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Abstract

We consider the ICP (iterative closest point) algorithm, which may in general be used for moving ‘a
elements such as curves and surfaces towards geometric objects whose distance field is computable.
how it may be accelerated, and how it can be applied to the design of near-Euclidean near-contact spline
One particular application of this concept is the modeling of milling tool paths in five-axis milling. The m
involves computing the distance from and footpoints in both the Euclidean motion group and the config
space of surface-surface contact.
 2003 Elsevier B.V. All rights reserved.

1. Introduction

Motion design is a topic which constantly attracts interest in the CAGD community. Instead of de
references to the literature, we refer the interested reader to the survey article (Röschel, 1998). T
source of problems which occur in motion design is that the geometry of the set of Euclidean mo
not as simple as that of points, say, of Euclidean space. For purposes of computation, coordina
to be introduced in that set, and experience has shown that each of the methods which have b
so far has its own deficiencies, and that the decision for a certain system of coordinates depend
application one has in mind. Two particular examples are given by Hofer et al. (2002a, 2002b).

Here we embed the set of Euclidean motions in the set of affine transformations, where coor
are found in a straight forward way. The set of affine transformations is an affine space. What ma
situation complicated is they way the Euclidean motions are embedded in that space: They oc
surface whose dimension is one half of the dimension of the ambient space. Nevertheless, the
from this surface may be computed. This fact makes it possible to apply the concept ofactivecurves
and surfaces to motion design: We produce piecewise polynomial near-Euclidean and near-glidi
parameter andk-parameter motions.

E-mail address:wallner@geometrie.tuwien.ac.at (J. Wallner).
0167-8396/$ – see front matter 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2003.06.008
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How to use near-Euclidean motions which are not Euclidean in practice is another question.
we cannot expect that a rigid body undergoes an affine transformation which is not Euclidean. B
problem is easily solved: The transfer from a numerical representation to the ‘real’ motion, ha
modified accordingly, e.g., by using the footpoint map described by Theorem 2.

2. Active elements in a distance field

2.1. Active curves and surfaces

In this paper motion design is based on the principle of ‘active’ curves and surfaces and how t
them closer to a target. More specifically, it is based on a variant of the so-callediterative closest poin
(i.e., ICP) algorithm. The word ‘active’ has been given to geometric entities whose shapes change
an iterative process, and especially it applies to shapes determined by control points evolving with
algorithm. The general concept of ‘ICP’, as described in (Kass et al., 1988; Pottmann and Leopo
2002; Pottmann et al., 2002), is the following: Assume thatr feature pointsx1, . . . , xr in the Euclidean
spaceRd are determined by control pointsb1, . . . , bk , and that this dependence isaffinein each argument
A prominent example is a spline curve

b(t)=
k∑
i=1

Ni(t)bi (1)

defined by the B-spline basis functionsNi(t) and the control points

b1, . . . , bk. (2)

We chooseu1, . . . , ur ∈ R and let

xi(b1, . . . , bk) := b(ui). (3)

Further, we assume that a subsetT ⊆ R
d (the target) allows computation of the distance fromT and the

footpointFT (x) ∈ T of a pointx ∈ R
d .

FT :Rd → T , dist(x, T )= ∥∥x −FT (x)
∥∥. (4)

Then the ICP algorithm is given by the recursion Algorithm 1. The purpose of the algorithm is to
the curve near the target.

Numerical evidence has shown that the ICP algorithm can be accelerated by replaci
distance to the footpoints by better approximants of the target’s distance function. Pottma
Leopoldseder (2002) proposed to use certain nonnegative quadratic approximantsd̃ist

2
p of the function

dist(·, T )2, which are derived from the second order Taylor polynomial of that function, and whic
the topic of Section 2.3. This leads to Algorithm 2. The approximantsd̃ist

2
p have the property that

d̃istp(x)
2 = dist(x, T )2 if x ∈ [

p,FT (p)
]
, (5)

i.e., they agree with dist(· , T )2 along the entire line segment spanned byp and its footpointFT (p). So
does the distance to the footpoint, but it turned out that the behaviour of the approximant outside
segment[p,FT (p)] has an influence on the convergence of the algorithm.
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The ICP algorithm:
input:b1, . . . , bk
repeat

for i = 1, . . . , r
evaluate feature pointsx0

i = xi(b1, . . . , bk)

compute footpointsyi = FT (x0
i )

choose control pointsb1, . . . , bk
such thatw := ∑r

i=1 ‖xi(b1, . . . , bk)− yi‖2 → min
until w small enough.
result: current values ofb1, . . . , bk

Algorithm 1.

A refined ICP algorithm:
input:b1, . . . , bk
repeat

for i = 1, . . . , r
evaluate feature pointsx0

i = xi(b1, . . . , bk)

compute footpointsyi = FT (x0
i )

determine functions distx0
i

choose control pointsb1, . . . , bk
such thatw := ∑r

i=1 d̃istx0
i
(xi(b1, . . . , bk))

2 → min
until w small enough.
result: current values ofb1, . . . , bk

Algorithm 2.

Remark. It is not necessary that the coefficients which control the feature points are arranged in th
of coefficients of control points. The reason why the algorithms have been presented with contropoints
instead of controlcoefficientsis that then they perhaps look more familiar.

