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Bézier surfaces of minimal area: The Dirichlet approach✩
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Abstract

The Plateau–Bézier problem consists in finding the Bézier surface with minimal area from among all
surfaces with prescribed border. An approximation to the solution of the Plateau–Bézier problem is obta
replacing the area functional with the Dirichlet functional. Some comparisons between Dirichlet extrem
Bézier surfaces obtained by the use of masks related with minimal surfaces are studied.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of finding a surface that minimizes the area with prescribed border is called thePlateau
problem, after the Belgian researcher Plateau (the reader can see do Carmo (1976) for an info
description of the problem). Such surfaces are characterized by the fact that the mean curvature v

Statement of the Plateau problem. To find the surface of minimal area from among all surfaces w
prescribed border.

In this paper we study a restricted Plateau problem: the space of possible surfaces is limite
space of Bézier surfaces. Note that, therefore, the boundary curves must be Bézier curves.

Statement of the Plateau–Bézier problem. To find the surface of minimal area from among all Béz
surfaces with prescribed border.

✩ This work has been partially supported by a Spanish MCyT grant BFM2002-00770.
E-mail address:monterde@uv.es (J. Monterde).
0167-8396/$ – see front matter 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2003.07.009
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In a previous paper (Cosín and Monterde, 2002) the authors conducted a study of which s
with vanishing mean curvature (H ) are polynomial surfaces of degree 2 and 3, i.e., they admit a B
form. One of the consequences of the study was to realize that such surfaces are too rigid if w
for example, to solve blending problems. The conditionH ≡ 0 imposes too many restrictions on
polynomial surface so that, given a prescribed border, we cannot expect to be able to find a m
polynomial surface with that border. In fact, it can be proved that a non trivial bicubical Bézier surf
minimal if and only if it is a part of a classic example in the theory of minimal surfaces: Enneper’s su

In general, solutions of the Plateau–Bézier problem do not need to be solutions of the Plat
unrestricted) problem: there could exist non-polynomial surfaces with the same border but with
area. In other words, a solution of the Plateau problem does not need to be a polynomial surface
the prescribed border is polynomial.

If tangent planes at the border are also prescribed, then the statement can be rewritten as:

Statement of the C1-Plateau–Bézier problem. To find the surface of minimal area from among
Bézier surfaces with prescribed border and with prescribed tangent planes at the border.

When trying to solve both problems one has to minimize the area functional (see below), b
functional is highly nonlinear. This is one of the reasons that left the Plateau problem unsolved fo
than a century. It was in 1931 when Douglas obtained the solution thanks to a brilliant obse
(see Nitsche (1989) for a full explanation). Douglas changed the area functional to another fun
the Dirichlet one (see (1) below), which was easier to manage and has one important proper
functionals have the same extremals in the unrestricted case.

In the Bézier case this main property is no longer true in general, but what we obtain instead is
Dirichlet extremals are an approximation to the extremals of the area functional, i.e., the resulting
surface does not minimize area, but its area is close to the minimum.

There are other methods to find approximations to the solutions of the Plateau–Bézier proble
example, in Farin and Hansford (1999) one such method is proposed. A generation scheme for th
net of a Bézier surface using a mask derived from the discretization of the Laplacian operat
Dirichlet approach provides us with an alternative method with a similar degree of complexity. In
methods, all we have to do is to solve a system of linear equations.

Finally, it should be pointed out that in Monterde (2003) we have shown the uniqueness of the D
extremal and a convergence result: by increasing the degree, the Dirichlet extremals converge to
minimal surface. Furthermore, in Arnal et al. (2003) we have studied the Plateau–Bézier prob
triangular patches.

Most of the plots have been colored according to the absolute value of the mean curvature
surface.

2. The Dirichlet functional

Let P = {Pij }n,mi,j=0 be the control net of a Bézier surface and let

−→x (u, v)=
n∑
i=0

m∑
j=0

Bn
i (u)B

m
j (v)Pij ,
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be its associated patch. The area of the Bézier surface is

A(P)=
∫
R

‖−→x u ∧ −→x v‖dudv =
∫
R

(
EG−F 2

)1/2
dudv,

whereR = [0,1] × [0,1] andE,F,G are the coefficients of the first fundamental form of−→x .
Since the border of a Bézier surface is determined by the boundary control points, the state

the Plateau–Bézier problem is equivalent to the following: Given the boundary control points,{Pij } with
i = 0, n or j = 0, n, of a Bézier surface, find the inner ones in such a way that the area of the res
Bézier surface is a minimum from among all the areas of all Bézier surfaces with the same bo
control points.

As we have said in the introduction, we do not try to minimize the area functional due to its
nonlinearity. We shall work instead with the Dirichlet functional

D(P)= 1

2

∫
R

(‖−→x u‖2 + ‖−→x v‖2
)
dudv = 1

2

∫
R

(
E(u, v)+G(u, v)

)
dudv. (1)

Such a functional was used by Douglas in order to give his famous solution to the Plateau pr
The reason is given by the following fact that relates the area and the Dirichlet functionals:(

EG− F 2
)1/2 � (EG)1/2 � E +G

2
. (2)

Therefore, for any control net,P , A(P)�D(P). Moreover, equality in (2) can occur only ifE =G and
F = 0, i.e., for isothermal patches.

