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Abstract

Let S be a smooth surface ofE3, p a point onS, km, kM , kG andkH the maximum, minimum, Gauss an
mean curvatures ofS at p. Consider a set{pippi+1}i=1,...,n of n Euclidean triangles forming a piecewise line
approximation ofS aroundp—with pn+1 = p1. For each triangle, letγi be the angle� pippi+1, and let the angula
defect atp be 2π − ∑

i γi . This paper establishes, when the distances‖ppi‖ go to zero, that the angular defect
asymptotically equivalent to a homogeneous polynomial of degree two in the principal curvatures.

For regular meshes, we provide closed forms expressions for the three coefficients of this polynomial. W
that vertices of valence four and six are the only ones wherekG can be inferred from the angular defect.
other vertices, we show that the principal curvatures can be derived from the angular defects of two inde
triangulations. For irregular meshes, we show that the angular defect weighted by the so-called module of
estimateskG within an error bound depending uponkm andkM .

Meshes are ubiquitous in Computer Graphics and Computer Aided Design, and a significant number o
advocate the use of normalized angular defects to estimate the Gauss curvature of smooth surfaces.
that the statements made in these papers are erroneous in general, although they may be true pointwis
specific meshes. A direct consequence is that normalized angular defects should be used to estimate
curvature for these cases only where the geometry of the meshes processed is precisely controlled. O
general perspective, we believe this contributions is one step forward the intelligence of the geometry of
whence one step forward more robust algorithms.
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1. Introduction

1.1. Smooth and triangulated surfaces

Meshes are ubiquitous in modern computer-related geometry. Meshes are easily obtaine
physical objects through scanning and reconstruction. Meshes are commonly displayed by g
hardware. Meshes are intuitive to deal with. They provide hierarchical representations that can
for approximate representations. Meshes can be refined to smooth surfaces through subdivision

In this context, and especially since meshes can be made dense enough so as to “look like”
surfaces, it is tempting to define a differential geometry of meshes which mimics that of smooth su

Example quantities well defined smooth surfaces that also look appealing for meshes are the
area, the normal vector field, the curvatures, geodesics, the focal sets, the ridges, the medial axi

Interestingly, recent research in applied domains provides, for each of the notions just enum
several estimates adapted from classical differential geometry to the setting of piecewise linear s
Several definitions of normals, principal directions and curvatures over a mesh can be found in (
1995; Meyer et al., 2002). Ridges of polyhedral surfaces as well as cuspidal edges of the fo
are computed in (Watanabe and Belyaev, 2001). Geodesics and discrete versions of the Gaus
theorem are considered in (Polthier and Schmies, 1998). But none of these contributions add
question of the accuracy of these estimates or that of their convergence when the mesh is refine

As opposed to these approaches, the literature provides a few examples ofa priori analysis. Given a
discrete set—a point cloud or a mesh—which is assumed to sample a surface in a certain way, dif
operators are derived together with theoretical guarantees about the discrepancy between the
estimates and the true value on the underlying smooth surface.

In (Amenta and Bern, 1999) it is shown that the normal to a smooth surface sampled according
terion involving the skeleton can be estimated accurately from the Voronoi diagram of the sample
The surface area of a mesh and its normal vector field versus those of a smooth surface are cons
(Morvan and Thibert, 2001). More closely related to the question we address is (Meek and Walton
which provides some error bounds for estimates of the normal and the Gauss curvature of a
surface. In particular, Meek and Walton observe on a counterexample that the angular defect doe
timate the Gauss curvature, but no analysis is carried out. The missing analysis is presented in th

1.2. Smooth surfaces, polyhedra, Gauss curvature and angular defect

In this section, we hi-light striking parallels between the Gauss curvature of polyhedra and s
surfaces ofE3. More precisely, we recall:

(1) the definition of the Gauss curvature for smooth surfaces and polyhedra, as well as the Gauss
theorem in both cases.

(2) how the Gauss curvature of a smooth surface can be recovered from the angular defect of g
triangles.

1.2.1. Gauss curvature and the Gauss–Bonnet theorem for surfaces and polyhedra
The Gauss curvature of an (abstract) oriented smooth Riemannian surfaceM is a smooth function

kG on M defined by using the metric tensor. It is well known that the Gauss curvature of a dom
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identically equal to zero if and only if it is locally isometric to a portion of plane. One can associ
kG a curvature measureKG onM by integration over any domainU of M :

KG(U)=
∫
U

kG da,

where da denotes the area form ofM . Suppose now thatM is isometrically embedded inE3. One way
to evaluate its Gauss curvature at a pointp is to make the product of the two principal curvatures ofM

at p (this is nothing buttheorema egregiumof Gauss). An equivalent way it to use the Gauss ma
the embedding and to calculate the limitA′/A, whereA is the surface area of a region aroundp, A′ the
signed area of the image ofA on S2 by the Gauss map, the limit being taken (roughly speaking) as the
regionA aroundp becomes smaller and smaller (Spivak, 1999, Vol. 2, Chapter III).

Consider now an abstract Riemannian polyhedronP . Any point of P which is not a vertex has
neighborhood isometric to a plane, and one can define its Gauss curvature to be 0, by analogy
smooth case. Moreover, ifp is a vertex ofP , one can assign top the angular defectαp = 2π − ∑

i γi
at p, where theγis stand for the angles atp of the facets incident top. We call this angular defectthe
Gauss curvaturekG(p) of the vertexp (Reshetnyak, 1993, Section 5). Remark that it is now possib
define a curvature measure onP , as a measure concentrated on the vertices ofP , by setting over any
domainU of P

KG(U)=
∑

p vertex inU

α(p).

If P is isometrically embedded inE3, then this angular defect is exactly the signed area of the imag
S2 by the Gauss map of any arbitrarily small neighborhood ofp, which is a property analogous to th
smooth case.