Remark. The ICP algorithm tries to model curves as string with limited elasticity (by the fi
dimensionality of the underlying spline space) which is attracted by the target and finally rests a
as possible to it. The behaviour of the algorithm in the presence of disconnected or complicatedly
targets is similar to the behaviour of its physical analogue (e.g., the resulting curve will not follo
target’s boundary if it has holes). Another familiar phenomenon which has an analogue in the rea
is ‘folding’ of the result. The latter can be avoided to some extent by adding a bending energy term
functional begin minimized.

2.2. Taylor expansion of the squared distance from a surface

2.2.1. Principal curvatures with respect to a normal vector
If M is a smoothm-surface inR

d , parametrized by a smoothRd -valued functiong(u1, . . . , um), we
consider the basis vector fields∂jg and their scalar productsgij = 〈∂ig, ∂jg〉. The tangent vector space
M atp= g(u1, . . . , um) is spanned by∂1g, . . . , ∂mg and is denoted byTpM . Its orthogonal complemen
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is the normal space⊥p M . If n is a unit normal vector attached to the pointp = g(u1, . . . , um), we
consider

hnij = 〈n, ∂i∂jg〉 (i, j = 1, . . . ,m). (6)

Any eigenvector(λ1, . . . , λm) of the matrix(gij )−1 · (hnij ) defines a principal curvature vector

v =
m∑
j=1

λj∂jg. (7)

It is well known that for allp ∈M andn ∈⊥pM there is an orthonormal basise1, . . . , ed such that

e1, . . . , em are curvature vectors w.r.t.n and spanTpM

em+1, . . . , ed span⊥pM, anded = n. (8)

The eigenvalues corresponding toe1, . . . , em are denoted byκn1 , . . . , κ
n
m. They are the principal curvature

atp with respect ton.

2.2.2. Taylor expansion of the squared distance
Here we use Cartesian coordinates defined by the coordinate system(p; e1, . . . , ed), whose origin isp

(cf. Eq. (8)). The quadratic Taylor expansion of dist2(x,M) at the point

(0, . . . ,0, δ) (9)

is given by the quadratic function∑
i�m

δ

δ− 1/κni
x2
i +

∑
i>m

x2
i , (10)

if the line segment[(0, . . . ,0), (0, . . . ,0, δ)] does not contain any of the points(0, . . . ,0,1/κni ).
A proof of Eq. (10) and related results can be found in (Ambrosio and Soner, 1996; Ambros

Mantegazza, 1998). A more elementary introduction into that topic is found in (Pottmann and
2002). Fig. 1 shows graphs of two such Taylor expansions:M is a planar curve, the surface of revoluti

Fig. 1. Graph of the squared distance from the osculating circle of a planar curve, and Taylor approximants. Left
approximant in a point outside the osculating circle. Right: Taylor approximant in a point of the curve (courtesy M. Hof
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shown is the graph of the squared distance from one of its osculating circles, and the other surf
graphs of Taylor approximations in various points.

Remark. When computing approximants which take into account first and second derivatives, w
replace the distance from the curve by the distance from its osculating circle. As the distance fun
the circle is much simpler, it is shown by Fig. 1 instead of the distance function of the original cur

2.2.3. Low-dimensional special cases
In the case thatM is a 2-dimensional surface inR3, every surface point has two unit normal vect

±n. The principal curvatures have valuesκni = −κ−n
i , and coincide with the usual principal curv

tures.
If M is a curve inR3, whose Frenet frame is given byẽ1, ẽ2, ẽ3, and whose curvature isκ , then any unit

normal vector can be written in the formn= cosφ · ẽ2 + sinφ · ẽ3. It is easy to verify thatκn1 = κ cosφ.
A curvec(t) in EuclideanR

2 parametrizes a one-dimensional surface (we havem= 1 andd = 2). If
the unit normal vectorn(t) points to the same side of the curve asc′′(t), thenκn1 = |κ| is positive, withκ
being the curvature of the curve. For other normal vectors we use the relationκ−n

1 = −κn1 .
So the cases which are most relevant for curve and surface design (d = 2,3, m = 1,2) are rather

elementary.

2.3. Acceleration of the ICP algorithm and the choice of the functionsd̃istx .

The functionsd̃istx0
i

mentioned in Algorithm 2 of Section 2.1 must be approximants of the squ
distance from the target, and they should be quadratic (otherwise minimization is difficult), and p
semidefinite (otherwise minimizing does not make sense). Using a quadratic approximant would
to use the second order Taylor polynomial, but this won’t work in all cases: For smallδ, the quadratic
Taylor approximants as given by Eq. (10) are never positive semidefinite in both casesδ > 0 andδ < 0,
unless all principal curvatures happen to vanish. However, forδ = 0 and also in the limit caseδ→ ∞ we
always have positive semidefiniteness.

Algorithm 2 becomes Algorithm 1, if the quadratic approximant̃dist
2
p of dist(·, T )2 is chosen as

d̃ist2(0,...,0,λ) =
∑

x2
i (11)

(in the coordinate system given by Eq. (8)), for allλ. This is the limit caseδ→ ∞ of Eq. (10)—̃dist is the
Taylor expansion of dist(·, T )2 ‘at infinity’. The second possibility which is always positive semidefin
is given by the Taylor expansion in the surface point(0, . . . ,0) itself:

d̃ist2(0,...,0,λ) =
∑
i>m

x2
i , (12)

for all λ. Note that Eq. (12) computes the squared distance from the tangent space of the surfac
footpoint.