One difference between the two functionals is that the Dirichlet one depends on the patch. On t
hand, the area functional is independent of the patch.

Nevertheless, both functionals have a minimum in the Bézier case. First, note that they
considered simply as functions defined onR

3(n−1)(m−1). Indeed, both functions depend on the(n− 1)×
(m− 1) inner control points and each inner control point has three real coordinates.

Both functions are bounded from below because they are defined as integrals of positive fun
Moreover, when looking for a minimum, we can restrict both functions to a compact subset. The
a classical result from calculus says that a minimum exists and it is attained.

3. Extremals of the Dirichlet functional

The next result translates the condition “a control netP is an extremal of the Dirichlet problem” into
system of linear equations in terms of the control points. Let us say that we are not computing the
Lagrange equations of the Dirichlet functional. We will simply compute the points where the grad
a real function defined onR3(n−1)(m−1) vanishes.

Proposition 3.1. A control net,P = {Pij }n,mi,j=0, is an extremal of the Dirichlet functional with prescribe
border if and only if

0= n2

2(2n− 2)m

(
n− 1
i

)(
m

j

) n−1,m∑
k,�=0

Ak
ni

(
m

�

)
( 2m
j+�
)∆10Pk�
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( )( ) n,m−1 (
n
)

ontrol
+ m2

2(2m− 2)n
n

i

m− 1
j

∑
k,�=0

k( 2n
i+k
)A�

mj∆
01Pk�, (3)

for any i ∈ {1, . . . , n− 1} andj ∈ {1, . . . ,m− 1} whereAk
ni is defined by

ni − nk − i

(n− i)(2n− 1− i − k)

(
n−1
k

)
( 2n−2
i+k−1

) .
Proof. Let us compute the gradient of the Dirichlet functional with respect to the coordinates of a c
pointPij = (x1

ij , x
2
ij , x

3
ij ). For anya ∈ {1,2,3}, i ∈ {1, . . . , n− 1} and anyj ∈ {1, . . . ,m− 1}

∂D(P)
∂xaij

=
∫
R

(〈
∂−→x u

∂xaij
,

−→x u

〉
+
〈
∂−→x v

∂xaij
,

−→x v

〉)
dudv.

Let us compute now the partial derivatives

∂−→x u

∂xaij
= ∂

∂xaij

∂

∂u

−→x = ∂

∂u

∂

∂xaij

−→x = ∂

∂u
Bn
i (u)B

m
j (v)e

a = n
(
Bn−1
i−1 (u)−Bn−1

i (u)
)
Bm
j (v)e

a,

whereea, a ∈ {1,2,3}, denotes theath vector of the canonical basis, i.e.,e1 = (1,0,0), e2 = (0,1,0),
e3 = (0,0,1). Analogously

∂
−→x v

∂xaij
=mBn

i (u)
(
Bm−1
j−1 (v)−Bm−1

j (v)
)
ea.

Therefore
∂D(P)
∂xaij

=
∫
R

(
n
(
Bn−1
i−1 (u)−Bn−1

i (u)
)
Bm
j (v)〈ea,−→x u〉

+mBn
i (u)

(
Bm−1
j−1 (v)−Bm−1

j (v)
)〈ea,−→x v〉

)
dudv

=
∫
R

(
n
(
Bn−1
i−1 (u)−Bn−1

i (u)
)
Bm
j (v)

〈
ea, n

n−1,m∑
k,�=0

Bn−1
k (u)Bm

� (v)∆
10Pk�

〉

+mBn
i (u)

(
Bm−1
j−1 (v)−Bm−1

j (v)
)〈
ea,m

n,m−1∑
k,�=0

Bn
k (u)B

m−1
� (v)∆01Pk�

〉)
dudv.

Applying now that for anyn ∈ N and for anyi ∈ {0, . . . , n}, ∫ 1
0 B

n
i (t) dt = 1/(n+ 1), we get

∂D(P)
∂xaij

= n2

2(2n− 2)m

n−1,m∑
k,�=0

((
n−1
i−1

)(
n−1
k

)
( 2n−2
i+k−1

) −
(
n−1
i

)(
n−1
k

)
(2n−2
i+k

)
)(

m

�

)(
m

j

)
( 2m
j+�
) 〈ea,∆10Pk�

〉

+ m2

2(2m− 2)n

n,m−1∑
k,�=0

(
n

k

)(
n

i

)
( 2n
i+k
)
((

m−1
j−1

)(
m−1
�

)
( 2m−2
j+�−1

) −
(
m−1
j

)(
m−1
�

)
(2m−2
j+�

)
)〈
ea,∆01Pk�

〉

= n2

2(2n− 2)m

(
n− 1
i

)(
m

j

) n−1,m∑
k,�=0

Ak
ni

(
m

�

)
( 2m
j+�
) 〈ea,∆10Pk�

〉
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( )( ) n,m−1 (
n
)

h
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ibed

ibed
+ m2

2(2m− 2)n
n

i

m− 1
j

∑
k,�=0

k( 2n
i+k
)A�

mj

〈
ea,∆01Pk�

〉
. ✷

In the case of a square control net, Eqs. (3) are simpler.

