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Abstract

We consider the ICP (iterative closest point) algorithm, which may in general be used for moving ‘active’
elements such as curves and surfaces towards geometric objects whose distance field is computable. We show
how it may be accelerated, and how it can be applied to the design of near-Euclidean near-contact spline motions.
One particular application of this concept is the modeling of milling tool paths in five-axis milling. The method
involves computing the distance from and footpoints in both the Euclidean motion group and the configuration
space of surface-surface contact.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction

Motion design is a topic which constantly attracts interest in the CAGD community. Instead of detailed
references to the literature, we refer the interested reader to the survey article (R6schel, 1998). The main
source of problems which occur in motion design is that the geometry of the set of Euclidean motions is
not as simple as that of points, say, of Euclidean space. For purposes of computation, coordinates have
to be introduced in that set, and experience has shown that each of the methods which have been used
so far has its own deficiencies, and that the decision for a certain system of coordinates depends on the
application one has in mind. Two particular examples are given by Hofer et al. (2002a, 2002b).

Here we embed the set of Euclidean motions in the set of affine transformations, where coordinates
are found in a straight forward way. The set of affine transformations is an affine space. What makes the
situation complicated is they way the Euclidean motions are embedded in that space: They occur as a
surface whose dimension is one half of the dimension of the ambient space. Nevertheless, the distance
from this surface may be computed. This fact makes it possible to apply the concagitvefcurves
and surfaces to motion design: We produce piecewise polynomial near-Euclidean and near-gliding one-
parameter ané-parameter motions.
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How to use near-Euclidean motions which are not Euclidean in practice is another question. Clearly
we cannot expect that a rigid body undergoes an affine transformation which is not Euclidean. But that
problem is easily solved: The transfer from a numerical representation to the ‘real’ motion, has to be
modified accordingly, e.g., by using the footpoint map described by Theorem 2.

2. Active elementsin a distance field
2.1. Active curves and surfaces

In this paper motion design is based on the principle of ‘active’ curves and surfaces and how to move
them closer to a target. More specifically, it is based on a variant of the so-iallative closest point
(i.e., ICP) algorithm. The word ‘active’ has been given to geometric entities whose shapes change during
an iterative process, and especially it applies to shapes determined by control points evolving with the ICP
algorithm. The general concept of ‘ICP’, as described in (Kass et al., 1988; Pottmann and Leopoldseder,
2002; Pottmann et al., 2002), is the following: Assume thidature pointscy, ..., x, in the Euclidean
spaceR? are determined by control points, . .., b, and that this dependenceaiffinein each argument.
A prominent example is a spline curve

k
b(t) =Y N;(t)b; (1)
i=1
defined by the B-spline basis functioWs(¢) and the control points
b, ..., by. (2)
We choosey, ..., u, € R and let
xi(bl"'wbk)::b(ui)‘ (3)

Further, we assume that a sub%et R? (thetargef) allows computation of the distance frofhand the
footpoint Fr(x) € T of a pointx € R?.

Fr:RY— T, distx,T) = |x — Fr(x)|. 4

Then the ICP algorithm is given by the recursion Algorithm 1. The purpose of the algorithm is to bring
the curve near the target.

Numerical evidence has shown that the ICP algorithm can be accelerated by replacing the
distance to the footpoints by better approximants of the target's distance function. Pottmann and
Leopoldseder (2002) proposed to use certain honnegative quadratic appromfﬁtinm the function
dist(-, T)?, which are derived from the second order Taylor polynomial of that function, and which are
the topic of Section 2.3. This leads to Algorithm 2. The approximé?ié have the property that

dist, (x)2 = dist(x, T)? if x € [p, Fr(p)], (5)

i.e., they agree with digt, T')? along the entire line segment spannedpbgind its footpointFy (p). So
does the distance to the footpoint, but it turned out that the behaviour of the approximant outside the line
segmenfp, Fr(p)] has an influence on the convergence of the algorithm.
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The ICP algorithm:
input: b1, ..., by
repeat
fori=1,..., r
evaluate feature poinﬁé) =x;(b1,...,br)
compute footpoints; = Fr (x?)
choose control pointsy, .. ., by
such thatw := >"7_ ||xi (b1, ..., bx) — yi > — min
until w small enough.
result: current values dfy, .. ., by

Algorithm 1.

A refined ICP algorithm:
input: b1, ..., by
repeat
fori=1,..., r
evaluate feature points’ = x; (b1, ..., by)
compute footpoints; = Fr (x)
determine functions dist
choose control pointbl,f.\; by
such thatw := >"7_; dist o(x; (b1, . . ., bx))? — min
until w small enough. '
result: current values dfy, .. ., by

Algorithm 2.

Remark. Itis not necessary that the coefficients which control the feature points are arranged in the form
of coefficients of control points. The reason why the algorithms have been presented with goimtisl
instead of controtoefficientds that then they perhaps look more familiar.