The positive semidefinite quadratic function which in some way is ‘closest’ to the Taylor approx
in the point(0, . . . ,0, δ) itself is found if we cancel negative terms in Eq. (10):

d̃ist2(0,...,0,δ) =
∑

i: coeff. of x2
i

is nonneg.

δ

δ− 1/κni
x2
i +

∑
i>m

x2
i . (13)
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A refined ICP algorithm, second version:
input:b1, . . . , bk
chooseλ such that 0� λ� 1, preferably small.
repeat

for i = 1, . . . , r
evaluate feature pointsx0

i = xi(b1, . . . , bk)

compute footpointsyi = FT (x0
i )

computeT ’s tangent planesTi atyi .
choose control pointsb1, . . . , bk

such thatw := ∑r
i=1(λ‖xi − yi‖2 + (1− λ)dist(xi, Ti)2)

is minimized, wherexi = xi(b1, . . . , bk).
until w small enough.
result: current value ofb1, . . . , bk.

Algorithm 3.

Depending on the circumstances, the computation of the principal curvatures may be computa
expensive.

Numerical evidence shows that using Eq. (12) in Algorithm 2 leads to much faster convergen
introduces instability. It turns out that aconvex combinationof Eqs. (11) and (12) results in an algorith
which is both fast and stable (Algorithm 3). An additional feature which is computationally attrac
that it does not require the computation of principal curvatures.

2.4. Computation of the distance field

Numerical computation of the distance field of the targetT means collecting data which are sufficie
for evaluating the distance fromT for any point of space (with varying accuracy, depending on
application), or even computing quadratic approximants of the squared distance, as described ab

For the purposes of the ICP algorithm fast methods for solving the eikonal equation‖gradf (x)‖ = 1
offer an approach to this problem. Pottmann and Leopoldseder (2003) present a data collecting
based on a linear-complexity sweeping method of (Zhao, 2002) which allows computing the fun
d̃istx0

i
if the target is a polyhedral surface or a point cloud.

3. Near-Euclidean spline motions

3.1. Motions as curves

An affine motion is a curve(A(t), a(t)) in the affine space of affine transformations: The affi
mapping characterized by the pair(A, a) is defined by

(A, a) ∈ Aff d :x �→Ax + a (
A ∈ R

d×d, a ∈ R
d
)
. (14)

It is easy to construct and controlaffine motions by control positions, but not so easy to do the s
for Euclidean motions: Affd = R

d×d+d contains the groupG of Euclidean congruence transformatio
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Fig. 2. Left: affine planar spline motion with control points of three point paths (initial value for Example 3.4). R
near-Euclidean spline motion.

as ad(d + 1)/2-dimensional submanifold. The elements ofG are defined by the condition thatA is an
orthogonal matrix, i.e.,

(A, a) ∈G ⇔ ATA=Ed, (15)

with Ed being thed × d identity matrix.G consists of two components, namely the subgroupG0

of orientation-preserving Euclidean congruence transformations (the Euclideanmotions), and a second
component whose elements reverse orientation:

(A, a) ∈G0 ⇔ ATA=Ed, detA> 0. (16)

By actively moving a spline curve(A(t), a(t)) in R
d×d+d towardsG or G0 we get near-Euclidea

spline motions. An example of such a motion is given by Fig. 2, right.

3.2. The distance field of the Euclidean motion group

In order to be able to use the ICP algorithm and its variants for motion design, we have to int
a Euclidean metric inRd×d+d and to compute footpoints onG andG0. It makes sense to choose
left-invariant metric, as the approximant should be independent of the choice of coordinate syste
distance field of the groupsG andG0 with respect to appropriate invariant metrics has been consid
in (Horn, 1987; Higham, 1989; Shoemake and Duff, 1992; Hyun et al., 2001; Belta and Kumar,
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Wallner, 2002). One particular definition of a distanced(f, g) between mappingsf andg is to choose
pointsw1, . . . ,wr in the domain off,g and let

d(f, g)2 =
r∑
i=1

∥∥f (wi)− g(wi)∥∥2
. (17)

This definition gives us a metric of the desired type. More generally, we could choose a mass dist
µ and instead of a sum use the integral

d(f, g)2 =
∫ ∥∥f (x)− g(x)∥∥2

dµ(x). (18)

The previous definition is the special case of unit point masses at locationsw1, . . . ,wr . It turns out that
all left invariant metrics on On can be written in this way. We summarize the results as present
(Wallner, 2002): For a given mass distribution (i.e., a positive Borel measure)µ ∈ R

d we consider theL2

space of mappingsf of R
d into R

d :

f ∈L2
µ

(
R
d,Rd

) ⇔
∫ ∥∥f (x)∥∥2

dµ<∞, (19)

with the usual identification of functions which are equalµ-almost everywhere. We assume thatµ is
such that

G0 ⊂G⊂ Aff d ⊂ L2
µ

(
R
d,Rd

)
. (20)

Total mass|µ| and the inertia tensorJ are defined by

|µ| =
∫

1dµ, 〈a, Jb〉 =
∫

〈a, x〉〈b, x〉dµ(x), Jkl =
∫
xkxl dµ(x). (21)

Without loss of generality we assume a coordinate system such that the barycenter ofµ is located in the
origin:∫

x dµ(x)= 0. (22)

Then the restriction of theL2 scalar product to the linear subspace Affd = R
d×d+d of L2 is given by〈

(A, a), (B, b)
〉 = tr

(
ATBJ

) + |µ|〈a, b〉, (23)

where〈a, b〉 denotes the canonical scalar product inR
d . The distanced(f, g) of L2 functions is given by

d(f, g)2 = 〈f − g,f − g〉. Obviously the inertia tensorJ and the total massµ determine the distanc
function. The computation of footpoints and related results are summarized in the following the
We use the symbols Od and SOd for the orthogonal group and the special orthogonal group inR

d ,
respectively.