An important relationship relating the Gauss curvature to topological properties is the Gauss–
theorem. Consider a closed orientable surfaceS and a closed polyhedronP , the latter with vertices
p1, . . . , pn. Let χ(S) andχ(P ) stand for their Euler characteristic—that isV − E + F in the usual
jargon. The global Gauss–Bonnet theorem respectively states forS andP that—for the polyhedral case
see (Banchoff, 1967):

2πχ(S)=
∫ ∫

S

kG dσ, (1)

2πχ(P )=
∑

i=1,...,n

kG(pi). (2)

These remarkable results actually state that if the topology is fixed—i.e., the genus of the surfac
polyhedron is given, the curvature distributes itself onS or P so as to comply with that topology. Notic
that local versions of both theorems exist. (For the geodesic curvature involved in the local Gauss–
theorem, see (Reshetnyak, 1993; Polthier and Schmies, 1998).)

Remark that in this context, the Gauss curvature of a point of a polyhedron is dimensionless
that of a surface is homogeneous to the inverse of a surface area. The topological invariantπχ is
dimensionless, which is coherent with Eqs. (1) and (2).
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Fig. 1. Flattening a geodesic triangle yields an estimate for the Gauss curvature.

1.2.2. Gauss curvature and geodesic triangles
An important property of geodesic triangles also which involves the Gauss curvature is the follow

see (Cheeger et al., 1984; Lafontaine, 1986).
Let τi be a geodesic triangle onS, p, pi andpi+1 its vertices,lp, li , li+1 the lengths of the geodes

arcs opposite to the vertices, andl = sup{li, li+1}. Let Ti be the Euclidean triangle whose edges have
same lengths as those ofτi . We call Ti a Euclidean geodesic trianglesince it is a Euclidean triangle
but its edges’ lengths are geodesic distances. Finally, letβi be the angle ofτi at p, andαi be the angle
� pippi+1 of Ti . See Fig. 1 for an illustration. The anglesβi andαi differ by a term involving the Gaus
curvaturekG atp. More precisely, we have

Proposition 1. The anglesβi andαi associated to a Euclidean geodesic triangleτi satisfy

βi = αi + 1
6 sinαikGli li+1 + o(l2). (3)

Consider now a geodesic triangulation aroundp, that is a set ofn geodesic triangles havingp as
common vertex and forming a topological disk aroundp. By looking at the tangents to the geodes
from p to thepis, we have

∑
i βi = 2π . Summing Eq. (3) for then geodesic triangles immediate

yields the following

Theorem 1. LetT be a geodesic triangulation of a smooth surfaceM of E3. Letp be a vertex ofT , and
let A(p) be the sum of the areas of the trianglesTi associated to the Euclidean geodesic trianglesτis.
Then

2π −
∑
i

αi = A(p)

3
kG + o(l2).

This result is of little help from a practical standpoint since the knowledge of geodesics is req
The question addressed in this paper is actually to study the quantity estimated by the angula
when one replaces the geodesics by the Euclidean line-segmentsppi .

1.3. Question addressed in this paper

LetS be a surface ofE3, and letp be a point ofS. Also suppose that we are given a set{pippi+1}i=1,...,n

of n Euclidean triangles forming a piecewise linear approximation ofS aroundp. We shall refer to thes
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triangles as the mesh, and to thepis as the one-ring neighbors ofp. For each triangle, letγi be the angle
� pippi+1, and let the angular defect atp be 2π − ∑

i γi . Also, for a one-ring neighborpi , let ηi stand
for the Euclidean distance betweenp andpi .

The question we address in this paper is:

How precisely can one estimate the curvatures at a pointp of a smooth surface using the angu
defect of the triangles surroundingp?

Before presenting the contributions, several comments are in order.

Dimensionality. In order for the previous question to make sense, we shall pay a special atten
the dimensionality of the quantities involved. As already pointed out, the Gauss curvature of a
surface is homogeneous to the inverse of a surface area while that of a polyhedron is dimension
estimate the curvatures of a smooth surface from a polyhedron, we will therefore have to norma
lengths (for the principal curvatures) or surface areas (Gauss curvature).

Smooth surfaces and asymptotic estimates. Estimating the curvatures of a smooth surfaceS from a
single mesh is obviously an hopeless target. The folds ofS may indeed occur at a resolution much low
than that of the triangulation, so that the mesh may fall short from providing accurate informat
the point-wise curvatures. The problem becomes more tractable if one assumesS belongs to a restricte
class of surfaces—e.g., with Lipchitz like conditions on the variation of the normal—or assumes
sequence of meshes with edges’ lengths going to zero is available. We shall in the paper follow th
perspective and derive asymptotic results.

Soundness of the angular defect for the Gauss curvature of smooth surfaces. Since the angular defec
over geodesic triangles provides an estimate ofkG, it is tempting to believe that when the edges leng
‖ppi‖ go to zero, one can safely replace the geodesic arcs fromp to thepis onS by the Euclidean
segmentsppis. We shall see it is not so.

1.4. Contributions

This paper establishes, when the distances‖ppi‖ go to zero, that the angular defect is asymptotica
equivalent to a homogeneous polynomial of degree two in the principal curvatures. To state the

Fig. 2. Can the curvatures of a smooth surface be estimated from the angular defect of a triangulation?
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more precisely, one need to distinguish between regular and irregular meshes. By regular mesh,
to a mesh such that thepis lie in normal sections two consecutive of which form an angle of 2π/n, with
the additional constraint that‖ppi‖ is a constant. A mesh which is not regular is called irregular.

Regular meshes. We provide the closed form expression of the afore-mentioned polynomial as a fu
of the principal curvatures and 2π/n. In particular, we show thatn = 4 is the only value ofn such that
2π − ∑

i γi depends upon the principal directions, and thatn= 6 is the only value such that 2π − ∑
i γi

provides an exact estimate forkG. A corollary of these results is that the principal curvatures—whe
kG andkH—can be computed from the angular defects of any two triangulations whose valences
four.

Irregular meshes. We show that the angular defect weighted by the so-called module of the
estimateskG within an error bound depending uponkm andkM .