Remark. The ICP algorithm tries to model curves as string with limited elasticity (by the finite
dimensionality of the underlying spline space) which is attracted by the target and finally rests as close
as possible to it. The behaviour of the algorithm in the presence of disconnected or complicatedly shaped
targets is similar to the behaviour of its physical analogue (e.g., the resulting curve will not follow the
target’s boundary if it has holes). Another familiar phenomenon which has an analogue in the real world
is ‘folding’ of the result. The latter can be avoided to some extent by adding a bending energy term to the
functional begin minimized.

2.2. Taylor expansion of the squared distance from a surface

2.2.1. Principal curvatures with respect to a normal vector

If M is a smoothn-surface inR¢, parametrized by a smoofk?-valued functiong (u1, .. ., u,,), we
consider the basis vector fieldsg and their scalar products; = (9;g, 9;¢). The tangent vector space of
M atp =g(u1,...,u,) is spanned by.g, ..., d,,¢ and is denoted b¥, M. Its orthogonal complement
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is the normal space., M. If n is a unit normal vector attached to the pomt= g(u,...,u,), we
consider

W= (n,80;8) (.j=1....m). (6)

Any eigenvector(Ay, ..., A,,) of the matrix(g;;)~*- (hi;) defines a principal curvature vector

U=Z)xj8jg. (7)
j=1

It is well known that for allp € M andn € L, M there is an orthonormal basis, . . ., e, such that

e1, ..., e, are curvature vectors w.ri.and spar?’, M
(8)
em+1,---,eqSpan_L, M, ande; =n.
The eigenvalues correspondingeto. . ., e,, are denoted by7, ..., k.. They are the principal curvatures
at p with respect to:.

2.2.2. Taylor expansion of the squared distance
Here we use Cartesian coordinates defined by the coordinate system. .., e¢;), whose origin isp
(cf. Eq. (8)). The quadratic Taylor expansion of @ist M) at the point

©,...,0,98) )
is given by the quadratic function
8 2 2
S 2 10

if the line segmenk(O, ..., 0), (0, ..., 0, 8)] does not contain any of the poin®, ..., 0, 1/«).

A proof of Eqg. (10) and related results can be found in (Ambrosio and Soner, 1996; Ambrosio and
Mantegazza, 1998). A more elementary introduction into that topic is found in (Pottmann and Hofer,
2002). Fig. 1 shows graphs of two such Taylor expansiahss a planar curve, the surface of revolution

Fig. 1. Graph of the squared distance from the osculating circle of a planar curve, and Taylor approximants. Left: Taylor
approximant in a point outside the osculating circle. Right: Taylor approximant in a point of the curve (courtesy M. Hofer).
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shown is the graph of the squared distance from one of its osculating circles, and the other surfaces are
graphs of Taylor approximations in various points.

Remark. When computing approximants which take into account first and second derivatives, we can
replace the distance from the curve by the distance from its osculating circle. As the distance function of
the circle is much simpler, it is shown by Fig. 1 instead of the distance function of the original curve.

2.2.3. Low-dimensional special cases

In the case thad is a 2-dimensional surface &%, every surface point has two unit normal vectors
+n. The principal curvatures have value$ = —«; ", and coincide with the usual principal curva-
tures.

If M is acurve inR3, whose Frenet frame is given By, é,, 3, and whose curvature is then any unit
normal vector can be written in the form= cos¢ - e, + sing - es. It is easy to verify thak] = «x cos¢.

A curvec(t) in EuclideanR? parametrizes a one-dimensional surface (we wavel andd = 2). If
the unit normal vecton(¢) points to the same side of the curvecd&), thenky = || is positive, withk
being the curvature of the curve. For other normal vectors we use the refatiea —«7.

So the cases which are most relevant for curve and surface dekigr2(3, m = 1, 2) are rather
elementary.

2.3. Acceleration of the ICP algorithm and the choice of the functebsts.

The functionsdT§gco mentioned in Algorithm 2 of Section 2.1 must be approximants of the squared
distance from the ta’rget, and they should be quadratic (otherwise minimization is difficult), and positive
semidefinite (otherwise minimizing does not make sense). Using a quadratic approximant would suggest
to use the second order Taylor polynomial, but this won't work in all cases: For sithle quadratic
Taylor approximants as given by Eq. (10) are never positive semidefinite in bothscas@ands < O,
unless all principal curvatures happen to vanish. Howeves fo0 and also in the limit case— oo we
always have positive semidefiniteness.