Theorem 1. The vector(X,x) ∈ R
d×d+d is tangent(orthogonal, respectively) to G or G0 in the point

(P,p), if P TX is skew-symmetric(if P TXJ is symmetric andx = 0, respectively).

Theorem 2. Assume that(A, a) is an affine transformation, and that

AJ =Q1DQ2 (24)

is a singular value decomposition withQ1,Q2 ∈ Od and a nonnegative diagonal matrixD. Then
(Q1Q2, a) is a footpoint of(A, a) in G, and vice versa. The footpoint is unique if and only ifdetA �= 0.
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Theorem 3. Assume that(A, a) is an affine transformation, and that

AJ =Q′
1D

′Q′
2 (25)

is an SVD-type decomposition as follows: If detA> 0 it is the ordinary SVD. IfdetA= 0, it is an ordinary
SVD such thatdetQ′

1 detQ′
2> 0. If detA< 0, then it is such thatQ′

1,Q
′
2 ∈ Od , detQ′

1 detQ′
2> 0, and

D′ = diag(w1, . . . ,wd−1,−wd) withw1 � · · · �wd � 0 (26)

(w1, . . . ,wd are the singular values ofAJ). Then in all three cases,(Q′
1Q

′
2, a) is a footpoint of(A, a)

onG0 and vice versa. The footpoint is unique ifdetA> 0. In the casedetA� 0 it is unique if and only
if the smallest eigenvalue ofJATAJ has multiplicity one.

Theorem 4. The footpoint inG of (A, a) ∈ Aff d depends smoothly(indeed, analytically) on (A, a) if
detA �= 0. The same holds true forG0 if detA �= 0 and the footpoint is unique.

Proofs can be found in (Wallner, 2002).

Remark. Theorems 2 and 3 show how to compute, for a given affine transformation, the n
Euclidean motion. This is useful if we are given an affine transformation(A, a), which is already near
Euclidean, and which is to be applied to an actual rigid body. Within tolerance, we may app
footpoint of (A, a) in the motion group. By Theorem 4, the dependence of the footpoint on(A, a) is
smooth in a certain (big) neighbourhood of the motion group.

3.3. Differential geometry of the motion group

It is well known that in a (by no means ‘small’) neighbourhood ofEd , the group Od can be regularly
parametrized by the exponential of skew-symmetric matrices. Thus we parametrize the groupG in the
neighbourhood of a point(P,p) by

R
d×d
skew× R

d → Aff d , (X, x) �→ (
P · exp(X), x

)
. (27)

Surface parametersuij (1 � i < j � d) anduk (1� k � d) are defined by

X=
∑
i<j

uij (Eij −Eji)=
 0 u12 . . . u1d

−u12 0 . . . u2d
...

. . .

 , x = (u1, . . . , ud), (28)

whereEij is a matrix whose only nonzero entry is in theith row and thej th column. Thus we get th
parametrization

g :Rd(d+1)/2 → R
d×d+d,

(u12, . . . , ud−1,d, u1, . . . , ud) �→
P · exp

 0 u12 . . . u1d

−u12 0 . . . u2d
...

. . .

 , u1, . . . , ud

 .
First partial derivatives atu= 0 are

∂g

∂uij
= (
P(Eij −Eji),0

)
,

∂g

∂uk
= (0, δ1k, . . . , δdk).
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∂uij ∂ukl

atu= 0 are zero. The nonzero ones are given by

(−P(Eik +Eki),0
)

if j = l; (−P(Ejl +Elj ),0)
if i = k;(

P(Eil +Eli),0
)

if j = k; (
P(Ejk +Ekj ),0

)
if i = l; (29)(−2P(Eii +Ejj ),0

)
if (i, j)= (k, l).

From here the computation of principal curvatures with respect to a unit normal vector(N,n) runs as
described in Section 2.2.

Remark. A geometric interpretation of these principal curvatures or the principal curvature vectors
does not involve theL2 distance is not apparent to the author.

3.4. Numerical example

Fig. 2 shows the result of actively moving an affine cubic B-spline motion

(
B(t), b(t)

) =
k∑
i=0

N3
i (t)(Bi, bi) (30)

towards the Euclidean motion group. HereN3
i (t) are the cubic B-spline basis functions defined by

knot list (0,0,0,0,1/2,2/3,1,1,1,1). The linear partsBi of the spline coefficients(Bi, bi) ∈ R
2×2+2

(i = 1, . . . ,7) are listed below; the vectorsbi determine the translational part of the resulting motion,
have no influence on its euclidicity.

B1 =
[

1.005 0.033
−0.034 1.005

]
, B2 =

[
1.080 −0.716
0.716 1.080

]
,

B3 =
[−0.449 −1.12

1.122 −0.449

]
, B4 =

[−0.641 −0.806
0.806 −0.641

]
,

B5 =
[−1.260 0.212

−0.212 −1.260

]
, B6 =

[−0.511 1.037
−1.037 −0.511

]
,

B7 =
[−0.057 0.987

−0.987 −0.057

]
.