Practical relevance of our results. From a practical standpoint, normalized angular defects
advocated as an estimator for the Gauss curvature in a significant number of papers—see, e.g., (C
1986; Meyer et al., 2002; Cskny and Wallace, 2000; Dyn et al., 2001). We show that the statemen
in these papers are erroneous in general, although they may be true pointwise for very specific
A direct consequence is that normalized angular defects should be used to estimate the Gauss
for these cases only where the geometry of the meshes processed is precisely controlled.

Finally, it should be emphasized that along the derivation of these results, we prove s
approximation lemmas for curves and surfaces. These results may find applications in surface m
surface subdivision, feature extraction,. . . .

1.5. Paper overview

The paper is organized as follows. Section 2 provides the notations used throughout the p
Section 3 we present approximation results for the curvature of plane curves. These results are
Section 4 to derive a formula on Euclidean triangles providing a piecewise linear approximatio
smooth surface. Using restricted hypothesis on the geometry of these triangles, we show in S
that the angular defect does not provide, in general, an estimate forkG. In Section 6, the hypothes
of Section 5 are alleviated and a general result about the accuracy of the angular defect is
Illustrations of the main theorems are provided in Section 7.

2. Notations

Consider a pointp of a smooth surface together withn Euclidean triangles{pippi+1}i=1,...,n—with
pn+1 = p1—forming a piecewise linear approximation ofS aroundp. The following notations are use
throughout the paper—see Fig. 3:

Normal sections; Πi , ϕi . Consider the planeΠi containing the normaln, p andpi . We assumeΠi is
defined by its angleϕi with respect to some coordinate system in the tangent plane—for exa
the one associated with the principal directions.
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Fig. 3. Notations. Fig. 4.pi in spherical coordinates.

Distance to one-ring neighbor; ηi . The Euclidean distance fromp to its ith neighborpi is denotedηi .
Angle between normal sections; βi . The angle between two consecutive normal sectionsΠi andΠi+1

is denotedβi , that isβi = ϕi+1 − ϕi . Put differently,βi measures, in the tangent plane, the an
between the tangents to the plane curvesS ∩Πi andS ∩Πi+1.

Polyhedral angle; γi . Consider the Euclidean triangleppipi + 1. The angle atp, i.e., � pippi+1 is
denotedγi . (Notice that the angleγi is different from the angleαi of Proposition 1.)

Directional curvatures; λi . We letλi stand for the curvature of the plane curveS ∩ Πi . Notice that if
Πi contains a principal direction,λi reduces to the corresponding principal curvaturekM or km.

3. Plane curves

In this section, we provide an estimate for the curvature of a plane curve from the angular defe
inscribed polygon.

3.1. A lemma on plane curves

Let C be aC∞ smooth regular curve. Letp0 be a point ofC. It is well known thatC can locally be
represented by the graph(x, f (x)) of a smooth functionf , such thatp0 = (0,0) (i.e., f (0) = 0), and
such that the tangent toC atp0 is aligned with thex-axis (i.e.,f ′(0) = 0). Let k be the curvature ofC at
the origin (i.e.,k = f ′′(0)), and letν = f ′′′(0). Near the origin we have

f (x) = kx2

2
+ νx3

6
+ o(x3). (4)

Let us now use polar coordinates:x = η cosθ andy = η sinθ . In order to approximate the curvatu
of C at p0, we shall need an expression ofθ as a function ofη. Obtaining such an expression involv
the implicit function theorem, and the reader is referred to Appendix A for the proof of the followin

Lemma 1. Let f (x) be aC∞ smooth regular function withk = f ′′(0) and ν = f ′′′(0). For a point
p = (η cosθ, η sinθ) on the graph off near the origin, one has:

θ = kη

2
+ νη2

6
+ o(η2) if x � 0, (5)

θ = kη

2
− νη2

6
+ o(η2) if x � 0. (6)
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3.2. Approximating the curvature of a plane curve

The previous lemma can be used to estimate the curvature of a curve from the angular defectαi of an
inscribed polygon. See Fig. 5 for the notations.

Theorem 2. Let pi−1, pi andpi+1 be three points as indicated on Fig.5, with ηi−1 (ηi+1) the distance
from pi to pi−1 (pi+1). Also letηi = (ηi−1 + ηi+1)/2. The angular defectαi at pi and the curvaturek
satisfy:

• if ηi−1 = ηi+1 = η:

π − αi

η
= k + o(η), (7)

• if ηi−1 �= ηi+1:

π − αi

ηi
= k + o(1). (8)

Proof. Since the proofs of the two statements are similar, we focus just on the first one.
Eqs. (5) and (6) applied topi+1 and pi−1 yield θi−1 + θi+1 = kη + o(η2). But we also have

θi−1 + θi+1 = π − αi , whence the result. ✷
Interestingly, the speed of convergence is faster when the two neighbors are located at th

distance frompi .

Remark. The previous theorem can be extended to space curves.

4. A lemma on normal sections and Euclidean triangles

This section is devoted to a general result involving Euclidean triangles and smooth surface
result is the cornerstone of the next two sections.
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Using the notations of Section 2, we aim at finding a dependence relationship betweenβi , γi , ηi and
ηi+1. More precisely, we shall consider that the normal sectionsΠis are fixed—which determines th
ϕis,βis andλis—and study the dependence betweenγi , ηi andηi+1.

Lemma 2. With the above notations, letη = max(ηi, ηi+1). Define the following sum and produ
functions

s(ηi, ηi+1)= λ2
i η

2
i + λ2

i+1η
2
i+1

8
, p(ηi, ηi+1)= λiλi+1ηiηi+1

4
.

Theβi , γi , ηi andηi+1 quantities satisfy

βi = γi + p(ηi, ηi+1)

sinγi
− s(ηi, ηi+1)cotγi + o(η2) (9)

and

βi = γi + p(ηi, ηi+1)

sinβi
− s(ηi, ηi+1)cotβi + o(η2). (10)

Proof. The proofs of the two claims following the same guideline, we just prove the second one. A
point p is at the origin. Let us write the coordinates ofpi in spherical form with the conventions o
Fig. 4—that isϕ measures an angle in the tangent plane ofS at p. If Xt stands for the transpose ofX,
the coordinates ofpi arepi = (ηi cosθi cosϕi, ηi cosθi sinϕi, ηi sinθi)t , and similarly forpi+1.