Algorithm 2 becomes Algorithm 1, if the quadratic approxim&ﬁtti of dist(-, 7')? is chosen as

ai\s/ﬁ() ..... 01 = Zx’z (11)

(in the coordinate system given by Eq. (8)), for/allThis is the limit casé — oo of Eq. (10)—dist is the
Taylor expansion of digt, 7)? ‘at infinity’. The second possibility which is always positive semidefinite
is given by the Taylor expansion in the surface pagit .., 0) itself:

aE‘(Zo ..... o = inz’ (12)
for all A. Note that Eq. (12) computes the squared distance from the tangent space of the surface at the
footpoint.
The positive semidefinite quadratic function which in some way is ‘closest’ to the Taylor approximant
in the point(0, ..., 0, §) itself is found if we cancel negative terms in Eq. (10):

—~ 8
dlSt%o yyyyy 0,8 = Z mxlz + lez (13)

it coeff. of x? i>m
is nonneg
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A refined ICP algorithm, second version:

input: by, ..., by
choose\ such that 6< A < 1, preferably small.
repeat

fori=1,..., r

evaluate feature pointx§ =x;(b1,...,br)
compute footpoints; = Fr (x?)
computeT’s tangent planeg; at y;.
choose control points, . . ., by

such thatw := >"7_ (A [lx; — yill2 + (1 — 1) dist(x;, T7)?)
is minimized, where;; = x; (b1, ..., by).

until w small enough.

result: current value diy, .. ., by.

Algorithm 3.

Depending on the circumstances, the computation of the principal curvatures may be computationally
expensive.

Numerical evidence shows that using Eqg. (12) in Algorithm 2 leads to much faster convergence, but
introduces instability. It turns out thatcmnvex combinatioof Egs. (11) and (12) results in an algorithm
which is both fast and stable (Algorithm 3). An additional feature which is computationally attractive is
that it does not require the computation of principal curvatures.

2.4. Computation of the distance field

Numerical computation of the distance field of the tarfeheans collecting data which are sufficient
for evaluating the distance frorfi for any point of space (with varying accuracy, depending on the
application), or even computing quadratic approximants of the squared distance, as described above.
For the purposes of the ICP algorithm fast methods for solving the eikonal eqiafiadf (x)|| = 1
offer an approach to this problem. Pottmann and Leopoldseder (2003) present a data collecting strategy
based on a linear-complexity sweeping method of (Zhao, 2002) which allows computing the functions
dist,(’o if the target is a polyhedral surface or a point cloud.

3. Near-Euclidean spline motions
3.1. Motions as curves

An affine motion is a curvgA(z), a(r)) in the affine space of affine transformations: The affine
mapping characterized by the péit, a) is defined by
(A,a) eAffyix > Ax+a (AeRP? aeRY). (14)

It is easy to construct and contraffine motions by control positions, but not so easy to do the same
for Euclidean motions: Aff = RY*4+¢ contains the groug of Euclidean congruence transformations
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Fig. 2. Left: affine planar spline motion with control points of three point paths (initial value for Example 3.4). Right:
near-Euclidean spline motion.

as ad(d + 1)/2-dimensional submanifold. The elementstofare defined by the condition thadtis an
orthogonal matrix, i.e.,

(A,a)eG & ATA=E,, (15)

with E; being thed x d identity matrix. G consists of two components, namely the subgraifp
of orientation-preserving Euclidean congruence transformations (the Euclidettong, and a second
component whose elements reverse orientation:

(A,a)eG® < ATA=E,, detA > 0. (16)

By actively moving a spline curveA(r), a(t)) in R¥*4+? towardsG or G° we get near-Euclidean
spline motions. An example of such a motion is given by Fig. 2, right.

3.2. The distance field of the Euclidean motion group

In order to be able to use the ICP algorithm and its variants for motion design, we have to introduce
a Euclidean metric irR?*?+¢ and to compute footpoints o6 and G°. It makes sense to choose a
left-invariant metric, as the approximant should be independent of the choice of coordinate system. The
distance field of the group§ and G° with respect to appropriate invariant metrics has been considered
in (Horn, 1987; Higham, 1989; Shoemake and Duff, 1992; Hyun et al., 2001; Belta and Kumar, 2002;
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Wallner, 2002). One particular definition of a distanbgf, g) between mappingg andg is to choose
pointswy, ..., w, in the domain off, g and let

d(f.92=Y | fw) — gw)]|” (17)
i=1

This definition gives us a metric of the desired type. More generally, we could choose a mass distribution
w and instead of a sum use the integral

d(f.g)%= / | () — g0 de (). (18)

The previous definition is the special case of unit point masses at locatigns. , w,. It turns out that

all left invariant metrics on Qcan be written in this way. We summarize the results as presented in
(Wallner, 2002): For a given mass distribution (i.e., a positive Borel meaguse} we consider the.?
space of mappingg of R? into R?:

feLlZ(RYRY) & / | £ 0] ?die < o0, (19)

with the usual identification of functions which are equahlmost everywhere. We assume thats
such that

G°C G C Aff, C LZ(R?,RY). (20)
Total masgu| and the inertia tensaf are defined by
= [ 1du. (0.0 = [t@x) b due. du= [ xnduco (21)

Without loss of generality we assume a coordinate system such that the barycenisiadated in the
origin:

/x du(x) =0. (22)
Then the restriction of th&? scalar product to the linear subspace AfR?*?*4 of L? is given by
((A,a), (B, b)) =tr(ATBJ) + |ul(a, b), (23)

where(a, b) denotes the canonical scalar produdRih The distancel/( f, g) of L? functions is given by
d(f,g)>=(f — g, f — g). Obviously the inertia tensaf and the total masg determine the distance
function. The computation of footpoints and related results are summarized in the following theorems.
We use the symbols QOand SQ for the orthogonal group and the special orthogonal groufdn
respectively.