(31)

We used Algorithm 3 withk = 7, r = 50, xi = ∑k
i=0N

3
i (i/k)(Bi, bi), λ= 0.01, and the footpoint ma

given by Theorem 2, withd = 2, |µ| = 1, J = diag(1.3,1.0). The average squared distance of the po
xi from the Euclidean motion group during the iteration was 0.3983, 0.00538, 0.00538, . . . (i.e., constant
after the second iteration step).

This good behaviour of the iteration procedure is apparently due to the ‘good shape’ of the Eu
motion group as a surface inRd×d+d .
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4. Gliding motions

4.1. The configuration space

A gliding motion defined by a surface pairM,M ′ is a path(A(t), a(t)) in the Euclidean motion grou
G0 which has the property that for all parameter valuest the surfaceA(t) ·M + a(t) is in contact with
the surfaceM ′. This means that there isp(t) ∈M andp′(t) ∈M ′, a normal vectorn(t) ofM atp(t) and
a normal vectorn′(t) ofM ′ atp′(t) such that

A(t)p(t)+ a(t)= p′(t), A(t)n(t)= n′(t). (32)

Actually we modify this definition by an additional requirement: we assume thatn andn′ are unit normal
vector fields ofM andM ′, and that bothM,M ′ are (part of) boundaries of solids. We writen(p) and
n′(p′) for the normal vectors attached to points. We imagine thatn is pointing outward, andn′ is pointing
inward. Then the contact ofA(t) ·M + a(t) withM ′ is required to happen in a way such that

A(t) · n(p(t)) = n′(p′(t)
)
. (33)

We say thatM andM ′ are in oriented contact (with respect to previously defined unit normal ve
fields).

The set of motions(A, a) such thatAM + a is in oriented contact withM ′ is called theconfiguration
spaceor configuration manifoldof surface-surface-contact, and will be abbreviated by the letteC.
Properties ofC relevant for motion design have been investigated in (Pottmann and Ravani,
Pottmann et al., 1999; Wallner, 2000).

4.2. Differential geometry of the configuration space

We will describe how the configuration space can be parametrized. This parametrization can
to compute tangent spaces and principal curvatures.

4.2.1. Preparations
We writeu short for(u1, . . . , ud−1). Assume thatg(u) andg′(u) parametrizeM andM ′, respectively,

and thatn(u), n′(u) are normal vector fields. We apply Gram–Schmidt orthonormalization to the
d − 1 vectors of the basis

�B(u)= (
n(u), ∂1g(u), . . . , ∂d−1g(u)

)
, (34)

and get(b0(u), . . . , bd−2(u)). The vectorbd−1(u) is uniquely determined by the requirement that

B(u)= (
b0(u), . . . , bd−1(u)

)
(35)

is an orthonormal basis with positive determinant. The same we do forM ′ and getB ′. By the nature of
the Gram–Schmidt process, the tangent space ofM atp = g(u) is given by

TpM = g(u)+ [
b1(u), . . . , bd−1(u)

]
, (36)

and analogously forM ′. Further,

b0 = n/‖n‖, b1 = ∂1g/‖∂1g‖, b′
0 = n′/‖n′‖, b′

1 = ∂1g
′/‖∂1g

′‖. (37)
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Now assume that(A, a) is a Euclidean motion such thatA ·M + a touchesM ′ in A · g(u)+ a = g′(u′)
in such a way that the normal vectors ofM andM ′ are mapped onto each other byA:

Ab0 = b′
0. (38)

The linear mappingL=L(A,u,u′) ∈ SOd is defined by

AB(u)= B ′(u′)L. (39)

Conversely, ifu,u′,L are given, Eq. (39) definesA.
In theEuclidean plane(d = 2), the tangent space of bothM andM ′ is one-dimensional. We require

thatAb0 = b′
0, so it follows that eitherAb1 = b′

1 or Ab1 = −b′
1. AsA was supposed to be a motion, w

haveAb1 = b′
1, andL is the identity. The fact that there is no freedom left forL is in accordance with

the result that in the Euclidean plane the positionAM + a of a 1-surface (i.e., curve)M is uniquely
determined if we know which point ofAM + a is in contact with point ofM ′.

In Euclidean three-space(d = 3), the tangent spaces of bothM andM ′ are two-dimensional. A
Ab0 = b′

0, L necessarily has the form

L=
[ 1

cosφ −sinφ
sinφ cosφ

]
, φ = �(Ab1, b

′
1)= �(A · ∂1g, ∂1g

′). (40)

In generalL has the block matrix structure

L=
[

1 0
0 L1

]
with L1 ∈ SOd−1. (41)

4.2.2. Parametrization ofC
Having set up parametrizationsg, g′, normal vector fieldsn,n′, frame fieldsB,B ′, and the

correspondence betweenA, B, B ′, andL, we may parametrize the configuration space defined byM,M ′
and the normal vector fieldsn,n′ as follows: We parametrizeM with d − 1 parametersu1, . . . , ud−1, and
M ′ with u′

1, . . . , u
′
d−1. Further, we parametrize the set of possible matricesL. According to the discussio

in Section 4.2.1, there is nothing to do ifd = 2; for d = 3 a parametrization is given by Eq. (40).
higher dimensions, the set of possibleL’s is given by Eq. (41), and we may parametrize SOd−1 in a way
analogous to Eq. (27).

