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Abstract

Let S be a smooth surface dt3, p a point onsS, k., ku, k¢ andky the maximum, minimum, Gauss and
mean curvatures of at p. Consider a setp; ppi+1}i=1....» Of n Euclidean triangles forming a piecewise linear
approximation ofS aroundp—with p,+1 = p1. For each triangle, let; be the angl€ p; pp;+1, and let the angular
defect atp be 2v — ), ;. This paper establishes, when the distarjggs || go to zero, that the angular defect is
asymptotically equivalent to a homogeneous polynomial of degree two in the principal curvatures.

For regular meshes, we provide closed forms expressions for the three coefficients of this polynomial. We show
that vertices of valence four and six are the only ones wherean be inferred from the angular defect. At
other vertices, we show that the principal curvatures can be derived from the angular defects of two independent
triangulations. For irregular meshes, we show that the angular defect weighted by the so-called module of the mesh
estimategg within an error bound depending upbg andk,.

Meshes are ubiquitous in Computer Graphics and Computer Aided Design, and a significant number of papers
advocate the use of normalized angular defects to estimate the Gauss curvature of smooth surfaces. We show
that the statements made in these papers are erroneous in general, although they may be true pointwise for very
specific meshes. A direct consequence is that normalized angular defects should be used to estimate the Gauss
curvature for these cases only where the geometry of the meshes processed is precisely controlled. On a more
general perspective, we believe this contributions is one step forward the intelligence of the geometry of meshes,
whence one step forward more robust algorithms.
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1. Introduction
1.1. Smooth and triangulated surfaces

Meshes are ubiquitous in modern computer-related geometry. Meshes are easily obtained from
physical objects through scanning and reconstruction. Meshes are commonly displayed by graphical
hardware. Meshes are intuitive to deal with. They provide hierarchical representations that can be used
for approximate representations. Meshes can be refined to smooth surfaces through subdivision.

In this context, and especially since meshes can be made dense enough so as to “look like” smooth
surfaces, it is tempting to define a differential geometry of meshes which mimics that of smooth surfaces.

Example quantities well defined smooth surfaces that also look appealing for meshes are the surface
area, the normal vector field, the curvatures, geodesics, the focal sets, the ridges, the medial axis, etc.

Interestingly, recent research in applied domains provides, for each of the notions just enumerated,
several estimates adapted from classical differential geometry to the setting of piecewise linear surfaces.
Several definitions of normals, principal directions and curvatures over a mesh can be found in (Taubin,
1995; Meyer et al., 2002). Ridges of polyhedral surfaces as well as cuspidal edges of the focal sets
are computed in (Watanabe and Belyaev, 2001). Geodesics and discrete versions of the Gauss—Bonnet
theorem are considered in (Polthier and Schmies, 1998). But none of these contributions address the
guestion of the accuracy of these estimates or that of their convergence when the mesh is refined.

As opposed to these approaches, the literature provides a few examplesiafi analysis. Given a
discrete set—a point cloud or a mesh—which is assumed to sample a surface in a certain way, differential
operators are derived together with theoretical guarantees about the discrepancy between the discrete
estimates and the true value on the underlying smooth surface.

In (Amenta and Bern, 1999) it is shown that the normal to a smooth surface sampled according to a cri-
terion involving the skeleton can be estimated accurately from the Voronoi diagram of the sample points.
The surface area of a mesh and its normal vector field versus those of a smooth surface are considered in
(Morvan and Thibert, 2001). More closely related to the question we address is (Meek and Walton, 2000),
which provides some error bounds for estimates of the normal and the Gauss curvature of a sampled
surface. In particular, Meek and Walton observe on a counterexample that the angular defect does not es-
timate the Gauss curvature, but no analysis is carried out. The missing analysis is presented in this paper.

1.2. Smooth surfaces, polyhedra, Gauss curvature and angular defect

In this section, we hi-light striking parallels between the Gauss curvature of polyhedra and smooth
surfaces off 3. More precisely, we recall:

(1) the definition of the Gauss curvature for smooth surfaces and polyhedra, as well as the Gauss—Bonnet
theorem in both cases.

(2) how the Gauss curvature of a smooth surface can be recovered from the angular defect of geodesic
triangles.

1.2.1. Gauss curvature and the Gauss—Bonnet theorem for surfaces and polyhedra
The Gauss curvature of an (abstract) oriented smooth Riemannian siffé&@ smooth function
ke on M defined by using the metric tensor. It is well known that the Gauss curvature of a domain is
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identically equal to zero if and only if it is locally isometric to a portion of plane. One can associate to
kg a curvature measur€; on M by integration over any domaiti of M:

Kc(U) = ka da,

U

where @& denotes the area form af. Suppose now tha¥ is isometrically embedded ig3. One way

to evaluate its Gauss curvature at a pgiris to make the product of the two principal curvaturesvbf

at p (this is nothing butheorema egregiurnf Gauss). An equivalent way it to use the Gauss map of
the embedding and to calculate the limdit/ A, whereA is the surface area of a region aroundA’ the
signed area of the image df on S? by the Gauss map, the limit being takeoughly speakinpas the
region A aroundp becomes smaller and smaller (Spivak, 1999, Vol. 2, Chapter lIl).

