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Abstract. Convolution surfaces generalize point-based implicit surfaces to in-
corporate higher-dimensional skeletal elements; line segments can be considered the
most fundamental skeletal elements since they can approximate curve skeletons.
Existing analytical models for line-segment skeletons assume uniform weight distri-
butions, and thus they can produce only constant-radius convolution surfaces. This
paper presents an analytical solution for convolving line-segment skeletons with a
variable kernel modulated by a polynomial function, allowing generalized cylindrical
convolution surfaces to be modeled conveniently. Its computational requirement is
competitive with that of uniform weight distribution. The source code of the field
computation is available online.

1. Introduction

An implicit surface is a good representation for modeling and animating
a smooth deformable object of complex topology that may change over time,
such as liquid, snow, cloud, and organic shapes [Bloomenthal et al. 97],
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[Dobashi et al. 00], [Cani, Desbrun 97], [Nishita et al. 97], [Jin et al. 00]. A
skeleton-based implicit surface, S, is most commonly defined as an iso-surface
satisfying the equation,

S:{(m,y,z)\ZFi(x,y,z)fT:0}, (1)

where F; is the field function of the i** contribution source and T is the thresh-
old field value. For example, the implicit functions in metaballs (blobs or soft
objects) [Blinn 82], [Nishimura et al. 85], [Wyvill et al. 86], [Wyvill, Wyvill 89]
are defined as summations of point fields. Metaballs are widely implemented
in commercial software packages (e.g., Softimage, 3D Studio Max), but they
are inadequate for representing flat surfaces and generalized cylinders. A dis-
tance surface allows the use of higher-dimensional skeletons [Bloomenthal,
Wyvill 90], [Bloomenthal 95]; however, creases or curvature discontinuities
may arise when dealing with multiple non-convex skeletal primitives.

Bloomenthal and Shoemake [Bloomenthal, Shoemake 91] present convolu-
tion surfaces as natural and powerful extensions to point-based field surfaces.
By convolving skeletons with a three-dimensional low-pass Gaussian filter ker-
nel, the resulting iso-surfaces overcome the above-mentioned weakness of dis-
tance surfaces [Bloomenthal 97]. The skeletal elements in convolution surfaces
can be points, line segments, curves, polygons, and other geometric primitives.
Since skeletons are natural abstractions of shapes, convolution surfaces offer a
convenient means of controlling the shape of the underlying modeling object.

The modeling potential of convolution surfaces is very attractive, but their
mathematical formulation still poses some open problems, stemming from the
fact that convolution integrals seldom yield closed-form solutions that can be
directly evaluated. The derivation of closed-form solutions depends on both
the kernel function and the skeletal element. Bloomenthal and Shoemake
[Bloomenthal, Shoemake 91] calculate the field function numerically using
a point-sampling method, which, potentially could under-sample artifacts.
By employing a new kernel function—the Cauchy function—McCormack and
Sherstyuk [McCormack, Sherstyuk 98], [Sherstyuk 99] deduce analytical solu-
tions for point, line segment, polygon, arc, and plane elements. Their method
thus provides an accurate and robust solution for more generally shaped con-
volution surfaces.

The analytical line-segment model derived by McCormack and Sherstyuk
assumes uniform weight distribution and produces only constant-radius con-
volution surfaces around the line-segment skeleton. Thus, multiple line seg-
ments must be specified to model surfaces of varying radius. To overcome
this problem, this paper presents a closed-form model for line-segment skele-
tons with weight distribution modulated by a polynomial. Since many objects
can be abstracted with curve skeletons, which can in turn be approximated
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by line segments, our closed-form solution facilitates the modeling of a large
variety of generalized cylindrical shapes'.

2. Convolution Surface

A convolution surface is an iso-surface in a scalar field implicitly defined by
a skeleton consisting of three-dimensional points and by a potential function
representing the contribution of each skeletal point to the scalar field. In
this paper, we adopt the following convolution surface definition, given by
McCormack and Sherstyuk [McCormack, Sherstyuk 98]: Let P(x,y,2) be a
point in R?, and let g : R* — R be the geometry function that represents a
modeling skeleton V:

1, P € skeleton V;
g(P) = . (2)
0, otherwise.