Theorem 1. The vector(X, x) € R¢*¢*+ is tangent(orthogonal, respective)yto G or G° in the point
(P, p), if PTX is skew-symmetritif PTXJ is symmetric and = O, respectively,
Theorem 2. Assume thatA, a) is an affine transformation, and that

AJ=01DQ> (24)

is a singular value decomposition wit@;, O, € O, and a nonnegative diagonal matri. Then
(010>, a) is a footpoint of(A, a) in G, and vice versa. The footpoint is unique if and onligdfA # 0.
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Theorem 3. Assume thatA, «) is an affine transformation, and that
AT =Q\D'Q) (25)
is an SVD-type decomposition as followgietA > Oitis the ordinary SVD. IfletA = 0, itis an ordinary
SVD such thatletQ’ detQ’, > 0. If detA < 0, then itis such thaQ}, 0, € O,, detQ; detQ’, > 0, and
D = diag(wl, e, W1, —Wg) withwy > --->w; >0 (26)

(w1, ..., wy are the singular values od J). Then in all three casesQ’ 05, a) is a footpoint of(A, a)
on G° and vice versa. The footpoint is uniquelétA > 0. In the caseadetA < 0t is unique if and only
if the smallest eigenvalue gfAT AJ has multiplicity one.

Theorem 4. The footpoint inG of (A, a) € Aff ; depends smoothlfindeed, analytically on (A, a) if
detA # 0. The same holds true fa@° if detA # 0 and the footpoint is unique.

Proofs can be found in (Wallner, 2002).

Remark. Theorems 2 and 3 show how to compute, for a given affine transformation, the nearest
Euclidean motion. This is useful if we are given an affine transformatiar), which is already near-
Euclidean, and which is to be applied to an actual rigid body. Within tolerance, we may apply the
footpoint of (A4, @) in the motion group. By Theorem 4, the dependence of the footpoiritdon) is
smooth in a certain (big) neighbourhood of the motion group.

3.3. Differential geometry of the motion group
It is well known that in a (by no means ‘small’) neighbourhoodHyf the group Q can be regularly

parametrized by the exponential of skew-symmetric matrices. Thus we parametrize thesgirotipe
neighbourhood of a pointP, p) by

REGY xR — Affy, (X, x) > (P - exp(X), x). (27)
Surface parameters; (1 <i < j <d) andu; (1 <k < d) are defined by
0 U2 ... Ui
X=Y wj(Ej—Ep=| 2 0 o war |, x=(uy.....ug), (28)

i<j
where E;; is a matrix whose only nonzero entry is in tite row and thejth column. Thus we get the
parametrization

g RIGHD/2_, pdxd+d

0 Uip ... Uy
(ulz,...,ud_l,d,ul,...,ud)|—> P .exp| 412 0 cee U2Q | U, ..Uy
First partial derivatives at = 0 are
g g
— =(P(E;j — E;),0), — =(0,8u, ..., 0a).

8u,-j 8uk



12 J. Wallner / Computer Aided Geometric Design 21 (2004) 3-21

Most of the second order partial derivativgé?—kl atu = 0 are zero. The nonzero ones are given by
Ujjou

(=P(Ei + Ex),0) if j=I; (=P(Eji+ E;j),0) ifi=k;
(P(Ey+ E;),0) if j=k; (P(Eji+ Ey),0) ifi=I; (29)
(=2P(E;; + Ej),0) if (i, j) = (k,]).

From here the computation of principal curvatures with respect to a unit normal @ttay runs as

described in Section 2.2.

Remark. A geometric interpretation of these principal curvatures or the principal curvature vectors which
does not involve thé.? distance is not apparent to the author.

3.4. Numerical example

Fig. 2 shows the result of actively moving an affine cubic B-spline motion

k
(B().b(t)) =Y N(t)(B;. by) (30)

i=0

towards the Euclidean motion group. Hevé(r) are the cubic B-spline basis functions defined by the
knot list (0,0,0,0,1/2,2/3,1,1,1, 1). The linear partsB; of the spline coefficient§B;, b;) € R?*%*2
i=1,...,7) are listed below; the vectots determine the translational part of the resulting motion, but
have no influence on its euclidicity.

5 | 1005 Qo033 5, [1080 —0.716

17| -0.034 1005] 270716 1080 |’

p._ | 0449 -112] 5, _ | 0641 —0.806

7| 1122 -0449) 7| 0806 -—0.641| 1)
g [—1260 Q212 5. _[—0511 1037

°~|-0212 -1.260 ®~|-1037 -0511)

B, _ | —0057 Q987 ]

77| -0.987 -0.057]°

We used Algorithm 3 wittk =7, r =50, x; = Zf:o Nﬁ(i/k)(Bi, b)), A =0.01, and the footpoint map
given by Theorem 2, witll = 2, |u| =1, J =diag(1.3, 1.0). The average squared distance of the points
x; from the Euclidean motion group during the iteration weg983, 000538, 000538 ... (i.e., constant
after the second iteration step).