In any case, we write ‘L(φ)’ symbolically for these parameters (their number equals(d−1)(d−2)/2).
Then the points(A, a) of the configuration space are parametrized by

(A, a)(u,u′, φ)= (
B ′(u′)L(φ)BT(u), g′(u′)−Ag(u)). (42)

The total number of parameters equals 2(d − 1) + (d − 1)(d − 2)/2 = (d + 2)(d − 1)/2 = dimC =
dimG− 1.

4.2.3. Tangent space and orthogonal space ofC

The tangent space of the configuration manifold might be computed via a parametrization.
out that the singularities of the parametrization (42) are actual singularities ofC if both g andg′ are
regular. The singularities can be characterized by the result of (Wallner, 2000), which is given be
Theorem 5, and which uses the notion of second order line contact: It may happen thatM,M ′ touch
each other in the points of a curve, not only in one point. This is called line contact ofM,M ′. Second
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order line contactmeans that there is a surfaceM ′′ which is in second order contact withM and in line
contact withM ′. This is equivalent to the difference of second fundamental forms being singular. F
concept, see also (Pottmann and Wallner, 2001, p. 458).

Theorem 5. Assume thatAM+a touchesM ′ in Ap+a = p′. The configuration space defined byM,M ′
is a regular(d + 2)(d − 1)/2-dimensional surface inAff d in a neighbourhood of(A, a) if AM + a and
M ′ are not in second order line contact.

In the regular case, however, the tangent space is easily described without reference to curvat

Theorem 6. Assume thatAM + a touchesM ′ at Ap + a = p′, and that the unit surface normals ofM
andM ′ at p andp′ are given by vectorsn and n′, respectively. Assume further that the conditions
Theorem5 on the regularity of the configuration manifold are fulfilled. Then

(X,x) ∈ T(A,a)C ⇔ ATX skew-symmetric, x +Xp ∈ Tp′M ′. (43)

The orthogonal space⊥(A,a) C is spanned by⊥(A,a)G, which according to Theorem1 consists of the
pairs (X,0) withATXJ symmetric, and by either(−|µ| ·ApnTJ−1, n′) or

(|µ| · n′pTJ−1, n′). (44)

Proof. Eq. (43) is well known, a proof can be found in (Wallner, 2000) and (Pottmann and Wa
2001, p. 454ff). It means thatT(A,a)C is spanned by infinitesimal rotations(X,−Xp) which assign the
velocityXp+ (−Xp)= 0 to the point of contact; and by infinitesimal translations(0, x) with x tangent
toM ′ at the contact point.

As T(A,a)C ⊂ T(A,a)G, for their orthogonal complements the reverse inclusion holds true.
difference in dimension between both spaces equals one. It remains to show that the two vecto
by Eq. (44) are contained in⊥(A,a)C, but not in⊥(A,a)G. The latter is clear because of Theorem 1 a
n �= 0. In order to establish the former, we compute scalar products with(X,x) ∈ T(A,a)C.〈

(X,x),
(−|µ|ApnTJ−1, n′)〉 = −|µ| · tr

(
XTApnTJ−1J

) + |µ|〈x,n′〉. (45)

We let X̃ = ATX, which impliesX̃TAT = XT, and use〈a, b〉 = tr(abT) to modify the expression in
Eq. (45) involving trace:

− tr
(
X̃TATApnT) = tr

(
X̃pnT) = 〈X̃p,n〉 = 〈AX̃p,An〉 = 〈Xp,n′〉. (46)

Thus the scalar product of Eq. (45) reduces to|µ|〈Xp+x,n′〉. AsXp+x is tangent toM ′ in p′, it equals
zero. As to the second vector mentioned in Eq. (44), we compute〈

(X,x),
(|µ| · n′pTJ−1, n′)〉 = |µ| · tr

(
XTn′pTJ−1J

) + |µ|〈x,n′〉. (47)

In a way analogous to above, we express the trace in terms of a scalar product:

tr
(
X̃TATAnpT

) = tr
(
X̃TnpT

) = tr
(
npTX̃T

) = tr
(
n(X̃p)T

) = 〈n, X̃p〉 = 〈n′,Xp〉.
It follows that also in the second case the scalar product is zero. The theorem is proved.✷
4.2.4. Curvatures

By using the procedure described in Section 2.2.1, it is possible to compute principal curvature
the parametrization ofC given by Section 4.2.2.
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4.3. Footpoints on the configuration manifold

Computing the footpoint of an element(A, a) ∈ Aff d on the configuration space is not as easy
computing footpoints on the Euclidean motion group itself: in contrast to Theorem 1 (which ena
derive Theorems 2 and 3), Theorem 6 does not provide an explicit formula for computing footpoi

The method of (Pottmann and Leopoldseder, 2003) mentioned in Section 2.4 cannot be used
with the configuration manifold as a target, because the amount of data handled by it grows expon
with the dimension of the space it works in. It is however useful in another way, see Section 4.3.2

4.3.1. An iterative algorithm: overview
A rough approximation of such a footpoint is found in the following way: For given(A, a) ∈ R

n×n+n,
we first compute the footpoint(B, b) in G orG0. Next we assume thatM ′ is endowed with anoriented
distance

−−→
dist(· ,M ′), which is zero onM ′, positive outsideM ′ and negative insideM ′. Then we look for

pointsp,p′ such that
−−→
dist(Bp+ b,M ′)→ min (p ∈M),
dist(p′,Bp+ b)→ min (p′ ∈M ′).