Let f : R* — R be a potential function generated by a single point in
the skeleton V, and let Q be a point in the skeleton. The total field, F,
contributed by the skeleton at a point, P, is the convolution of two functions,

fand g,
FP) = [ QP - Qv = ( 2.9)(P). Q
Thus, f is also called the convolution kernel. For convenience, we rewrite

the field function of the convolution surface as the volume integral along the
skeleton,

F®) = [ - (4)

In this paper, we adopt the Cauchy kernel function proposed by McCormack
and Sherstyuk [McCormack, Sherstyuk 98],

1

P O — )

where r = ||P — Q||, and s is a parameter for controlling the width of the
kernel. The field function F'(P) now becomes

F(P) = /V 1 +ds‘gr2)2' ©

1Grimm [Grimm 99] has also investigated implicit generalized cylinders; her method
involves specifying an axis and one or more profile curves. In contrast, our method produces
exact convolution surfaces and extends the versatility of modeling with convolution surfaces.
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Superposition is one of the most important properties of convolution sur-
faces; that is, summing the convolution surfaces generated by two separate
skeletons yields the same surface as that generated by their combined skele-
ton. This property allows convolution surfaces to overcome the problem of
bulges and creases encountered in distance surfaces. The independent evalu-
ation feature guarantees that the user need only be concerned with the shape
of the skeleton, not the number of segments used, when designing a convo-
lution surface. The superposition property ensures that the skeletons can be
subdivided arbitrarily and that the field function of the sub-skeletons can be
summed simply to evaluate the final convolution surface.

3. Line-Segment Skeleton with Polynomial Weight Distributions

We multiply the field function at a point, Q, by ¢(Q) : R*> — R to define a
weighted convolution surface model with non-uniform weight distributions:

Fe) = [ a@re - @av - [ MU @

We now derive the analytical formulae for the line-segment skeleton with
polynomial weight distributions. A line segment of length [, with starting
point, b, and unit direction, a, can be represented parametrically as

L{t)=b+ta, 0<t<l (8)

Letting d = P — b, the squared distance from a point, P, to a point on the
line L(t) is then

r2(t) = d* +t* — 2td - a, (9)

where d = ||d||. Let Ffme(P) denote the field function of the line segment

L(t) with weight distribution #¢. For i = 0,1,2,3, we obtain

! dt . /! tdt
Fiine(P) :/0 (e Fiine(P) */0 AT 22 @)
.2 Poat R L
Fine(P) :/0 (ENZE0E Fio(P) */0 R0 (10)
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Substituting 72(¢) into F}}

line

(P), letting h = d-a, and integrating, we obtain

dt
(1+(s2(t—) + 52d2 — 2h2))2

/lhh p/s))
L

I—h
2p [s2h2+p s* (1= h)? +p2]
sh s(l—h)
258 (arctan {p } + arctan [ 5 ]) , (11

where p is a distance term: p? = 1+ s2(d? — h?).

Fine(P) =

%.Jsl’—‘ h

+

Slmllarly, we can derive the analytical formulae for Ff _(P), Ft

line

(P),

me

Fﬁne(P) as follows:
1
tdt
Ft. (P) =
lme( ) /0 (SQ(t_h>2 +p2>2
1 1 1
- — - Fi.(P); (12
282 |:S2h2 +p2 82(l*h,)2 +p2:| +h’ hne( )7 ( )
R (P) - /l t2dt
S N C R EE
L[ L
282 [$2h2+p2 s3I — h)? + p?
1 sh s(l—h)
+—3 arctan | — | + arctan
2ps p p
_h2Fl}ne(P) + 2hFit1ne(P)
1 sh s(l—h)
= ——(arctan | —| + arctan | ———|)
s°p p p
—(1* + (/9)*) Fiine(P) + 21 Ff, o (P); (13)
1 3
t — h)3dt 2
FE (P :/ ( K3FL (P) — 3h2Ft (P) + 3hFL (P
hne( ) 0 (Sg(t_h>2+p2>2+ hne( ) 3 hne( )+3 hne( )
I N e O i B i L 1
2 s2h2 + p2 250 |s2(h)2 +p2  $2(1—h)% + p?

FhFle(P) — 3R, (P) + 3hF.(P). (14)
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The analytical formulae for FY, (P) with i > 4 can be derived analogously;
however, since cubic polynomials are usually sufficient for user requirements,
we omit these formulae here. Note that F}\ _(P) can be represented in terms
of B, (P),F},.. (P).... Fﬁ;e(P); this enables the use of more efficient incre-
mental calculations. Based on the closed-form field functions of a line segment
with weight distributions 1,t¢,t2,t>, we can now use a cubic polynomial func-
tion to define a profile distribution function along the skeletal line segment.
To provide an intuitive interface for controlling the cubic curve, we represent
it in the Bézier form with control points (j/3,¢;) where j = 0,...,3. This
form of Bézier curve can be rewritten simply as g(u) = > ¢;B;(u), where
the B;(u) are cubic Bernstein basis functions [Farin 97]. The designed profile
Bézier curve is then converted to power basis form.