Sinceβi = ϕi+1 − ϕi , expressing the dot productppi · ppi+1 = ηiηi+1 cosγi in spherical coordinate
yields

cosγi = cosβi cosθi cosθi+1 + sinθi sinθi+1. (11)

Since the curveΠi ∩ S is a plane curve, using Eq. (5) which expressesθ as a function ofη, we have

cosθi = 1− λ2
i η

2
i

8
+ o(η2

i ), sinθi = λiηi

2
+ o(ηi).

Plugging these values into Eq. (11) yields

cosγi =
(
1− s(ηi, ηi+1)

)
cosβi + p(ηi, ηi+1)+ o(η2).

To turn the previous expression into a relationship betweenγi andβi , we use the Taylor formula of orde
one tof (x) = arccos(x) together witha = cosβi andb = cosγi :

γi = βi + −1

sinβi

(−s(ηi , ηi+1)cosβi + p(ηi, ηi+1)+ o(η2)
) + o(η2).

Re-arranging the terms completes the proof.✷

5. Surfaces and regular polygons

5.1. Main result and implications

Using the lemma proved in the previous section, we are now ready to analyze the angular de
regular meshes. We shall need the following definitions.
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Definition 1. Let p be a point of a smooth surfaceS and letpi, i = 1, . . . , n be its one ring neighbors
Pointp is called aregular vertexif (i) the pis lie in normal sections two consecutive of which form
angle ofθ(n)= 2π/n, (ii) the ηis all take the same valueη.

Definition 2. Consider the directions of maximum and minimum curvatures ofS at p. Assume these
directions are associated two vectorsvM andvm such thatvM ∧ vn = n—with n be the normal ofS atp.
The offset anglea is defined as the angle in[0,2π [ between the vectorsvM andpπ(p1) with π(p1) the
projection ofp1 in the tangent plane.

Let us now get back to the notations of Section 2 at a regular vertex. Anglea is the angle fromvM

to the normal section of the first normal section. For a regular vertex, theβis are constant and equal
θ(n), so thatϕi = a + (i − 1)θ(n). Under these hypothesis, we provide a closed form expression fo
angular defect. The reader is referred to Appendix B for the proof of the following theorem.

Theorem 3. Consider a regular vertex of valencen. The following holds:

(1) There exists two functionsA(a,n) andB(a,n) such that

2π −
n∑

i=1

γi =
[
A(a,n)kG +B(a,n)

(
k2
M + k2

m

)]
η2 + o(η2). (12)

(2) The only value ofn such that the functionsA(a,n) andB(a,n) depend upona is n = 4, and then

2π −
n∑

i=1

γi =
[
(1− 2cos2 a sin2a)kG + cos2 a sin2a

(
k2
M + k2

m

)]
η2 + o(η2). (13)

(3) If n �= 4:

2π −
n∑

i=1

γi = n

16sin 2π/n

[(
2− cos

4π

n
− cos

2π

n

)
kG

+
(

1+ 1

2
cos

4π

n
− 3

2
cos

2π

n

)(
k2
M + k2

m

)]
η2 + o(η2). (14)
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Fig. 7. The coefficientsA(a,4), B(a,4) andA(a,4) + B(a,4)—respectively (solid curve, top), (solid curve, bottom), (dot
curve).

Fig. 8. The coefficientsA(a,n), B(a,n) andA(a,n)+ B(a,n)—respectively (solid curve, top), (solid curve, bottom), (dot
curve).

In particular, the only value ofn such thatB(a,n)= 0 is n = 6, and thenA(a,6)= √
3/2, that is

2π −
∑
i

γi =
√

3

2
kGη

2 + o(η2). (15)

The graphs of the functionsA(a,4) andB(a,4), as well asA(a,n) andB(a,n) for n �= 4 are presente
on Figs. 7 and 8. For the angular defect to provide an estimate forkG, a sufficient condition is to hav
a regular triangulation of valencen = 4 with the one-ring neighbors are aligned with the princi
directions. Another sufficient condition is to have a regular valence six triangulation. Therefor
angular defect is expected to provide good results for triangulations where valence six verti
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prominent. Example such triangulations are those generated by subdivision processes. Apart
two favorable configurations just mentioned, several other configurations are of course possible.
practical standpoint, these results show that normalized angular defects should be used to esti
Gauss curvature for these cases only where the geometry of the meshes processed is precisely c

Thevalence six almost everywhereobservation is also related to the following question. In Section
we recalled the Gauss–Bonnet theorem for a polyhedraP and a compact orientable surfaceS. Assume
P andS are homeomorphic. An interesting issue is the global convergence of the sum of the a
defects overP whenP is refined so as to converge toS. The fact that valence six vertices are expec
almost everywhere is certainly related to the answer. Fully resolving this issue is a geometric m
theory related question.

At last, the previous theorem fully explains the observation made in (Meek and Walton, 2000),
on a counter-example, that the angular defect does not estimate the Gauss curvature.

5.2. Corollaries

Interestingly, although the Gauss curvature is not estimated by the angular defect, the p
curvatures can be recovered from two different meshes:

Corollary 1. The principal curvatures of a smooth surface can be computed from the angular def
any two meshes of valencesn1 andn2 such thatn1 �= 4, n2 �= 4, n1 �= n2.

In particular, consider a sequenceT2p of triangulations of valence2p with p � 3 andp �= 4. LetTp
be any regular sequence of sub-triangulations ofT2p. (That is any triangulation inTp is regular in the
usual sense.) The principal curvatures can be computed from the angular defects ofT2p andTp.