Corollary 3.2. A square control net,P = {Pij }n,ni,j=0, is an extremal of the Dirichlet functional wit
prescribed border if and only if

0=
n−1,n∑
k,�=0

(
n

�

)
( 2n
j+�
)Ck

ni∆
10Pk� +

n,n−1∑
k,�=0

(
n

k

)
( 2n
i+k
)C�

mj∆
01Pk�, (4)

for any i, j ∈ {1, . . . , n− 1}, whereCk
ni = (n−1)i−nk

i+k
(n−1

k )
(2n−2
i+k )

.

Let us recall that, as we have said in the introduction, a minimum of the Dirichlet functional
prescribed border always exists. So, fixing the boundary control points and taking the inner contro
as unknowns, the linear system (3) and, in particular, the linear system (4), are always compat
can be solved in terms of the boundary control points. See Monterde (2003) for a proof of the uniq
of the solution.

3.1. Examples

If n=m= 2, then there is just one equation corresponding to the inner control pointP11.

Proposition 3.3. A biquadratic Bézier surface is an extremal of the Dirichlet functional with prescr
border if and only if

P11 = 1

8
(3P00 − P01 + 3P02 − P10 − P12 + 3P20 − P21 + 3P22). (5)

If n=m= 3, there are four equations corresponding to the inner control pointsP11,P12,P21,P22.

Proposition 3.4. A bicubic Bézier surface is an extremal of the Dirichlet functional with prescr
border if and only if

P11 = 1

78
(48P00 − 22P01 + 24P02 − 22P10 + 15P13 + 24P20 − 4P23 + 15P31 − 4P32 + 4P33),

P12 = 1

78
(24P01 − 22P02 + 48P03 + 15P10 − 22P13 − 4P20 + 24P23 + 4P30 − 4P31 + 15P32),

P21 = 1

78
(15P01 − 4P02 + 4P03 + 24P10 − 4P13 − 22P20 − 15P23 + 48P30 − 22P31 + 24P32),

P22 = 1

78
(4P00 − 4P01 + 15P02 − 4P10 + 24P13 + 15P20 − 22P23 + 24P31 − 22P32 + 48P33).
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3.2. Relation with harmonic patches

The Dirichlet functional can be defined as we did before (1), for just Bézier (or polynomial) pa
−→xP : [0,1] × [0,1] → R

3, −→xP being a Bézier patch associated to a control netP .
Or it can also be defined for arbitrary patches−→x : [0,1] × [0,1] → R

3, −→x being a differentiable patch

D(
−→x )= 1

2

∫
R

(‖−→x u‖2 + ‖−→x v‖2
)
dudv.

Let us call this case the ‘unrestricted case’ in contrast to the Bézier or restricted case.
In the unrestricted case, the extremals of the Dirichlet functional are given by differentiable p

verifying its Euler–Lagrange equation,∆−→x = 0, i.e. by harmonic patches. But even when the bound
conditions are polynomial curves, the Dirichlet extremal for the unrestricted case does not nee
polynomial in general and so, it cannot be an extremal in the restricted case. Let us denote the e
of the Dirichlet functional in the unrestricted case by−→x ext, the control net extremal of the Dirichle
functional in the restricted case byPext, and its associated Bézier patch by−→xPext

. What we have is the
following inequality

D(
−→x ext)�D(

−→xPext
)=D(Pext).

In generalD(−→x ext) < D(−→xPext
). Nevertheless, if a polynomial patch is harmonic, then it is an extre

of the Dirichlet functional both in the unrestricted and the restricted case.

Theorem 3.5. LetP = {Pij }n,mi,j=0 be the control net of a Bézier surface. If the associated Bézier pat−→x
is harmonic, then it is an extremal of the Dirichlet functional from among all the Bézier patches w
same boundary.

Yet, not all extremal patches of the Dirichlet functional in the restricted case are harmonic p
In Cosín and Monterde (2002) we gave the conditions that a control net must satisfy for the ass
Bézier surface to be harmonic. Such conditions involve not only the inner control points but also
boundary control points. For example, in a bicubic harmonic patch only two border lines of c
points, eight points in all, are free. Given the first and last rows of control points, the other two ro
totally determined. In particular, there are four boundary control points that are linearly dependen

P10 = 1
3(4P00 − 4P01 + 2P02 + 2P30 − 2P31 + P32),

P20 = 1
3(2P00 − 2P01 +P02 + 4P30 − 4P31 + 2P32),

P13 = 1
3(2P01 − 4P02 + 4P03 + P31 − 2P32 + 2P33),

P23 = 1
3(P01 − 2P02 + 2P03 + 2P31 − 4P32 + 4P33).

P00 P01 P02 P03
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
P30 P31 P32 P33

P00 P01 P02 P03
P10 ∗ ∗ P13
P20 ∗ ∗ P23
P30 P31 P32 P33

Fig. 1. Configuration of the boundary conditions forn=m= 3 of the control net of a Bézier surface. Left: The harmonic ca
Right: The Plateau–Bézier case.
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Fig. 2. Left: Harmonic Bézier surface. Small black dots are the fixed control points. Bigger dots are the computed one
Extremal of the Dirichlet functional, but not harmonic. Small black dots are fixed by the prescribed border. There are o
computed inner control points, hidden by the surface. Gray levels on the surface correspond to the absolute values o
curvature. White levels correspond to values close to zero.

other eight (see Fig. 1). (The general result for any degree can be seen in Monterde (2003).) The
relations for those boundary control points are given in Fig 1.

