have constructed an algorithm for local feature reconstruction so we are able to recon-

struct some features on real objects. By analysis of results of previous algorithm we obtain

two different groups of objects:

• In the first group there are objects for civil engineering industry, CAGD models.

They have large areas with low curvature, and sharp strong edges. The features on

the objects of this class can be easily detected because they are sparsely placed.

• In the second group there are real objects that can come from 3D scanner. The

objects of this class have large amount of places with high curvature and densely

placed features. That is the reason why the topology of features cannot be easily

resolved.
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Figure 4.4: Standard Topology of Features

The features fairing on the objects in the second class is more difficult and more complex

and the solution needs to use not only sharp local features. Our primary purpose is to

construct features on the objects from first class.

Topology of Features. We need to distinguish the correct configuration of features

from the bad one. For checking it in our case, it can be used the information about the

topology of features (the adjacency of features). The typical topology of features for corner

case is that adjacent features are edges (figure 4.4). Our goal is to check the correctness

of the topology of features.

Purpose of Features Fairings. There are at least two main purposes of feature fairing.

• The first one is the improvement the quality of feature considering the topology of

features, in general we say we do a filtering the features from noise and from bad

results from previous step of local reconstruction.

• The second purpose is to repair some bad considerations that were done in previous

step. Specifically we have done convexity estimation for local feature construction

(section 4.3.3). This convexity estimation can be corrected according to adjacent

features.

Typical Errors. The task is to resolve these typical error configurations:

• There is an isolated feature with no adjacent features. Such feature should be re-

moved.
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• Edge feature with one error, (all features have two segments, but only one is detected

as corner or there is no feature). This configuration must be detected as the error.

In the next step the new feature is computed regarding the adjacent segments in

features.

• There are 3 adjacent edges and the corner was not detected. This configuration

should be detected and repaired.

4.4.1 Technique

The algorithm for features fairing must detect above described errors and replace them

by newly computed sharp feature. The main principle is that we use larger neighborhood

than it was in local feature reconstruction. We use the support sphere with double radius

2r for fairing of this feature.

Instead of analyzing the local shape functions we analyze the segments that were used

to model the feature. For the edge we have two segments, for the corner we have at least

three segments. Each segment is a bivariate polynomial so we expect the segments are

nearly planar. Therefore we approximate each segment s by one point c and one normal

~n defining the plane.

Weighted Graph. For purposes of analysis of the input set of local features we define the

graph structureG that express the relationship between segments. The graphG = (VG, EG)

consists of segments VG = {si = (ci, ~ni)} with weighted edges EG = {ek = (si, sj)}. The

weights must include the distance of two points ci and cj and the deviation of two normals

~ni and ~nj. We propose this setting of weight wij of two segments si and sj:

wij = ||pi − pj||2 +R e−~ni~nj , R > 0.

This setting assigns lower weights to closer points, and lower weights to the normals with

less deviation. The parameter R is used to adjust the strength of deviation of normals.

We set R = 1.

Segmentation. The goal is to compute the number of segments of feature and their

position. We do it by analysis of the graph G. We obtain the segmentation of vertexes

VG =
⋃H

h=1 Vh. Then for each segment Vh we assign a point c′k and a normal ~n′k.

Improved MST. We may do the segmentation using any clusterization technique.

We propose our technique based on finding minimum spanning tree (MST) that was de-

scribed in 3.7. We construct the set for minimal spanning forest by adding the edges with

minimal weight. The result is disconnected set of MSTs, each of them is a segment Vh.
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Figure 4.5: Features on Real Objects.

We improve this algorithm by replacing the test for minimal edge connecting two dif-

ferent segments. This test is unstable for certain types of configurations. We replace it by

evaluating two such minimal edges. Generally, we connect such two spanning trees ti and

tj that have minimal value of this expression

o(si, sj) =
∑

e∈Jij

w(e)

for set Jij containing the L edges with lowest weight connection and connection two span-

ning trees ti and tj. We set L to at least L = 2.