For linear weight distribution (most frequently used in practice), the for-
mula is very simple. Let the weights at the start and end points of the line
segment L(t) be ¢o and ¢i respectively; then the weight at parameter ¢ is

tifl ti72

g1 — qo
l

and the field function of the entire line segment is

q(t) = go + t, (15)

@1 — qo
l
We now derive the field function of a skeletal polyline, PyP; ... P, with

linear weight distributions, given that the weights at Py and P, are ¢y and

1 , respectively. Let the length of the i*t segment, P;P;11, be l; = ||Psy1 —

Fline(P) - dOFl}ne(P) +

Fine(P). (16)

P;ll, i=0,1,... ,n—1, and denote the field functions along the line segment
P,P; 1 with weight distributions [,¢ as ‘F}__(P), ‘F_(P), respectively. It

is easy to derive the weight at point P;, denoted by g¢;, as follows:
i—1  n—1
% =qo+ le/zlj (d1 — go)- (17)
j=0 =0

Thus, the field function for the entire polyline is

n—1

i di+1 — 4i) 4
Fooioe(P) = 3 {ac FlP) + B2 g (o] )
i=0 ¢

4. Examples and Performance

To demonstrate the capabilities of our method, we have modeled a variety of
surfaces. For uniform processing, all the convolution models are first polygo-
nized into polygon meshes, which are then ray-traced with solid or projective
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(a) (b)

Figure 1. Hayfork. (a) Skeleton. (b) Convolution surface.

(a) (b)

Figure 2. Deer horn. (a) Skeleton. (b) Convolution surface.

texture mapping. Figures 1-3 illustrate convolution surfaces that adopt linear
weight distributions. The underlying skeletal representation is shown on the
left of each illustration. The hayfork, deer horn, and snowflake, respectively,
are modeled using 6, 15, and 18 line segments. Figure 4 shows a model that
uses a cubic polynomial distribution for the vertical line segment.
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Figure 3. Snowflake. (a) Skeleton. (b) Convolution surface.

A more complex example—a maple tree—is illustrated in Figure 5; the stem
and main branches are modeled using polyline skeletons with linear weight
functions (the twigs and leaves are modeled using traditional modeling meth-
ods). The branches of the potted plant in Figure 6 are modeled in a similar
way (the leaves are modeled separately before being added to the branches).
These examples demonstrate the convenience of using our analytical methods
to model convolution surfaces of generalized cylindrical shapes.

(a)

Figure 4. T-shaped object. (a) Skeleton. (b) Convolution surface.
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Figure 5. Maple tree.

Figure 6. Potted plant.
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Weight distribution Special functions and floating-point operations
arctan | sqrt In * / + -
1 2 1 0 17 5 10 5

Table 1. Computational costs for a line segment convolved with constant distrib-
ution.

Tables 1 and 2 show the computational efficiency of our algorithm. Ta-
ble 1 gives the number of special function calls and floating-point opera-
tions required in calculating the field function for a line segment with con-
stant distribution; optimizations have been performed to reduce the number
of operations. Table 2 gives the incremental operations required for a line
segment with weight distributions ¢,¢2,¢>. From these tables, we can con-
clude that the incremental cost from constant distribution to linear distrib-
ution is nominal-only five additional multiplications/divisions and two ad-
ditions/subtractions are needed. Even for cubic polynomial distribution,
the additional computational cost is only one In operation, 24 multiplica-
tions/divisions, and 10 additions/subtractions, which is less than twice the
cost of constant distribution.

Weight distribution |Incremental special functions and floating-point operations
arctan | sqrt In * / + -
t 0 0 0 2 3 1 1
t? 0 0 0 4 2 2 1
t? 0 0 1 8 5 2 3

Table 2. Incremental computational costs for a line segment convolved with ¢, t2, 3
distribution.

5. Discussion

Skeleton-based convolution surface modeling can create and animate a wide
variety of complex objects, which may be difficult with parametric geometric
modeling methods. Since curve skeletons are good abstractions for a wide vari-
ety of natural forms and they can be approximated by polylines, our method is
rather general in its applicability. Combined with other skeletal elements, our
method facilitates the modeling of trees, sea-forms, and other organic shapes.
By defining the tapering factors in grammar rules, our method also can be
incorporated easily into string rewriting systems (L-systems) to describe the
geometric shapes of plant trunks [Prusinkiewicz, Lindenmayer 90].
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Since convolution surfaces are iso-surfaces that are determined by skele-
tons, profile curves, and threshold field values, our method has the following
limitations: (1) Unlike traditional sweeping operations, the profile curve only
approximates that of the generated generalized cylinder, because the profile
curve in general does not lie on the iso-surface. Thus precise specification of
the radius of the generalized cylinder is difficult; (2) If the threshold exceeds
the field of some part of a skeleton, no convolution surface is produced at that
part; this requires special attention and is inconvenient in some applications.
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