Proof. Assume we are given two meshes with valencesn1 andn2 different from four. LetE(ni) be the
limit value of (2π −∑

i γi)/η
2, andA(ni),B(ni) be the coefficients ofkG andk2

m + k2
M in Eq. (12) have:{

E(n1)=A(n1)kG + (
k2
m + k2

M

)
B(n1),

E(n2)=A(n2)kG + (
k2
m + k2

M

)
B(n2).

Sincen1 �= n2 ⇒A(n1)B(n2)−A(n2)B(n1) �= 0, we have

kG = E(n1)B(n2)−E(n2)B(n1)

A(n1)B(n2)−A(n2)B(n1)
. (16)

If E refers to one of theE(ni) and similarly forA andB, once the Gauss curvature is known, we
left with the system{

kmkM = kG,(
k2
m + k2

M

)
B =E −AkG.

LettingD =E −AkG and observing thatB �= 0 sincen �= 4 yields

Bk4
m −Dk2

m +Bk2
G = 0, (17)

which solves to

k2
m =

E −AkG −
√
(E −AkG)2 − 4B2k2

G

2B
. (18)
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Notice that the sign of the square root chosen in the previous expression does not matter since
solutions corresponding to±√ are actually conjugated with respect tokmkM = kG, that is

k2
M = k2

G

k2
m

=
E −AkG +

√
(E −AkG)2 − 4B2k2

G

2B
. (19)

Oncek2
m and k2

M have been computed,km and kM are determined observing that the product of th
signs is the sign ofkG, and thatkm � kM . Oncekm and kM are known, the mean curvaturekH is
kH = (km + kM)/2.

For the second part, just apply the first part to the two regular sequences of triangulationsT2p and
Tp. ✷

In the same spirit, we also have:

Corollary 2. Umbilics can be detected from the two angular defects without computing the prin
curvatures.

Proof. At an umbilic point, we havekm = kM . Using the notations of the previous proof, it is eas
checked that(E −AkG)

2 − 4B2k2
G = 0 and sign(kG)� 0. ✷

Since two meshes are enough to infer the principal curvatures, it is tempting to infer the p
of the principal directions using the valence four mesh and Eq. (13). This equation yields the v
cos2a sin2 a, from which one is unable to distinguish betweena and 2π − a.

Remark. It is important to notice that Corollary 1 compares the Gauss curvature and the square
principal curvatures ofS against the angular defect normalized byη2—see Section 1.2 for a discussio
of the dimensionality issues.

6. Surfaces: the general case

This section generalizes the analysis carried out in the previous section. We relax the hypoth
the edges’ lengthsηis as well as on the anglesϕis, and provide an expression of the angular defect
Taylor expansion in the edges’ lengths.

6.1. Angular defect andkG

We shall need the following definition:

Definition 3. Consider the one-ring neighbors ofp. For the sake of conciseness, letci = cosϕi ,
si = sinϕi , and define the following quantities:

Ai = 1

4sinγi

[
ηiηi+1

(
c2
i s

2
i+1 + s2

i c
2
i+1

) − cosγi
2

(
η2
i

(
2c2

i s
2
i

) + η2
i+1

(
2c2

i+1s
2
i+1

))]
, (20)
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Bi = 1

4sinγi
ηiηi+1

(
c2
i c

2
i+1

) − cosγi
2

(
η2
i c

4
i + η2

i+1c
4
i+1

)
, (21)

Ci = 1

4sinγi

[
ηiηi+1

(
s2
i s

2
i+1

) − cosγi
2

(
η2
i s

4
i + η2

i+1s
4
i+1

)]
, (22)

Sp =A+B +C with A=
∑
i

Ai, B =
∑
i

Bi, C =
∑
i

Ci. (23)

The quantitySp is called themoduleof the mesh atp.

The first lemma we shall need is about the independence of the module with respect to the p
of the normal sections:

Lemma 3. The module of the mesh atp is independent from the anglesϕ1, . . . , ϕn.

Proof. Simply observe that

Ai +Bi +Ci = 1

4sinγi

[
ηiηi+1 − cosγi

2

(
η2
i + η2

i+1

)]
. ✷

The second lemma states, as in the regular case, that the angular defect is a homogeneous p
of degree two in the principal curvatures:

Lemma 4. Letη = supi ηi . The angular defect and the principal curvatures satisfy

2π −
n∑

i=1

γi =
(
AkG +Bk2

M +Ck2
m

) + o(η2). (24)

Proof. We express the directional curvatureλi using Euler’s relation. Plugging the values ofλi and
λi+1 into Eq. (9), summing over then one-ring neighbors and grouping terms inkG, k2

M andk2
m yields

Eq. (24). ✷
The main result, at last, provides an upper bound for the discrepancy between the normalized

defect and the Gauss curvature:

Theorem 4. Let Tm be a sequence of meshes on a surface havingp as a common vertex. Consider t
one-ring aroundp. Letηm = supi ηmi

, ηm = infi ηmi
. Suppose that

(1) there exist two positive constantsγmin, γmax such that∀i,∀m, 0< γmin � γmi
� γmax.

(2) there exist two positive constantsη1, η2 such that∀m, η1 � ηm/ηm
� η2.

Then, there exists a positive constantC such that

lim
m

sup

∣∣∣∣2π − ∑
i γim

Spm
− kG

∣∣∣∣ � nC
2sinγmin

[
(kM − km)

2 + ∣∣k2
M − k2

m

∣∣]. (25)
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Proof. Let us consider a particular mesh in the sequence, and for the sake of clarity, let us omit it
m. We haveBi � η2/(2sinγi) whenceB � nη2/(2sinγi). The same inequalities hold forCi andC.
From Eq. (24), we get∣∣∣∣2π −

∑
i

γi − (A+B +C)kG

∣∣∣∣ =
∣∣∣∣B(

k2
M − kG

) +C
(
k2
m − kG

)∣∣∣∣ + o(η2)

=
∣∣∣∣B +C

2
(kM − km)

2 + B −C

2

(
k2
M − k2

m

)∣∣∣∣ + o(η2)

� B +C

2
(kM − km)

2 +
∣∣∣∣B −C

2

∣∣∣∣
∣∣∣∣k2

M − k2
m

∣∣∣∣ + o(η2). (26)