New Feature Computation. The final step is to estimate new local shape function.

As first, we reconstruct the bivariate polynomial for each cluster Vh. Then we model the

new local function f : R3 → R using a technique described in section 4.3.3.

4.5 Conclusion

We have presented the technique for reconstruction of certain local features and a technique

for fairing of reconstructed local features and we have successfully applied it to the real

objects with features.

Some parts of reconstructed models are visible on figure 4.5.

Future Work. As a further extension can be done global features extraction and building

the functional representation that characterize the global shape of object. We could do it

by taking already detected local features and try to merge them into the global features.

The global features can be used also for fairing of local features to eliminate some errors

during local feature reconstruction.
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Conclusion

5.1 Contribution

For the problem of surface reconstruction from unorganized set of points, we have de-

signed a solution based on [OBA+03]. We have done a survey to recent work in surface

reconstruction for various representations (chapter 2). We have chosen the implicit surface

representation. We build the implicit surface by blending local polynomial approximations

with spherical support. We use the iterative technique to build the implicit surface by

refining the approximation using octree subdivision scheme.

In the chapter 3, we have discussed various possibilities for subdivision scheme, for local

approximations and for blending. We also give the requirements for sampling and the level

of noise. We have designed an original algorithm for normals estimation.

Sharp Features. In the chapter 4, we have considered the problem of sharp features

reconstruction. We extend the model of implicit surface by the functions capable to model

the sharp edges and corners. We present a technique based on [KBSS] for detection and

reconstruction of local features. Then we present an original technique for fairing of local

features. This technique is capable to repair certain errors from previously reconstructed

features.

5.2 Webpage

We notice that there is a webpage for this master thesis that is currently on the address

http://umarian.szm.sk/thesis/index.html. In the case that the address would change,

you just enter the search query Implicit Surface Reconstruction Marian Uhercik

Master Thesis to the http://www.google.com.
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5.3 Future work

Implementation of Features Fairing. We have done the detailed design of the algo-

rithm for features fairing. Our current goal is to implement this algorithm and do the

tests.

Testing on Large Input Sets. The construction of algorithm is capable to reconstruct

the surface from large ammount of input set. The next goal is to test our algorithm on

such data sets.

Exporting the Implicit Surface. The easy evaluation of implicit surface from our

library function has been already used for creating the plugin for POV-Ray. For some

applications it is not enough to have a black-box function. They need to know the more

about implicit function We can export the mathematical description of implicit surface to

the Hyperfun modeling language.

Library of Local Shapes. We have used only few types of local approximations. The

future work can be done in extending this library of local shapes. The important step is a

choice of a proper local shape.

Intelligent System. With help of user interaction we can obtain better results. To

reduce the amount of user interaction an intelligent system could be built. User can give

some examples and the system could learn the assignment of local input data to local shape

in a library.

Global Shape Extraction. We have presented new algorithm for feature reconstruc-

tion. Our vision is to construct algorithm for extracting global shape. The result can be

stored in functional representation. The algorithm can use the local features and merge

them to the global features. Global shape extraction can be examined to extract the global

shape description from local features.

5.4 Results

We present the results of surface reconstruction by our algorithm. We use the input set of

points with normals from the Ohtake’s webpage [Oht].

We have tested the algorithm on a personal computer with operating system Windows

XP. We have used two different configurations:

• Celeron 1300 MHz with 384 MB of RAM.
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• AMD 2500 with 256 MB of RAM.

All times for reconstruction for following data sets were close to zero or one second.

The polygonization can take longer time because it evaluates the implicit surface many

times.

Squirrel. We reconstruct the implicit surface from data of squirrel. We use only poly-

nomials with no sharp features extension. It contains 40627 points. All times on both

configurations were about 1 second.

We adjust the maximum depth of recursion of octree to present the multilevel recon-

struction. We set the maximum desired error to 0.5% of object’s bounding box. The result

is in graphs on figure 5.1, the figure 5.2 shows the polygonized object.