Only those configurations of the boundary control points that verify such relations can pr
extremals of the Dirichlet functional of the restricted case which are harmonic, i.e., extremals
Dirichlet functional in the unrestricted case. (See Fig. 2, left.)

4. Permanence patches related to the Plateau–Bézier problem

As is well known, if the boundary curves of a Bézier surface are prescribed, then the boundary
points are fixed. Therefore, the problem of constructing a Bézier surface with prescribed border c
in computing the inner control points. A simple way of constructing Bézier surfaces with pres
boundary consists in generating the inner control points by using a mask.

Let us recall that a mask is a linear relation between one inner control point and its eight neigh
control points. What one has to do is to just solve a system of linear equations whose matrix of coe
is a sparse matrix, i.e., a matrix with just a few non-vanishing entries. For ann×m Bézier surface, ther
are(n− 1)× (m− 1) linear equations and the same number of inner control points.

In Farin and Hansford (1999), the authors define the notion of permanence patches as bein
generated by masks with the following form

α β α

β • β

α β α

(6)

with 4α + 4β = 1 (i.e.,β = 1/4− α). Let us denote this mask byMα.
They are called permanence patches because the caseα = −0.25 gives the control net generatio

scheme used to generate Coons patches and these Coons patches satisfy the permanence pri
Farin and Hansford (1999)): let two points(u0, v0) and(u1, v1) define a rectangleR in the domainU of
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the Coons patch. The four boundaries of this subpatch will map to four curves on the Coons patch
Coons patch for those four boundary curves is the original Coons patch, restricted to the rectangR.

Moreover, as it is also explicitly said in the same reference, all schemes whose construction sa
variational principle share this permanence property.

One of the cases studied therein is the maskα = 0 corresponding to a discretization of the Laplac
operator. As surfaces of minimal area are related to harmonic patches (you can see any book on
differential geometry, for example do Carmo (1976), Gray (1998), or Osserman (1986)) then the so
of the linear systems generated by the maskα = 0 are an approximation to Bézier surfaces of minim
area.

Nevertheless, we can generate other masks by applying different guiding principles also relat
surfaces of minimal area and, obviously, related with a variational principle. Note that surfaces of m
area also verify a permanence principle: if we consider the boundary,B, of a subset of a given minima
surface, then the surface of minimal area from among all surfaces with the same boundaryB is the
original minimal surface.

4.1. The discrete Laplacian mask

It can be found in Farin and Hansford (1999) that the maskM0 is the discrete form of the Laplacia
operator. Such a mask is used in the cited reference to obtain control nets resembling minimal
that fit between given boundary polygons.

The deduction of such a mask is a very well-known process coming from numerical integration
finite difference method of partial differential equations. Transferring the second order central diff
approximation of a differentiable function to the control net of a Bézier surface, we obtain the follo
formula

Pij = 1

4
(Pi+1,j + Pi−1,j + Pi,j+1 + Pi,j−1),

and this formula corresponds to the maskα = 0.
Note thatM0(Pij ) is the center of gravity of the four neighboring points ofPij , which are not at the

corners.
Should also be noted that what we really obtain is an approximation of aharmoniccontrol net, but not

in principle, an approximation of a harmonic Bézier patch. This will be evident later when comp
different masks on a biquadratic Bézier surface. Nevertheless, for higher degree Bézier surfaces a
the boundary control points are close to the boundary curves, the control net is indeed an approx
to the Bézier surface.

4.2. The harmonic mask

Instead of discretizing the Laplacian operator, let us demand that, at least at one point, the La
of the patch vanishes. So, we are not doing an approximation to aharmoniccontrol net. What we ar
trying to do is to transfer the harmonic condition of the patch into a condition on the control net.

Proposition 4.1. The Bézier patch,−→x , associated to a biquadratic control net,P = {Pij }2,2
i,j=0, verifies

∆
−→x (1

2,
1
2)= 0 if and only if

P11 =M1/4(P11). (7)
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Proof. If −→x (u, v)= 2
i=0

2
j=0B

2
i (u)B

2
j (v)Pij then

∆
−→x (u, v)= 2

2∑
j=0

B0
0(u)B

2
j (v)∆

20P0j + 2
2∑
i=0

B2
i (u)B

0
0(v)∆

02Pi0

= 2
2∑

j=0

B2
j (v)∆

20P0j + 2
2∑
i=0

B2
i (u)∆

02Pi0.

Therefore, a single computation shows that

∆−→x
(

1

2
,

1

2

)
= P20 + P00 − 4P11 +P22 +P02. ✷

This mask was also obtained in Cosín and Monterde (2002) as one of the conditions that a biq
patch must satisfy in order to be globally harmonic.

Finally, note that, conversely to what happens for the maskM0, nowM1/4(Pij ) is the center of gravity
of the four neighboring points at the corners.