This good behaviour of the iteration procedure is apparently due to the ‘good shape’ of the Euclidean
motion group as a surface Rf'*4+4,
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4. Gliding motions
4.1. The configuration space

A gliding motion defined by a surface paif, M’ is a path(A(z), a(t)) in the Euclidean motion group
G° which has the property that for all parameter valuéise surfaceA(r) - M + a(t) is in contact with
the surfaceM’. This means that there j5(t) € M andp’(t) € M’, a normal vectorn (z) of M at p(¢t) and
a normal vector/'(¢) of M’ at p’(¢) such that

A p) +at) =p'(), A@)n(t) =n'(1). (32)

Actually we modify this definition by an additional requirement: we assumeithadsn’ are unit normal
vector fields ofM and M’, and that both, M’ are (part of) boundaries of solids. We wrii€p) and
n'(p’) for the normal vectors attached to points. We imagine#hatpointing outward, and’ is pointing
inward. Then the contact of(¢) - M + a(r) with M’ is required to happen in a way such that

A -n(p®)=n'(p'®). (33)

We say thatM and M’ are in oriented contact (with respect to previously defined unit normal vector
fields).

The set of motiongA, a) such thatAM + a is in oriented contact witld/’ is called theconfiguration
spaceor configuration manifoldof surface-surface-contact, and will be abbreviated by the I|€tter
Properties ofC relevant for motion design have been investigated in (Pottmann and Ravani, 2000;
Pottmann et al., 1999; Wallner, 2000).

4.2. Differential geometry of the configuration space

We will describe how the configuration space can be parametrized. This parametrization can be used
to compute tangent spaces and principal curvatures.

4.2.1. Preparations

We writeu short for(uy, ..., us_1). Assume thag (v) andg’ (1) parametrizeM andM’, respectively,
and thatn(u), n’(u) are normal vector fields. We apply Gram—-Schmidt orthonormalization to the first
d — 1 vectors of the basis

B(u) = (n(u), q1g(u), ..., da—18(w)), (34)
and get(bo(u), ..., by_»(u)). The vectorb,_1(u) is uniquely determined by the requirement that
B(u) = (bo(u), ..., by_1(u)) (35)

is an orthonormal basis with positive determinant. The same we di/fand getB’. By the nature of
the Gram—-Schmidt process, the tangent spade at p = g(u) is given by

TyM = g(u) + [b1(u), ..., bg_1()], (36)
and analogously foM’. Further,

bo=n/lnll,  bi=o0ig/ldgl.  bo=n'/ln"l, by =018"/119:8'll- 37)
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Now assume thatA, a) is a Euclidean motion such that- M + a touchesM’ in A - g(u) +a =g ')
in such a way that the normal vectorsdfand M’ are mapped onto each other Ay

Abo = by, (38)
The linear mappind. = L(A, u, u") € SQ; is defined by
ABu)=B'(W)L. (39)

Conversely, ifu, u’, L are given, Eq. (39) defines.

In the Euclidean pland€d = 2), the tangent space of bo# and M’ is one-dimensional. We required
that Abg = by, so it follows that eitherdb, = by or Aby = —b;. As A was supposed to be a motion, we
have Ab; = b}, and L is the identity. The fact that there is no freedom left fois in accordance with
the result that in the Euclidean plane the positibM + a of a 1-surface (i.e., curve) is uniquely
determined if we know which point oA M + a is in contact with point of\/’.

In Euclidean three-spac&! = 3), the tangent spaces of boM and M’ are two-dimensional. As
Abg = by, L necessarily has the form

1
L=|cosp - sinq&} . ¢ =<U(Aby,by) = <(A - 018, 318). (40)
| sing  cos¢p
In generalL has the block matrix structure
1 0 ,
L= _O L1:| with L,e SOd_l. (41)

4.2.2. Parametrization of

Having set up parametrizationg, ¢/, normal vector fieldsn,n’, frame fields B, B’, and the
correspondence betwedn B, B’, andL, we may parametrize the configuration space definetf by’
and the normal vector fields n’ as follows: We parametriz® with d — 1 parametersq, ..., u,_1, and
M’ withu’, ..., u),_,. Further, we parametrize the set of possible matricesccording to the discussion
in Section 4.2.1, there is nothing to dodf= 2; for d = 3 a parametrization is given by Eq. (40). In
higher dimensions, the set of possililis is given by Eq. (41), and we may parametrize,S{n a way
analogous to Eq. (27).