Knot. We reconstruct the implicit surface from the data of knot. It contains 13006

points. We use only polynomials with no sharp features extension.

Bunny. We reconstruct the implicit surface from the incomplete data of bunny with

many holes. It contains 28060 points. We use only polynomials with no sharp features

extension.

Venus. Next reconstruction of the implicit surface is from data of Venus. We use only

polynomials with no sharp features extension. It contains 72545 points. All times on both

configurations were about 1 second.

The result o reconstruction can be seen on picture 5.5.

Two-torus. Here are the results of reconstruction of boolean objects with sharp features.

The model (figure 5.6) contains 4352 points with normals. To render the pictures we use

raytracing technique to preserve the sharp edges.

Boolean objects. Here are the results of reconstruction of boolean objects with sharp

features. The first model (figure 5.7) contains 6300 points with normals. The second

model (figure figure 5.8) contains 6572 points with normals. To render the pictures we use

raytracing technique to preserve the sharp edges.
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Maximum Taubin’s error Numbers of local approximations

Figure 5.1: Results for Reconstruction of Squirrel Object

points depth 1 depth 2

depth 3 depth 4 depth 6

Figure 5.2: Multi-level Reconstruction of Squirrel Object



CHAPTER 5. CONCLUSION 47

input points reconstructed surface

Figure 5.3: Reconstruction of Knot Object

input points reconstructed surface

Figure 5.4: Reconstruction of Bunny Object

points depth 2 depth 7

Figure 5.5: Reconstruction of Venus Object
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input points implicit surface

Figure 5.6: Reconstruction of Two-torus Object

input points implicit surface

Figure 5.7: Reconstruction of First Boolean Object

input points implicit surface

Figure 5.8: Reconstruction of Second Boolean Object
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Implementation

This chapter deals with the specification and implementation of software for implicit surface

reconstruction. The software implements the algorithm described in two previous chapters.

The results of reconstruction can be found in chapter 5.

On input, we have set of points in 3D space with normals in file .pwn . The output

is an implicit function accessed through the function in library. The library and its using

is described in following paragraph. The visualization of implicit surface is done using

third-party module.

Core Class Design. To describe the internal design we use the Unified Modeling Lan-

guage (UML) class diagram.

All classes containing an implicit surface are derived from a common base class ImplicitSurface.

It can compute the value and the gradient in any given point. Local approximation classes

are derived from class Approximation. They are used to compute approximating function

to the set points. The classes reconstructing the objects using local approximations have

common class SurfaceReconstruction. The implementation of MPUI algorithm is in

class MPUIReconstruction is derived from class RBFReconstruction containing common

radial basis function reconstruction. The input points are stored in class PointSet and

the extending class PointSetExtension contains the optimization structure for collecting

the points for range queries.

Used Software. The basic platform for the testing the application is MS Windows XP.

The library is written in ANSI C++ and compiler with Microsoft C++ compiler.

We use the OpenGL library for the visualization of mesh and we use the Bloomenthal’s

polygonizer to obtain the mesh. To raytrace the images we use our own plugin for POV-Ray

with Isosurface patch.

We use the library of numerical algorithms from Numerical Recipes library.

For writing this thesis text we use the LaTeX in distribution TeX Live 5.

49
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Figure A.1: UML Class Diagram



Appendix B

Compact Disc

The integral part of our work is the included compact disc. Here is the contents.

Root Directory.

• This master thesis text in pdf format with color pictures and hyperlinks.

• The poster submited to the SCCG 2005 in Budmerice.

• The paper prepared for the ŠVK 2005, FMFI UK, Bratislava.

Directory Software.

• Library for implicit surface reconstruction and the documentation.

• Demonstration application for the reconstruction surface and the tutorial.

• Source code of all software for implicit surface reconstruction library.

• Sample data (point sets with normals) for testing the application.

Directory Papers.

• The third-party papers related to the implicit surface reconstruction.

• Saved webpages that were interesting.

Directory Others.

• Old mirrors of the webpages of our master thesis.

• Other stuff.
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