4.3. The Dirichlet mask

The third mask is given by the Dirichlet equations forn=m= 2. Rewriting Proposition 3.3 in term
of masks, we now have that

Proposition 4.2. A biquadratic control net,P = {Pij }2,2
i,j=0, is an extremal of the Dirichlet functional wit

prescribed border if and only if

P11 =M3/8(P11). (8)

The Dirichlet mask corresponds to the valueα = 3/8. We can writeM3/8 as 3/2M1/4 − 1/2M0.
Therefore,M3/8(Pij ) is a linear combination between the centers of gravity of the four neighbo
corner points and the other four neighboring points that are not at the corners.

5. Comparison between the three masks

The obvious question then, is to determine which one is the best, or even more generally, wheth
is or not a better mask. The answer is negative. The highly nonlinearity of the area functional ma
dependence of the minimal surface from the boundary conditions highly nonlinear too. So, one
expect a mask, i.e., a linear expression, to be able to give a good approximation in all cases. Th
for the minimal case, but for any case the situation is rather similar. As has already been said in F
Hansford (1999) “. . . a single choice ofα will not produce good shape. The appropriate value dep
on the geometry of the boundary curves.”

We will show some examples with simple boundary curves and where the Dirichlet mask is bett
the other two: it provides Bézier surfaces with smaller area than in the case of the other two mas
it is also easy to provide examples showing the opposite behaviour.
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5.1. Casen=m= 2

Let us start the comparison by studying some examples in the biquadratic case.
For an arbitrary mask, the only inner point is given by

Pα
11 = α(P00 +P02 +P20 +P22)+

(
1

4
− α

)
(P01 + P10 +P12 +P21).

Given fixed boundary control points, let−→x α (respectively,Pα) be the associated Bézier surfa
(respectively, control net). In this simple case, we can explicitly compute the areas,A(Pα), of −→x α for
any real numberα. The valueαmin, for which the functionA(Pα) has a minimum, provides the solutio
to the Plateau–Bézier problem.

Fig. 3 shows an example of boundary conditions and the three Bézier surfaces obtained by the
masks. In this example the approximation given by the Dirichlet mask is better that the other two
The resulting areas are 72.8080(α = 0), 67.7838(α = 0.25) and 67.1954(α = 0.375). Moreover, the
Dirichlet extremal is very near to the true minimal surfaceα ∼ 0.3675 and a minimal area 67.1929, i.e.,
a difference between areas of 0.004%.

Similar studies can be made for different configurations of the boundary conditions. If the bou
conditions are not too strange, then the behaviour of the area function is similar and the Dirichle
is the best one. Nevertheless, there is one interesting case. Let us recall that the maskM0 computes the
center of gravity of four of the neighboring points, whereasM1/4 computes the center of gravity of th
other four.

For an arbitrary maskMα , let us expressP11 as follows:

Pα
11 =Mα(P11)= α

(
(P00 +P02 +P20 + P22)− (P01 + P10 +P12 +P21)

)
+ 1

4
(P01 +P10 +P12 +P21)

Fig. 3. Then = m = 2 Bézier surfaces associated to the same boundary conditions but with different masks. L
discretization of the Laplacian operator (α = 0). Center, the harmonic mask (α = 0.25). Right, the Dirichlet mask (α = 0.375).
Control points are located on circles of radius 4. Gray levels on the surfaces correspond to the absolute values of
curvature. White levels are related to values close to zero. Note how, for the best result, the white zones are located in
ring. It must be remembered that we cannot expect to obtain a totally white surface because there is not a minimaH ≡ 0)
Bézier surface for this boundary configuration. It can be shown that minimal polynomial surfaces of degree 2 are p
planes. As the border configuration of this example is not planar, then there is a minimal Bézier surface. In fact, th
minimal surface with the same border, but it is not a polynomial one.
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( )
enters

t mask

t line are
= α M1/4(P11)−M0(P11) + 1

4
M0(P11).

So, if the configuration of the boundary points of a biquadratic control net is such that both c
of gravity are located at the same point, then the central pointP11 does not depend onα. Therefore, for
such a configuration of the boundary, any mask will define the same Bézier surface.

5.2. Casen=m= 4

The boundary conditions we shall study and their associated Bézier surfaces for the Dirichle
are shown in the figures below (Fig. 4).

The areas of the Bézier surfaces in Fig. 4 are shown in Table 1.

Fig. 4. Some different boundary conditions and the associated Bézier surfaces. Control points not lying on a straigh
located on circles with radius 4. The drawn surfaces have been obtained with the Dirichlet mask.

Table 1
Comparison between the areas of the surfaces shown in Fig. 4 obtained by different methods

Mask Top left Top right Bottom left Bottom right

α = 0 101.356(99.91%) 109.316(101.13%) 77.3515(100,91%) 71.3129(102.56%)

α = 1
4 101.432(99.98%) 108.849(100.70%) 76.9206(100.35%) 69.6413(100.16%)

α = 3
8 101.457(100.01%) 108.762(100.62%) 76.8465(100.25%) 69.4261(99.85%)

Dirichlet extremal 101.449(100.00%) 108.094(100.00%) 76.6552(100.00%) 69.5302(100.00%)
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In the last three examples the best mask is always the Dirichlet mask, whereas, in the first case
one isM0. This is another example of how the solutions depend heavily on the boundary conditio
the table we have added a last row with the results for the Dirichlet extremal. The numbers in pare
refer to the percent by which the area differs from the area of the Dirichlet extremal.