In any case, we writel’(¢)’ symbolically for these parameters (their number equéls 1)(d — 2)/2).
Then the pointgA, a) of the configuration space are parametrized by

(A, a)(u,u', ¢) = (B'(/)L($)B" (u), g'(u') — Ag(w)). (42)

The total number of parameters equald 2 1) + (d — D) (d — 2)/2=({d + 2)(d — 1)/2=dimC =
dimG — 1.

4.2.3. Tangent space and orthogonal spacé€ of

The tangent space of the configuration manifold might be computed via a parametrization. It turns
out that the singularities of the parametrization (42) are actual singulariti€sifoboth g and g’ are
regular. The singularities can be characterized by the result of (Wallner, 2000), which is given below as
Theorem 5, and which uses the notion of second order line contact: It may happeM,théttouch
each other in the points of a curve, not only in one point. This is called line contadt 8f'. Second
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order line contactimeans that there is a surfa¢€’ which is in second order contact wit¥ and in line
contact withd’. This is equivalent to the difference of second fundamental forms being singular. For this
concept, see also (Pottmann and Wallner, 2001, p. 458).

Theorem 5. Assume thal M + a touchesM’ in Ap +a = p’. The configuration space defined &y M’
is a regular (d + 2)(d — 1)/2-dimensional surface iAff ; in a neighbourhood ofA, a) if AM + a and
M’ are not in second order line contact.

In the regular case, however, the tangent space is easily described without reference to curvature:

Theorem 6. Assume thal M + a touchesM’ at Ap + a = p’, and that the unit surface normals &f
and M’ at p and p’ are given by vectora andr’, respectively. Assume further that the conditions of
Theorenb on the regularity of the configuration manifold are fulfilled. Then

(X,x) €TaC & ATX skew-symmetricx + Xp € T, M'. (43)
The orthogonal space. (4 . C is spanned byl 4 ,) G, which according to Theorerh consists of the
pairs (X, 0) with ATXJ symmetric, and by either

(—|,u|-ApnTJ_l,n’) or (|,u|-n’pTJ_1,n’). (44)

Proof. Eg. (43) is well known, a proof can be found in (Wallner, 2000) and (Pottmann and Wallner,
2001, p. 454ff). It means thd{, ,C is spanned by infinitesimal rotationX, —Xp) which assign the
velocity Xp 4+ (—Xp) = 0 to the point of contact; and by infinitesimal translati@gfsx) with x tangent

to M’ at the contact point.

As Ti4,o)C C T(a,0)G, for their orthogonal complements the reverse inclusion holds true. The
difference in dimension between both spaces equals one. It remains to show that the two vectors given
by Eq. (44) are contained ih 4 ,)C, but notinL4 . G. The latter is clear because of Theorem 1 and
n # 0. In order to establish the former, we compute scalar products(¥ith) € 7(4 ., C.

((X,x), (—|M|ApnTJ71, n/)) = —|u| 'tr(XTApnTJflj) + |u|{x,n'). (45)

We let X = ATX, which impliesXTAT = X7, and use(a, b) = tr(ab") to modify the expression in
Eq. (45) involving trace:
—tl’(iTATApnT) = tr(ipnT) =(Xp,n)=(AXp, An) = (Xp,n'). (46)

Thus the scalar product of Eq. (45) reduceftdXp +x,n’). As Xp +x is tangent tav’ in p’, it equals
zero. As to the second vector mentioned in Eq. (44), we compute

(0, (1l -0 pT I n)) = |l - tre(XTn pTI ) + el 7). (47)
In a way analogous to above, we express the trace in terms of a scalar product:

tl’(fTATAin) = tl’(yTin) = tr(infT) = tl’(n(fp)T) =(n,Xp)=(n', Xp).
It follows that also in the second case the scalar product is zero. The theorem is praved.
4.2.4. Curvatures

By using the procedure described in Section 2.2.1, it is possible to compute principal curvatures from
the parametrization af given by Section 4.2.2.
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4.3. Footpoints on the configuration manifold

Computing the footpoint of an element, a) € Aff; on the configuration space is not as easy as
computing footpoints on the Euclidean motion group itself: in contrast to Theorem 1 (which enables to
derive Theorems 2 and 3), Theorem 6 does not provide an explicit formula for computing footpoints.

The method of (Pottmann and Leopoldseder, 2003) mentioned in Section 2.4 cannot be used directly,
with the configuration manifold as a target, because the amount of data handled by it grows exponentially
with the dimension of the space it works in. It is however useful in another way, see Section 4.3.2.

4.3.1. An iterative algorithm: overview

A rough approximation of such a footpoint is found in the following way: For gi@na) € R""+",
we first compute the footpointB, b) in G or G°. Next we assume that’ is endowed with amriented
distancedeﬁ(- , M), which is zero onM’, positive outsideM’ and negative insida/’. Then we look for
points p, p’ such that

distBp + b, M') - min (p € M),

: . (48)
dist(p’, Bp +b) — min (p' e M").