(48)

It follows that the line segmentp,p′ is orthogonal to both surfacesBM + b andM ′. The Euclidean
congruence transformation

(Q,q)= (
B,b+ (Bp− p′)

)
(49)

will be contained inG orG0, and is also contained in the configuration space. There is of course no r
why (Q,q) should be(A, a)’s footpoint inC, but if (A, a) is in C, it certainly is. As both the mappin
(A, a)→ (Q,q) and the footpoint mapping are smooth if we stay away from medial axes, it is clea
(Q,q) converges to the footpoint if(A, a) converges towardsC. This is the basis of an iterative algorith
(Algorithm 4) for computing footpoints on the configuration space, the details of which are explai
Sections 4.3.3 and 4.3.4. It works by iterately computing an approximate footpoint according to E
and by performing an additional Newton-type shooting step.

Footpoints on the configuration space:
input: (A,a)
compute footpoint(B,b) of (A,a) onG
repeat

compute(Q,q) from (B,b) according to Eq. (49)
compute tangent spaceT(Q,q)C
compute orthogonal projection(Q,q)+ (V , v) of (A,a) ontoT(Q,q)C
choose path(Q(t), q(t)) in group:

such that(Q(0), q(0))= (Q,q) and(Q̇(0), q̇(0))= (V , v)
choose parameter valueτ � 1
(B,b) := (Q(τ), q(τ ))

until (V , v) is small enough.
result: footpoint is(B,b).

Algorithm 4.
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4.3.2. Computation of shortest distance
Algorithm 4 requires computing the shortest distance between two surfaces. This is a very

problem and efficient solutions often depend on more specific information on the surfaces involved
the many contributions to this subject we mention only (Sun et al., 2002). In the case of Algorithm
of the two surfaces remains the same for all instances of this problem, so it is useful to emp
approach proposed by Pottmann and Leopoldseder (2003), which allows evaluation of the distan
a surface after a certain data structure representing the distance field has been initialized. We d
into details here.

4.3.3. Projection onto the tangent space
Algorithm 4 requires computing the orthogonal projection of a point onto the tangent spaceT(Q,q)C of

the configuration manifoldC: Assume thatQM+q touchesM ′ in the pointQp+q = p′. By Theorem 6
and especially Eq. (43), the linear space parallel toT(Q,q)C is spanned by the following(d + 2)(d − 1)/2
elements ofRd×d+d :(

Q(Eij −Eji),−Q(Eij −Eji)p
)
(1� i < j � d),

(0, vi) (1� i < d, vi ∈ Tp′M ′).
(50)

We number them in the form

(W1,w1), . . . , (Ws,ws). (51)

Then the orthogonal projection(Q,q) + (V , v) of (A, a) = (Q,q) + (X,x) onto the tangent space
uniquely determined by coefficientsλ1, . . . , λs such that

(V , v)=
s∑
i=1

λi(Wi,wi). (52)

It is well known thatλ1, . . . , λs are solutions of the following linear system of equations
s∑
j=1

〈
(Wi,wi), (Wj ,wj)

〉
λj = 〈

(X,x), (Wi,wi)
〉
(i = 1, . . . , s). (53)

4.3.4. Paths in the motion group
Algorithm 4 further requires a path(Q(t), q(t)) in the groupG which emanates from a given poi

(Q,q)= (Q(0), q(0)) and which has(V , v) has an initial tangent vector. There are many curves w
satisfy this condition. One particular choice which is not subject to non-invariant arbitrariness
stationary motion starting in(Q,q) and havingx �→ V x+ v as stationary velocity field: it is well know
that it is parametrized by(

Q(t), q(t)
) =

(
QetY ,Q

etY − 1

tY
(tY )+ q

)
, with Y =Q−1V. (54)

Here eY and(eY −1)/Y are matrix functions defined by the power series
∑∞
k=0Y

k/k! and
∑∞
k=0Y

k/(k+
1)!, respectively.

Other paths with tangent vector(V , v) are given by(Q(t), q(t)) = (Qexp(QT (tV )), tv + q) or
(Q(t), q(t))= FG((Q,q)+ t (V , v)), whereFG means the footpoint map onto the groupG.
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4.3.5. The medial axis of the configuration manifold
The projection of an affine position(A, a) ∈ Aff d onto the configuration manifoldC is not well defined

if (A, a) is contained inC ’s medial axis. One particular instance of this case is that(A, a) is Euclidean
andAM ′ +a touchesM in two points.(A, a) has distance zero from two different branches ofC, andC ’s
medial axis passes through(A, a). In an actual application, ifM andM ′ are thought to be the boundari
of solids, this situation means that an unwanted collision ofM ′ andM is imminent.

The general case of(A, a) being onC ’s medial axis means thatM ′ does not know in which directio
to move in order to come closer toM . This is a problem of the input data rather than a problem of
algorithm. Part of this problem is addressed in Theorem 6 of (Wallner, 2000), which gives con
whereC has no self-intersections.

4.4. Numerical examples

Fig. 3 shows the result of applying Algorithm 3 to an affine spline motion. From left to right the i
affine spline motion, then the motion after one iteration step, and finally the motion after five ite
steps are shown.

We used a cubic B-spline motion(Q(t), q(t)) defined by control elements(B1, b1), . . . , (B6, b6) ∈
R

3×3+3, sor = 6. We letk = 50,xi = (Q(i/k),Q(i/k)), andλ= 0.01. The footpoint mapFT is the one
described in Section 4.3. The surfaceM is a thin torus, andM ′ is a sphere.