For these configurations at least, the Dirichlet extremal always improves the results obtained
Dirichlet mask. Only in the top left case are the results of the other two masks better than the D
extremal. A possible explanation of this fact will be dealt with in the next section, but before tha
interesting to note (and we thank the referee for pointing out this fact) that the area of the trans
surface (see Farin (2001)) that has the same boundary as in the top left case is 101.349, i.e., smaller than
the other four approximations.

In the bottom cases, which are the other two where a translational surface with the same boun
be defined, the shape of the translational surfaces shows that they are very far from being of m
area.

5.3. Higher degree examples

Let us see what happens in the following two examples (Fig. 5) withn= m = 8. In the first case we
have tried the same boundary conditions as in Farin and Hansford (1999) (Fig. 3 therein). In the
case, we have changed the boundary curves a little.

Fig. 5. Boundary control points and Bézier surfaces generated by the maskα = 0.375. Case I, left, the same boundary conditio
as in Farin and Hansford (1999). Case II, right, two of the boundary curves have been changed. Again, the gray levels c
to the values of the mean curvature on a scale common to both surfaces.

Table 2
Comparison between the areas of the surfaces shown in Fig. 5

Mask Area case I Area case II

α = 0 120.262(100.59%) 70.0807(98.33%)
α = 0.25 120.134(100.49%) 70.0667(98.31%)
α = 0.375 120.103(100.46%) 70.0878(98.34%)

Dirichlet extremal 119.551(100.00%) 71.2706(100.00%)
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Finally, let us now compare the area of the Bézier surfaces in Fig. 5 associated to the three
nets.

Again, the numbers in parentheses refer to the percent by which the area differs from the are
Dirichlet extremal. The best mask in the first case is again the Dirichlet one. But in the second c
Dirichlet mask is the worst.

A possible explanation of why the Dirichlet extremals (and the Dirichlet mask) fail in some cases
be the following: It should be remembered that the coefficients of the first fundamental form at the
of a Bézier surface only depend on the boundary control points. In both cases we haveE =G= 155.895.
But the first configuration can be considered as more isothermal than the other because, in the
F = −29.8292 whereas in the second case,F = 149.96. The angle at the corners in the first case (≈ 106◦)
is nearly a right angle, whereas in the second case the angle (≈ 15◦) is far from being a right angle.

Also note that gray levels close to black in both surfaces of Fig. 5 indicate points with mean cur
comparatively higher than zero, and that these points are located at the corners. The darkest zon
figure on the right are wider than in the one on the left.

Note that in this second case, the inequalities of (2) are far from being equalities near the co
the Bézier surfaces. Any Bézier patch with such boundary conditions will always fail to be isother
the corners. So, any approximation based on the substitution of the area functional by the Dirich
will have an intrinsic error due to the method.

5.4. Rectangular case

Let us have a look at the behavior of the masks and the Dirichlet extremals for rectangular
surfaces.

The areas of the Bézier surfaces in Fig. 6 are shown in Table 3.

Fig. 6. Rectangular boundary control points and Bézier surfaces generated by the maskα = 0.375. Case I, left, the sam
boundary conditions as in Farin and Hansford (1999). Case II, right, two of the boundary curves have been changed.

Table 3
Comparison between the areas of the surfaces shown in Fig. 6

Mask Area case I Area case II

α = 0 435.237(98.66%) 265.211(98.42%)
α = 0.25 434.318(98.45%) 264.398(98.12%)
α = 0.375 434.132(98.41%) 264.303(98.08%)

Dirichlet extremal 441.162(100.00%) 269.470(100.00%)
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Now, at the corners, for case I,

E = 244.896, G= 149.961, F = −57.388,

and for case II,

E = 244.896, G= 149.961, F = 138.546.

Also note, that in this rectangular case, the Dirichlet extremal is a worse approximation than th
obtained with any of the three masks. In fact, things run better now for the Dirichlet mask.

6. Comparison between masks and Dirichlet extremals

With the same boundary conditions as in Farin and Hansford (1999) (Fig. 3 therein), the con
defined by the Dirichlet masks is very similar to that of the cited reference (see Fig. 7 below).

If we now apply our results for the same boundary curves withn=m= 8 what we obtain is a contro
net extremal of the Dirichlet functional, i.e., its associated Bézier surface (Fig. 7) minimizes the s
‖−→x u‖2 + ‖−→x v‖2. Note that the number of linear equations are the same as in the previous case.

The control net generating such a surface is not so pleasant as the control net shown in F
Hansford (1999) or in Fig. 7. Its complexity prevents us from drawing it completely. In Fig. 7 jus
lines of control points are pictured.

The difference between the Dirichlet extremal control net (Fig. 8) and the control net in Fig
Farin and Hansford (1999) can be explained as follows: In both cases the key point is to use a va
principle. In our approach we are looking for Bézier surfaces minimizing some functional, so the
object is the surface, not its control net. In the approach used in Farin and Hansford (1999), the
are looking for control nets that verify some discrete version of a condition coming from a varia
principle. So, in that approach, the main object is not the Bézier surface, but its control net.