Using the upper bounds onB andC and sinceSp does not depend on the anglesϕ1, . . . , ϕn, we get:∣∣∣∣2π − ∑
i γi

Sp
− kG

∣∣∣∣ � η2

|Sp|
n

2sinγmin

(
(kM − km)

2 + ∣∣k2
M − k2

m

∣∣) + o(1). (27)

Let us now get back to the sequence of meshes, i.e., consider that the previous equation is ind
m—that isη = ηm, γi = γmi

, Sp = Sp,m. The assumptions on theγmi
angles and those onηm/ηm imply

that there exists a constantC such thatη2/|Sp| � C, whence the result. ✷
The previous theorem deserves several comments:

• The limsup accounts for the fact that the limit of the discrepancy between the normalized a
defect andkG may not exist. The hypothesis used make it bounded, but one may have a sequ
alternating triangulations (e.g., indexed by odd and even integers) with different properties.

• Theorem 4 shows that the error uncured when approximating the Gauss curvature by(2π−∑
i γi)/Sp

depends uponkM andkm. In particular, this error in minimum ifkM = km if kG > 0—or kM = −km
if kG < 0. Although the Gauss curvature is intrinsic, i.e., invariant upon isometric transformatio
the surface, the accuracy of the estimate depends upon the particular embedding considered

• In using geodesic triangulations to estimatekG, the natural quantity to divide the angular def
by is the area of the triangles surroundingp. As the previous analysis shows, using Euclide
triangles induces the module of the mesh rather than its area. (Notice however that in both
the denominator is homogeneous to a surface area.)

• It should be observed that the error term may vanish under very special circumstances. W
encountered two of them in Section 5, namely for a valence six triangulation, or a valenc
triangulation witha = 0 mod π/2. Other cancellations can certainly be obtained exploiting
independence of theηis and theϕis.

6.2. Angular defect and the second fundamental form

We proceed with a couple of examples illustrating the relationship between the angular defe
Gauss curvature and the second fundamental form.

Example 1. Consider the monkey saddle of Fig. 9, pointp being at the origin. Using a triangulatio
whose one-ring neighbors are located above or below thez= 0 plane results in a positive angular defec
as if we were processing an elliptic vertex. Using a triangulation whose points are distributed on
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Fig. 9. Monkey saddle. Fig. 10. Local fold.

sides of the tangent plane results in a negative angular defect—as if an hyperbolic vertex was pr
Does this mean that two different triangulations may yield Gauss curvatures with opposite signs?

Fortunately not! For a surface such as the Monkey saddle, the second fundamental formIIp is
null so that the point is a planar point and any directional curvature aroundp is also null. No matte
what triangulation is used, the angular defect will converge to zero which corresponds to a null
curvature.

Example 2. Consider now the two surfaces of Fig. 10 and assume they differ by a small “fold” lo
in-between two consecutive one-ring neighbors of the mesh. IfIIp does not change—the fold affec
third or higher order terms of the Monge form ofS atp, neither the directional curvatures not the angu
defect are affected.

7. Illustrations

7.1. Experimental setup

This section discusses two examples illustrating the theoretical results of Sections 5 and 6. S
the properties we care about are second order differential properties, we focus on degree two
near a given point—taken to be the origin without loss of generality. We assume the surfaces a
as height functions in the coordinate system associated with the principal directions and the norm
we study experimentally the normalized angular defect for a sequence of triangulations convergin
origin.

With the usual notations, the surface is locally the graph of the bivariate function

z= 1
2

(
kMx

2 + kmy
2). (28)

Letp be a point on the surface and denote(x, y, z) its coordinates. Using polar coordinates in the tang
plane, that is(x, y, z)= (r cosθ, r sinθ, z(x, y)), and using Euler’s relation, Eq. (28) also reads as

z= 1
2kvr

2,

with kv the directional curvature in the normal section at angleθ . The square distanceη2 between the
origin and the pointp(x, y, z) satisfies

η2 = r2 + (
1
2kvr

2
)2
,
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or equivalently,

r2 = 2(−1+ √
1+ η2k2

v)

k2
v

. (29)

From the previous equation and onceθ has been set, one easily computes the coordinates of the
p lying in the normal section at angleθ and at distanceη from the origin. Repeating this operatio
for n pairs(θi, ηi)i=1,...,n defines the triangulation we are interested in. We shall consider three dif
sequences of triangulations:

Scenario #1: the regular case The angles and the edges’ lengths are chosen as in Section 5
sequence of triangulations is parameterized byη, the common edge length.

Scenario #2 The angles are chosen as is the regular case, but the edges’ lengths are chosen uni
random in the range[0, η]. More precisely and in order to be able to study the convergence ove
sequence, we assume that for each one-ring neighbor and whatever the value ofη, we haveηi = rdiη

with rdi a random number in[0,1].
Scenario #3 The angles are chosen at random but the edges’ lengths are all equal toη. As in the previous

case and in order to be able to study the convergence over the sequence, the anglesϕi are chosen onc
for all for then one-ring neighbors.

The statistics considered over a sequence of triangulations are the following ones:

• the angular defectδ = 2π − ∑n
i=1 γi ,• the normalized angular defectδ/η2,

• the expected limitL of the normalized angular defect as stated in Theorem 3 for the regular ca
in Lemma 4 for the general case.

7.2. Experimental results

As a first example, we present convergence results of regular triangulations for the elliptic para
z = (2x2 + y2)/2. Tables 1 and 2 present the results for a sequence of uniform valence six an
triangulations. For the valence eight triangulations, three such triangulations with decreasing
lengths are displayed on Fig. 11.