It follows that the line segmeng, p’ is orthogonal to both surfaceBM + b and M’. The Euclidean
congruence transformation

(Q,9)=(B,b+ (Bp—p") (49)

will be contained inG or G°, and is also contained in the configuration space. There is of course no reason
why (Q, q) should be(A, a)’s footpoint inC, but if (A, a) isin C, it certainly is. As both the mapping

(A, a) — (Q, q) and the footpoint mapping are smooth if we stay away from medial axes, it is clear that
(Q, g) converges to the footpoint {f4, @) converges towards. This is the basis of an iterative algorithm
(Algorithm 4) for computing footpoints on the configuration space, the details of which are explained in
Sections 4.3.3 and 4.3.4. It works by iterately computing an approximate footpoint according to Eq. (49),
and by performing an additional Newton-type shooting step.

Footpoints on the configuration space:
input: (A, a)
compute footpointB, b) of (A,a) onG
repeat
compute(Q, q) from (B, b) according to Eq. (49)
compute tangent spadgg 4 C
compute orthogonal projectiai@, ¢) + (V, v) of (A, a) onto T 4 C
choose pathiQ(z), g (¢)) in group: _
such that(Q(0), ¢(0)) = (Q, ¢) and(Q(0), ¢(0)) = (V, v)
choose parameter value< 1
(B,b) :=(Q(7),q(1))
until (V, v) is small enough.
result: footpointis(B, b).

Algorithm 4.
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4.3.2. Computation of shortest distance

Algorithm 4 requires computing the shortest distance between two surfaces. This is a very general
problem and efficient solutions often depend on more specific information on the surfaces involved. From
the many contributions to this subject we mention only (Sun et al., 2002). In the case of Algorithm 4 one
of the two surfaces remains the same for all instances of this problem, so it is useful to employ the
approach proposed by Pottmann and Leopoldseder (2003), which allows evaluation of the distance from
a surface after a certain data structure representing the distance field has been initialized. We do not go
into details here.

4.3.3. Projection onto the tangent space

Algorithm 4 requires computing the orthogonal projection of a point onto the tangent Bage of
the configuration manifold’: Assume thaD M + ¢ touchesM’ in the pointQp 4+ ¢ = p’. By Theorem 6
and especially Eq. (43), the linear space paralldlto,,C is spanned by the following? + 2)(d — 1)/2
elements ofR4x4+4;

(Q(Eij —Eji),—Q(E; —E;p) (I1<i<j<d),

. , (50)
O,v) (A<i<d, vieT,M).
We number them in the form
(Wl’ wl)a ey (Ws’ws)' (51)

Then the orthogonal projectiofQ, ¢) + (V,v) of (A,a) = (Q, q) + (X, x) onto the tangent space is
uniquely determined by coefficients, ..., A, such that

(Vo)=Y (Wi, wp). (52)
i=1
It is well known thatiq, ..., A, are solutions of the following linear system of equations
N

D (Wi wi), Wy, wp)hy =((X, ), (W w) (=1,....9). (53)
Jj=1

4.3.4. Paths in the motion group

Algorithm 4 further requires a pattQ (), ¢(¢)) in the groupG which emanates from a given point
(Q,q9) = (0(0), ¢(0)) and which hagV, v) has an initial tangent vector. There are many curves which
satisfy this condition. One particular choice which is not subject to non-invariant arbitrariness is the
stationary motion starting i0Q, ¢) and havinge — Vx + v as stationary velocity field: it is well known
that it is parametrized by

gr -1
tY

(Q(1).q(0) = (Qe’y, 0 (tY) +Q>, with Y = Q~'V. (54)
Here & and(e" — 1)/ Y are matrix functions defined by the power se}és , Y*/k!l and} "2, Y*/(k +
1)!, respectively.

Other paths with tangent vect@¥/, v) are given by(Q(t),q(t)) = (Qexp(QT (tV)), tv + gq) or
(Q®),q®) = Fs((Q, q) +t(V,v)), whereF; means the footpoint map onto the grotp
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4.3.5. The medial axis of the configuration manifold
The projection of an affine positiaii, a) € Aff ; onto the configuration manifol@ is not well defined
if (A, a) is contained inC's medial axis. One particular instance of this case is tdat) is Euclidean
andA M’ +a touchesM in two points.(A, a) has distance zero from two different brancheg pandC'’s
medial axis passes through, a). In an actual application, i#/ and M’ are thought to be the boundaries
of solids, this situation means that an unwanted collisio®6find M is imminent.
The general case @f, a) being onC’s medial axis means tha’ does not know in which direction
to move in order to come closer #d. This is a problem of the input data rather than a problem of the
algorithm. Part of this problem is addressed in Theorem 6 of (Wallner, 2000), which gives conditions
whereC has no self-intersections.

4.4. Numerical examples

Fig. 3 shows the result of applying Algorithm 3 to an affine spline motion. From left to right the initial
affine spline motion, then the motion after one iteration step, and finally the motion after five iteration
steps are shown.