The Dirichlet extremals shown in Fig. 5 are examples of Bézier surfaces with disorderly asso
control net (see Fig. 8) but, in one of the cases, with less area than other approaches that focu
control net.

Fig. 7. Control net of the permanence patch defined by the maskα = 3/8.



J. Monterde / Computer Aided Geometric Design 21 (2004) 117–136 131

to the
corners

to the
points,
points,
s why

uments
tion to
s new
ients of
imation.

the
Fig. 8. Some of the inner control points of the Bézier surface shown in Fig. 5, left.

7. Improvement of the approximation

As we have seen in the previous examples, the Dirichlet extremal is a good approximation
solution of the Plateau–Bézier problem only when the first fundamental form of the surface at the
is close to isothermality. The non-isothermality at corner points produces an error that is intrinsic
method when substituting the area functional by the Dirichlet one. At points other than the corner
the configuration of the Dirichlet extremal tends to the isothermality of the patch. But at the corner
the first fundamental form is fixed from the border control points and it cannot be modified. This i
the Dirichlet extremal does not improve the results obtained using a mask in some cases.

Throughout this section we will propose a new method also based on differential geometric arg
but which increases the computational cost. Using the Dirichlet extremal as a first approxima
the solution of the Plateau–Bézier problem, we will find a new and better approximation. Thi
approximation is computed thanks to a system of linear equations, as before, but now the coeffic
the system are the result of a set of integrals of some functions that depend on the previous approx

The new method is based on the following result:

Proposition 7.1. A patch−→x is minimal iff∆g−→x = 0 whereg represents the first fundamental form of−→x
and∆g is the associated Laplacian operator: for a functionf :

∆gf =
(
fuG− fvF√
EG− F 2

)
u

+
(−fuF + fvE√

EG− F 2

)
v

.

Note that when the patch is isothermal, then∆g is nothing but the usual Laplacian operator.
It is easy to check that, for a given metric,g, with coefficientsE,F andG, the equation∆g−→x = 0 is

the Euler–Lagrange equation of the functional

Dg(
−→x )=

∫
R

(‖−→x u‖2G− 2〈−→x u,
−→x v〉F + ‖−→x v‖2E√

EG−F 2

)
dudv =

∫
R

g−1(d
−→x , d−→x )µg,

whereµg = √
EG−F 2 dudv is the metric volume element.

If P is a control net, thenDg(P) := Dg(
−→xP ) where−→xP denotes the Bézier patch associated to

control net.
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Note that for a giveng, the extremal of the functionalDg is a control net that can be computed than
to a linear system. Therefore, the correction of the Dirichlet method is the following: let−→x 0 be the patch
associated to the Dirichlet extremal and letg0 be its first fundamental form. The new approximation
the extremal of the functionalDg0, that is, using the Dirichlet extremal as the fixed metric. Note tha
functional−→x → Dg0(

−→x ) is quadratic in−→x . Therefore the extremal equations are linear.
In order to state the next result, we need to define some functions. For alli, k ∈ {1,2, . . . , n− 1} and

j, � ∈ {1,2, . . . ,m− 1}
Aijk�(u, v)= n2

(
Bn−1
i−1 (u)−Bn−1

i (u)
)
Bm
j (v)

(
Bm−1
k−1 (u)−Bm−1

k (u)
)
Bm
� (v),

Bijk�(u, v)= nm
(
Bn−1
i−1 (u)−Bn−1

i (u)
)
Bm
j (v)B

n
� (v)

(
Bm−1
�−1 (u)−Bm−1

� (u)
)
,

Cijk�(u, v)= nmBn
i (v)

(
Bm−1
j−1 (u)−Bm−1

j (u)
)(
Bn−1
k−1(u)−Bn−1

k (u)
)
Bm
� (v),

Dijk�(u, v)=m2Bn
i (v)

(
Bm−1
j−1 (u)−Bm−1

j (u)
)
Bn
� (v)

(
Bm−1
�−1 (u)−Bm−1

� (u)
)
.

(9)

Finally, let

M
k,�
ij =

∫
R

Ak�ijG0 − (Bk�ij +Ck�ij )F0 +Dk�ijE0√
EG− F 2

dudv.

Proposition 7.2. Let −→x 0 be a Bézier patch with prescribed border and letg0 denote its first fundamenta
form with coefficientsE0,F0 andG0. A control net,P = {Pij }n,mi,j=0, is an extremal of the functionalDg

with prescribed border if and only if

n−1,m−1∑
k,�=1

Mk�
ij Pk� = −

∑
Pk� boundary control point

Mk�
ij Pk�

for all i ∈ {1,2, . . . , n− 1} andj ∈ {1,2, . . . ,m− 1}.

The proof is similar to that of Proposition 3.1.
The formulas obtained in Proposition 7.2 give us a system of linear equations for the interior po

the quadrangular net given its border.
Now, if we have a look at Table 4, we can see that this method improves the results obtained u

the other methods and, moreover, we get this improvement for all the examples, even when we d
non-isothermal charts.

The main drawback of this method of improvement is the computation of the integralsMk�
ij .