In both cases and when the edges’ lengths tend to zero, the triangles get flatter and the angul
converges to zero. The convergence rate is captured upon re-normalization byη2, and one indeed observe

Table 1
Convergence of the angular defect. Surface:
z = (2x2 + y2)/2; Scenario #1,n= 6

η δ δ/η2 L

1.000 0.97151 0.97151 1.73205
0.500 0.35429 1.41716 1.73205
0.100 0.01716 1.71563 1.73205
0.010 0.00017 1.73188 1.73205
0.001 0.00000 1.73205 1.73205

Table 2
Convergence of the angular defect. Surface:
z= (2x2 + y2)/2; Scenario #1,n = 8

η δ δ/η2 L

1.000 0.91462 0.91462 1.61396
0.500 0.33104 1.32416 1.61396
0.100 0.01599 1.59887 1.61396
0.010 0.00016 1.61381 1.61396
0.001 0.00000 1.61396 1.61396
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Fig. 11. A sequence of valencen = 8 regular triangulations for the elliptic paraboloidz = (2x2+y2)/2. The normalized angula
defect does not converge to the Gauss curvature—kG = 2 for this example.

Fig. 12. Triangulations of the hyperbolic paraboloidz = (2x2−y2)/2: (a) Regular triangulation; (b) Uniform angles but rand
edges’ lengths; (c) Random angles and uniform edges’ lengths. The normalized angular defects computed over such
converge to different limits depending uponkG but alsok2

m andk2
M

.

Table 3
Convergence of the angular defect. Surface:z =
(2x2 − y2)/2; Scenario #2,n= 8

η δ δ/η2 L

1.000 −0.77612 −0.77612 −0.83335
0.500 −0.26690 −1.06758 −1.06824
0.100 −0.01247 −1.24723 −1.24629
0.010 −0.00013 −1.25667 −1.25666
0.001 −0.00000 −1.25677 −1.25677

Table 4
Convergence of the angular defect. Surface:z =
(2x2 − y2)/2; Scenario #3,n = 8

η δ δ/η2 L

1.000 −0.69576 −0.69576 −1.09207
0.500 −0.26373 −1.05492 −1.24080
0.100 −0.01346 −1.34561 −1.35641
0.010 −0.00014 −1.36311 −1.36322
0.001 −0.00000 −1.36329 −1.36329

that δ/η2 converges to the expected limit. The sequence of valence six triangulations provides,√
3/2 factor, the exact value forkG. The valence eight triangulations does not since the limit v

involves the squares of the principal curvatures.
A second example is provided by the two sequences of triangulations of the hyperbolic para

z = (2x2 − y2)/2—see Fig. 12 (b), (c). These triangulations correspond to scenarios #2 and #3
previous section. For scenario #2 and since we assume the ratio of any pair of edges lengthsηi/ηj is
fixed over the sequence whenη decreases, it still makes sense to consider the normalized angular d
whose limit value is given by Lemma 4. For scenario #3, the normalized angular defect also make
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sinceηi = η for all one-ring neighbors. The results are displayed on Tables 3 and 4. The conco
between the computed value and the theoretical one is that expected. The limits associated with
triangulations are different and involve the squares of the principal curvatures.

8. Conclusion

Let S be a smooth surface,p a point of S, and consider a mesh providing a piecewise lin
approximation ofS aroundp. This paper establishes, asymptotically, several approximation re
relating the curvatures ofS at p and normalized angular defects of meshes atp. In particular, we
show that the angular defect does not provide in general, an accurate point-wise estimate of th
curvature.

From a practical standpoint, these results show that normalized angular defects should be
estimate the Gauss curvature for these cases only where the geometry of the meshes processed i
controlled. From a theoretical perspective, we believe these contributions might find applicatio
the many operations involving differential operators on meshes, that is fairing, smoothing, as
subdivision. A clear understanding of the geometry of meshes in certainly one step forward more
algorithms.

On a broader perspective, these contributions illustrate the difficulties one has to face in
to perform differential geometryon non smooth objects. It would therefore be very interesting
generalize the analysis presented in this paper to all the methods—least-square quadrics, gradie
operators, etc.—which are used to estimate the normal, mean curvature, principal directions, rid
of triangulated surfaces.
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Appendix A. Proof of Lemma 1

Using spherical coordinates (x = η cosθ , y = η sinθ ) to express the position of a pointp ∈ C, we get
thatC is implicitly represented byF(η, θ)= 0 with

F(η, θ)= y − f (x)= η sinθ − f (η cosθ). (A.1)

Obtaining an expression ofθ as a function ofη involves the implicit function theorem applied toF at
(η = 0, θ = 0). Unfortunately,∂F/∂θ(0,0) = 0. We get around the difficulty using an auxiliary functi
Φ defined as follows:

Lemma 5. LetΦ(η, θ) be defined by

η �= 0: Φ(η, θ)= F(η, θ)

η
= sinθ − f (η cosθ)

η
, (A.2)

η = 0: Φ(0, θ) = sinθ. (A.3)
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at
The functionΦ is C2, and the point(η = 0, θ = 0) is a regular point ofΦ. Moreover, near the origin

θ =Aη +Bη2 + o(η2).

Proof. The proof consists of three parts.
Part I. Φ(η, θ) versusF(η, θ). We first observe that working withF(η, θ) or Φ(η, θ) is equivalent.

Whenη �= 0, the solutions ofF = 0 andΦ = 0 are the same. Ifη = 0, the only solution ofΦ = 0 is
(0, θ = 0) which is also a solution ofF = 0. To be more precise, any pair(0, θ) is a solution ofF = 0,
and working withΦ instead ofF retains only one of these solutions, namely(0,0).

Part II. Φ(η, θ) is C2. To begin with, observe that

f (x) = kx2/2+ νx3/6+ o(x3) and f ′(x) = kx + νx2/2+ o(x2).

Using these two expressions in the following calculations are straightforward.

Φ is C0.

lim
η→0

F(η, θ)

η
= lim

η→0
sinθ − f (η cosθ)= sinθ.

Φ is C1. We consider∂Φ/∂η(0, θ) and∂Φ/∂θ(0, θ) in the two settings—η �= 0 andη = 0.

• η �= 0, ∂Φ/∂η(0, θ)

∂Φ

∂η
(0, θ)= lim

η→0

∂Φ

∂η
(η, θ)= −k cos2 θ

2
.