We used a cubic B-spline motiofQ (¢), ¢(¢)) defined by control element&By, by), ..., (Bs, bg) €
R3*3+3 sor = 6. We letk =50,x; = (Q(i/k), Q(i/k)), andx = 0.01. The footpoint magF; is the one
described in Section 4.3. The surfakkis a thin torus, and{’ is a sphere.

Fig. 3. Gliding motion (font view and top view): Left: Initial affine motion. Center: after 1 step of Algorithm 3. Right: after 5
iterations.



J. Wallner / Computer Aided Geometric Design 21 (2004) 3-21 19

Table 1
No. of iterations ¥e} 8¢ w
0 439.1001 911.100 848.100
1 257.1001 290.1001 286.10°1
2 525.1073 7.71-10°3 7.44.10°3
3 414.104 131.103% 118.10°3
4 284.1004 940.104 844.1074

Table 1 shows average squared distafigdrom the Euclidean motion group, the average squared
distances. from the configuration manifold, and the average weighted distanagich is minimized
by Algorithm 3, during the first steps of the iteration.

Gliding motions on polyhedral surfaces are to be modeled over an appropriate knot vector—smooth
motions will not be able to glide on non-smooth objects.

5. Extensions and applications
5.1. More-parameter motions

A Euclidean/-parameter motion of a rigid body is &wimensional surface contained in the Euclidean
motion groupG°. An affine [-parameter motion is afrdimensional surface contained in the space
Aff ; = R4+ of affine transformations. Actively moving such a surface towagdsr G° is possible
with the algorithms described earlier in this paper. The only modification concerns the way feature points
are computed from control points. For example, we may choose control gdint;;) e Aff,;, knot
liststo <t <---,fo < < ---, and define a bicubic B-spline surface by letting

k1 k2
(B, v), b(u,v)) =Y > N2w)N3(v)(Bij, bij), (55)

i=0 ;=0

with N? andf\vf‘].3 being the B-spline basis functions defined by the knot listd?;.
5.2. Hermite-like interpolation of contact positions

Assume that(Ag, ao), ..., (A, a;) are positions of a rigid body such thatA; (B) + a; touches a
given surface0. A one-parameter near-Euclidean motion interpolatiag a;) is an interpolating curve
in R4*4+d 'which lies as close as possible to the contact manifotiefined byB and 0.
If we use a spline curve defined by the derivative vectdfsv;) at (4;, ;) (such as the cubic spline
in Hermite form), the parameters determined by the minimization process are the coefficients of linear
combination of thgV;, v;) in bases off (4, ., C (i =1, ...,1). More explicitly assume that

(Al’ Cll), CR) (A], Cll) (56)

are contact positions such thé&tM +g; touchesM’ in points A, p; +a; = p;. Then a basis of the tangent
spacel 4, o, C (k=1,...,1)is given by Eq. (50) with(A, ax) instead of(Q, g). A curve(B(t), b(t)) in
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the configuration manifold witkiB(z), b(#;)) = (A, a;) has a tangent vect@W,, v;) which is a linear
combination of this basis:

Vi, ve) = Z )L,(;-()Ak(Eij —Ej)+ Z )‘,(k)vb (57)

I<i<j<d 1<i<n

The coefficientskg?) (together with possible additional control points, depending on the spline scheme)
then are the control coefficients which the curve and its feature points depend on. The control coefficients
may be determined using the ICP algorithm or one of its variants (cf. the remark at the end of Section 2.1).

5.3. Applications in NC milling

An important example of a two-parameter gliding motion is the motion of a milling tool along the
surface to be manufactured. We take the active part of the tool as siffaael the final shape of the
workpiece as surfact’. Possibly not all positions a¥f’ which are contained in the configuration space
are admissible as positions of an actual milling tool—it may happen that the tool intersects the interior
of M somewhere. Such problems of collision avoidance have been studied in (Wallner and Pottmann,
2000).

A series of one-parameter tool paths can be seen aspghemeter lines in a surfaé¢u, v) contained
in the configuration space. How to construct such a surface has been described in Section 5.1.

5.3.1. Footpoint on the configuration space

The computation of pointg and p’ according to Eq. (48) can take advantage of the fact that the
milling tool is, geometrically, a surface of revolution, and it surface normals intersect the axis of the tool.
The computation of Eq. (48) can be simplified, if the milling tool happens to be a spherical, cylindrical,
or toroidal one: In that case the tool has a degenerate inner offset which is a curve or even a point. We
may replace the tool by its inner offset and the workpiece by its outer offset at the same distance.

5.3.2. Collision avoidance

Other constraints can be incorporated into the framework of active milling paths. One particular
example which is important for collision avoidance is that the axis positions of the milling tool during
the motion have to be contained in a certain congruence of lines (i.e., a 2-parameter manifold of lines).
After choosing an appropriate distance function in line space (cf. (Pottmann and Wallner, 2001, p. 195ff),
the ICP algorithm which moves affine spline motions towards the configuration space is easy augmented
by an additional function measuring the sum of squared distances of a certain number of tool axes to the
given line congruence.
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