Table 4
Improvement of the results of Table 1 by using the Dirichlet extremal as initial approximation

Top left Top right Bottom left Bottom right

Area of the new extremal 101.302 107.486 76.6509 69.1658
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Fig. 9. Two views of the same surface: the extremal of the Dirichlet functional with prescribed border and tangent plan
border.

8. The C1-Plateau–Bézier problem

It is well known that tangent planes at the border of a Bézier surface are determined by t
boundary lines of control points. The statement of theC1-Plateau–Bézier problem is now equivalent
the following one: “Given the two lines of boundary control points,{Pij } with i ∈ {0,1, n − 1, n} or
j ∈ {0,1,m− 1,m}, of a Bézier surface, find the inner ones in such a way that the area of the res
Bézier surface is a minimum from among all the areas of all Bézier surfaces with the same bo
control points.”

We can study the linear system consisting in the same equations (3) as in Proposition 3.1 but
i = 2, . . . , n− 2 andj = 2, . . . ,m− 2 with the inner control points{Pij }n−2,m−2

i,j=2 as unknowns.
In the casen = m = 5 there are four equations corresponding to the inner control p

P22,P23,P32,P33. The resulting system can be easily solved but we do not include it here due
complexity of the expressions involved in the solution. We present instead an example in Fig. 9.

9. C1-masks for Bézier surfaces of minimal area

As in theC0-case, the system of linear equations to be solved to find the Dirichlet extremal
matrix without null entries. It would be better to work with a sparse matrix like the ones that a
when working with masks. This can be achieved with the use ofC1-masks.

We can extend the defining principles of the masks set out above to theC1 case.

Proposition 9.1 (The harmonicC1-mask).The Bézier patch,−→x , associated to an=m = 4 control net,
P = {Pij }4,4

i,j=0, verifies∆−→x (1
2,

1
2)= 0 if and only ifP22 =M(P22), whereM is theC1-mask

1

12

1 2 2 2 1
2 0 −4 0 2
2 −4 • −4 2
2 0 −4 0 2
1 2 2 2 1

(10)
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Fig. 10.C1 boundary conditions for Fig. 11.

Fig. 11. Another example of a Dirichlet extremal for aC1-Plateau–Bézier problem. TheC1-boundary conditions are given i
Fig. 10. Note how the gray zones are now located along the whole boundary curves and not just at the corner points.

Proposition 9.2 (The DirichletC1-mask).The Bézier patch,−→x , associated to an= m = 4 control net,
P = {Pij }4,4

i,j=0, is an extremal of the Dirichlet functional if and only ifP22 = M(P22), whereM is the
C1-mask

1

48

20 15 14 15 20
15 −20 −32 −20 15
14 −32 • −32 14
15 −20 −32 −20 15
20 15 14 15 20

(11)

Fig. 11 is another example of a Dirichlet extremal for aC1-Plateau–Bézier problem. The area of
Bézier surface obtained with the harmonicC1-mask is 124.040; with the DirichletC1-mask the area i
123.502, whereas the area of the Dirichlet extremal is better: 121.371.

10. Conclusion

The high nonlinearity of the area functional made it extremely difficult to work with. Borrow
an argument from the theory of minimal surfaces, the area functional is substituted by the D
functional. Now, the extremals of such a functional can be easily computed as the solutions o
systems. They are not extremals of the area functional but they are a fine approximation in some

Some authors (Farin and Hansford, 1999) have proposed a way of obtaining approximat
minimal surfaces with prescribed boundary curves by using a mask. The computation of the D
extremals is an alternative way of finding such approximations but with an increase in the compu
cost because, although both methods are based on the resolution of a system of linear equatio
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same size, with the use of masks the matrix of coefficients is a sparse matrix, whereas in the D
case, the matrix of coefficients has no zeros.

We propose two new masks related to the Plateau–Bézier problem. One is related to the La
operator, and the second is associated to the Dirichlet approach. A comparison between the resu
three masks and the Dirichlet extremals for several different configurations of the boundary con
has been performed.

There is no best choice, but the examples and theoretical arguments point out that when
fundamental form of the Bézier surface at the corners (at these points the IFF depends on
boundary conditions) is close to being isothermal, then the Dirichlet extremal is a better approxi
than the ones obtained by the use of masks.

On the other hand, if the first fundamental form of the Bézier surface at the corners is far from
isothermal, then the results obtained by the use of a mask can be better than the result obtaine
Dirichlet extremal.

Some authors (Greiner, 1994; Moreton and Séquin, 2001) have proposed iterative methods a
reaching a minimum of some functionals related with area or with the mean curvature. The ex
of the Dirichlet functional are an alternative way of obtaining, without integration, an approximati
the surface minimizing area. In any case, if one wants to obtain better approximations, the extre
the Dirichlet functionals can be used as the starting point for recursive algorithms that optimize t
functional.

Without going into an iterative method, we propose an improvement of the Dirichlet method tha
better results than the previous one, but which now has a really high computational cost.

If one still wants to maintain the use of masks instead of Dirichlet extremals, then we prop
distinguished mask, the Dirichlet mask, corresponding toα = 3/8. Experimental results for rectangul
control nets show that even when the Dirichlet extremal does not work very well, the results obta
the use of the Dirichlet mask are better than those obtained by the other two distinguished mask
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