Fig. 3. Gliding motion (font view and top view): Left: Initial affine motion. Center: after 1 step of Algorithm 3. Right: af
iterations.
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Table 1

No. of iterations δG δC w

0 4.39 · 10−1 9.11 · 10−0 8.48 · 10−0

1 2.57 · 10−1 2.90 · 10−1 2.86 · 10−1

2 5.25 · 10−3 7.71 · 10−3 7.44 · 10−3

3 4.14 · 10−4 1.31 · 10−3 1.18 · 10−3

4 2.84 · 10−4 9.40 · 10−4 8.44 · 10−4

Table 1 shows average squared distanceδG from the Euclidean motion group, the average squa
distanceδC from the configuration manifold, and the average weighted distancew which is minimized
by Algorithm 3, during the first steps of the iteration.

Gliding motions on polyhedral surfaces are to be modeled over an appropriate knot vector—
motions will not be able to glide on non-smooth objects.

5. Extensions and applications

5.1. More-parameter motions

A Euclideanl-parameter motion of a rigid body is anl-dimensional surface contained in the Euclide
motion groupG0. An affine l-parameter motion is anl-dimensional surface contained in the spa
Aff d = R

d×d+d of affine transformations. Actively moving such a surface towardsG or G0 is possible
with the algorithms described earlier in this paper. The only modification concerns the way feature
are computed from control points. For example, we may choose control points(Bij , bij ) ∈ Aff d , knot
lists t0 � t1 � · · ·, t̃0 � t̃1 � · · · , and define a bicubic B-spline surface by letting

(
B(u, v), b(u, v)

) =
k1∑
i=0

k2∑
j=0

N3
i (u)Ñ

3
j (v)(Bij , bij ), (55)

with N3
i andÑ3

j being the B-spline basis functions defined by the knot liststi and t̃i .

5.2. Hermite-like interpolation of contact positions

Assume that(A0, a0), . . . , (Ak, ak) are positions of a rigid bodyB such thatAi(B) + ai touches a
given surfaceO. A one-parameter near-Euclidean motion interpolating(Ai, ai) is an interpolating curve
in R

d×d+d , which lies as close as possible to the contact manifoldC defined byB andO.
If we use a spline curve defined by the derivative vectors(Vi, vi) at (Ai, ai) (such as the cubic splin

in Hermite form), the parameters determined by the minimization process are the coefficients o
combination of the(Vi, vi) in bases ofT(Ai,ai)C (i = 1, . . . , l). More explicitly assume that

(A1, a1), . . . , (Al, al) (56)

are contact positions such thatAiM+ai touchesM ′ in pointsAipi+ai = p′
i . Then a basis of the tange

spaceT(Ak,ak)C (k = 1, . . . , l) is given by Eq. (50) with(Ak, ak) instead of(Q,q). A curve(B(t), b(t)) in



20 J. Wallner / Computer Aided Geometric Design 21 (2004) 3–21

eme)
fficients
on 2.1).

the
e
ce

interior
ttmann,

t the
e tool.
rical,

oint. We
.

ticular
uring
f lines).
195ff),
mented
s to the

ustrian
estions.
the configuration manifold with(B(tk), b(tk))= (Ak, ak) has a tangent vector(Vk, vk) which is a linear
combination of this basis:

(Vk, vk)=
∑

1�i<j<d
λ
(k)
ij Ak(Eij −Eji)+

∑
1�i<n

λ
(k)
i vi . (57)

The coefficientsλ(k)ij (together with possible additional control points, depending on the spline sch
then are the control coefficients which the curve and its feature points depend on. The control coe
may be determined using the ICP algorithm or one of its variants (cf. the remark at the end of Secti

5.3. Applications in NC milling

An important example of a two-parameter gliding motion is the motion of a milling tool along
surface to be manufactured. We take the active part of the tool as surfaceM and the final shape of th
workpiece as surfaceM ′. Possibly not all positions ofM ′ which are contained in the configuration spa
are admissible as positions of an actual milling tool—it may happen that the tool intersects the
of M somewhere. Such problems of collision avoidance have been studied in (Wallner and Po
2000).

A series of one-parameter tool paths can be seen as theu parameter lines in a surfaceb(u, v) contained
in the configuration space. How to construct such a surface has been described in Section 5.1.

5.3.1. Footpoint on the configuration space
The computation of pointsp andp′ according to Eq. (48) can take advantage of the fact tha

milling tool is, geometrically, a surface of revolution, and it surface normals intersect the axis of th
The computation of Eq. (48) can be simplified, if the milling tool happens to be a spherical, cylind
or toroidal one: In that case the tool has a degenerate inner offset which is a curve or even a p
may replace the tool by its inner offset and the workpiece by its outer offset at the same distance

5.3.2. Collision avoidance
Other constraints can be incorporated into the framework of active milling paths. One par

example which is important for collision avoidance is that the axis positions of the milling tool d
the motion have to be contained in a certain congruence of lines (i.e., a 2-parameter manifold o
After choosing an appropriate distance function in line space (cf. (Pottmann and Wallner, 2001, p.
the ICP algorithm which moves affine spline motions towards the configuration space is easy aug
by an additional function measuring the sum of squared distances of a certain number of tool axe
given line congruence.
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