• η = 0, ∂Φ/∂η(0, θ)

∂Φ

∂η
(0, θ)= lim

η→0

Φ(η, θ)−Φ(0, θ)

η
= lim

η→0

(
sinθ − f (η cosθ)

η
− sinθ

)
= −k cos2 θ

2
.

• η �= 0, ∂Φ/∂θ(0, θ)
∂Φ

∂η
(0, θ)= lim

η→0

∂Φ

∂θ
(η, θ)= cosθ.

• η �= 0, ∂Φ/∂θ(0, θ)
∂Φ

∂η
(0, θ)= ∂ sinθ

∂θ
(0, θ)= cosθ.

Φ is C2. The equality of the four second order derivatives∂2Φ/(∂u1∂u2)with u1 = {η, θ} andu2 = {η, θ}
in the two settings are checked similarly.

Part III. Expression ofθ as a function of(η). To see that(0,0) is a regular point, observe th
∂Φ/∂θ(0,0)= cos 0= 1. SinceΦ is C2, applying the implicit function theorem yields

θ =Aη +Bη2 + o(η2). ✷
The proof of lemma is now straightforward:

Proof. From Eq. (9), one easily derives the equivalents of cosθ and sinθ as a function ofη.
Plugging them into Eq. (4) yields Eq. (5). Eq. (6) is proved in the same way observing thatpi−1 =
(−ηi−1 cosθi−1, ηi−1 sinθi−1). ✷
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q. (10)
Appendix B. Proof of Theorem 3

The proof of Theorem 3 consists of working out the expressions ofA(a,n), B(a,n) andC(a,n) from
Eq. (10). We begin with a lemma about trigonometric sums.

Lemma 6. Define the three trigonometric sums

t1(a, n)=
n∑

i=1

cos(2ϕi),

t2(a, n)= 1

2

n∑
i=1

cos(2ϕi + 2ϕi−1), (B.1)

t3(a, n)=
n∑

i=1

cos(4ϕi).

For a regular uniform mesh of valencen, we have

2π −
n∑

i=1

γi =
[
A(a,n)kG +B(a,n)k2

M +C(a,n)k2
m

]
η2 + o(η2) (B.2)

with

A(a,n)= 1

16sinθ(n)

(
2n− ncos 2θ(n)− ncosθ(n)− t2(a, n)+ t3(a, n)cosθ(n)

)
, (B.3)

B(a,n)= 1

16sinθ(n)

(
n+ n

2
cos 2θ(n)− 3n

2
cosθ(n)+ 2

(
1− cosθ(n)

)
t1(a, n)

+ t2(a, n)− cosθ(n)

2
t3(a, n)

)
, (B.4)

C(a,n)= 1

16sinθ(n)

(
n+ n

2
cos 2θ(n)− 3n

2
cosθ(n)− 2

(
1− cosθ(n)

)
t1(a, n)

+ t2(a, n)− cosθ(n)

2
t3(a, n)

)
. (B.5)

Proof. Since the angles in the tangent plane are known, we work out the angular defect using E
rather than Eq. (9). Assuming thatηi = η andβi = θ(n), we rewrite Eq. (10) as follows:

4sinθ(n)

η2
(βi − γi)=µi + o(1) (B.6)

with

µi = λiλi+1 − 1
2

(
λ2
i + λ2

i+1

)
cosθ(n). (B.7)

Expressing the directional curvaturesλi with Euler’s relation, that is

λi = cos2ϕikM + sin2ϕikm, (B.8)
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and substituting into n
i=i µi yields a homogeneous polynomial of degree four in sines and cos

We linearize this polynomial using the standard formulae cos2a = (1 + cos 2a)/2, sin2a = (1 −
cos 2a)/2, cosa cosb = (cos(a+b)/2+cos(a−b))/2, as well as cos2a sin2 a = (1−cos 4a)/8, cos4a =
(cos 4a+ 4cos 2a+ 3)/8, sin4a = (cos 4a− 4cos 2a+ 3)/8. Theses calculations simplify to Eqs. (B.3
(B.4) and (B.5).

Notice that the expressions ofB(a,n) and C(a,n) just differ by the sign of the coefficient o
t1(a, n). ✷
Lemma 7. Letα anβ be positive integers, and consider the sum

S(α,β,n)=
n∑

k=1

cos

(
α + k

βπ

n

)
. (B.9)

If βπ/n = 0 mod 2π , then S(α,β,n) = ncosα. If βπ/n �= 0 mod 2π and βπ = 0 mod 2π , then
S(α,β,n)= 0.

Proof. If βπ/n= 0 mod 2π , the result is trivial. Otherwise, consider the two terms:

S(α,β,n)=
n∑

k=1

cos

(
α + k

βπ

n

)
, T (α,β,n)=

n∑
k=1

sin

(
α + k

βπ

n

)
. (B.10)

Let β(n)= βπ/n. Using complex numbers we have the geometric sum

S(α,β,n)+ iT (α,β,n)=
n∑

k=1

eiα(eiβ(n))k = ei(α+β(n))1− einβ(n)

1− eiβ(n)
(B.11)

whose numerator is null ifnβ(n)= βπ = 0 mod 2π . ✷
We are now ready to prove Theorem 3:

Proof. To prove (1), we need to show thatB(a,n)= C(a,n) in Lemma 6. Using the trigonometric su
of Lemma 7, we havet1(a, n)= S(2a,4, n), t2(a, n)= S(4a − 4π/n,8, n), t3(a, n)= S(4a,8, n).

But t1(a, n) = 0 for all values ofn since, by the same lemma, we never have 4π/n = 0 mod 2π for
n � 3. SinceB andC just differ by the sign of the coefficient oft1, B = C for all ns.

For (2), A(a,n) andB(a,n) depend upona if the trigonometric sumst2 or t3 are non vanishing
According to the above lemma the condition is 8π/n= 0 mod 2π , which occurs forn= 4 only.

For (3), it is easily checked that the only value ofn such thatB(a,n) vanishes isn = 6. ✷
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