Consider now an abstract Riemannian polyhedfanAny point of P which is not a vertex has a
neighborhood isometric to a plane, and one can define its Gauss curvature to be 0, by analogy with the
smooth case. Moreover, jf is a vertex ofP, one can assign tp the angular defeat, =27 — ), y;
at p, where they;s stand for the angles atof the facets incident t@. We call this angular defet¢he
Gauss curvaturé; (p) of the vertexp (Reshetnyak, 1993, Section 5). Remark that it is now possible to
define a curvature measure @) as a measure concentrated on the verticeB,ddy setting over any
domainU of P

KeW)y= > ap).

p vertex inU

If P isisometrically embedded ifi%, then this angular defect is exactly the signed area of the image on
S2 by the Gauss map of any arbitrarily small neighborhoog pivhich is a property analogous to the
smooth case.

An important relationship relating the Gauss curvature to topological properties is the Gauss—Bonnet
theorem. Consider a closed orientable surfacend a closed polyhedro®, the latter with vertices
pP1, ..., pn. Let x(S) and x (P) stand for their Euler characteristic—that s— E + F in the usual
jargon. The global Gauss—Bonnet theorem respectively statésdiod P that—for the polyhedral case,
see (Banchoff, 1967):

znx(5)=//kc do, 1)
N

2rx(P)= Y ka(p). 2
i=1,....n

These remarkable results actually state that if the topology is fixed—i.e., the genus of the surface or the
polyhedron is given, the curvature distributes itselfSoor P so as to comply with that topology. Notice
that local versions of both theorems exist. (For the geodesic curvature involved in the local Gauss—Bonnet
theorem, see (Reshetnyak, 1993; Polthier and Schmies, 1998).)

Remark that in this context, the Gauss curvature of a point of a polyhedron is dimensionless, while
that of a surface is homogeneous to the inverse of a surface area. The topological invayaist 2
dimensionless, which is coherent with Egs. (1) and (2).
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n

Fig. 1. Flattening a geodesic triangle yields an estimate for the Gauss curvature.

1.2.2. Gauss curvature and geodesic triangles

An important property of geodesic triangles also which involves the Gauss curvature is the following—
see (Cheeger et al., 1984; Lafontaine, 1986).

Let 7; be a geodesic triangle ofy p, p; and p;4 its vertices/,, [;, [;+1 the lengths of the geodesic
arcs opposite to the vertices, ahg sup/;, /;,1}. Let T; be the Euclidean triangle whose edges have the
same lengths as those qf We call 7; a Euclidean geodesic trianglsince it is a Euclidean triangle,
but its edges’ lengths are geodesic distances. Finally; Ibe the angle of; at p, anda; be the angle
/p; ppi+1 Of T;. See Fig. 1 for an illustration. The angl@sande; differ by a term involving the Gauss
curvaturekg at p. More precisely, we have

Proposition 1. The angles3; and«; associated to a Euclidean geodesic trianglesatisfy
Bi = + § sina;kglili 1 + 0(%). ®3)

Consider now a geodesic triangulation aroymdthat is a set of: geodesic triangles having as
common vertex and forming a topological disk aroyndBy looking at the tangents to the geodesics
from p to the p;s, we have) , g; = 2r. Summing Eq. (3) for the: geodesic triangles immediately
yields the following

Theorem 1. Let7 be a geodesic triangulation of a smooth surfad¢eof E2. Let p be a vertex of, and
let A(p) be the sum of the areas of the trianglEsassociated to the Euclidean geodesic triangtes
Then

A(p)

27 — Zai = TkG + 0(1%).

This result is of little help from a practical standpoint since the knowledge of geodesics is required.
The question addressed in this paper is actually to study the quantity estimated by the angular defect
when one replaces the geodesics by the Euclidean line-segpents

1.3. Question addressed in this paper

Let S be a surface of2, and letp be a point ofS. Also suppose that we are given agetpiriti=1..n
of n Euclidean triangles forming a piecewise linear approximatiosi afoundp. We shall refer to these



V. Borrelli et al. / Computer Aided Geometric Design 20 (2003) 319-341 323

triangles as the mesh, and to the as the one-ring neighbors pf For each triangle, let; be the angle
Lpippi+1, and let the angular defect atbe 2r — . y;. Also, for a one-ring neighbop;, let »; stand
for the Euclidean distance betwegrand p; .

The question we address in this paper is:

How precisely can one estimate the curvatures at a poiat a smooth surface using the angular
defect of the triangles surrounding?

Before presenting the contributions, several comments are in order.

Dimensionality. In order for the previous question to make sense, we shall pay a special attention to
the dimensionality of the quantities involved. As already pointed out, the Gauss curvature of a smooth
surface is homogeneous to the inverse of a surface area while that of a polyhedron is dimensionless. To
estimate the curvatures of a smooth surface from a polyhedron, we will therefore have to normalize by
lengths (for the principal curvatures) or surface areas (Gauss curvature).

Smooth surfaces and asymptotic estimates. Estimating the curvatures of a smooth surfacéom a

single mesh is obviously an hopeless target. The foldsmfy indeed occur at a resolution much lower
than that of the triangulation, so that the mesh may fall short from providing accurate information on
the point-wise curvatures. The problem becomes more tractable if one asSuralesgs to a restricted

class of surfaces—e.g., with Lipchitz like conditions on the variation of the normal—or assumes that a
sequence of meshes with edges’ lengths going to zero is available. We shall in the paper follow this latter
perspective and derive asymptotic results.

Soundnessof theangular defect for the Gauss curvature of smooth surfaces. Since the angular defect
over geodesic triangles provides an estimatkgfit is tempting to believe that when the edges lengths
lppill go to zero, one can safely replace the geodesic arcs framthe p;s on S by the Euclidean
segmentp;s. We shall see it is not so.

1.4. Contributions

This paper establishes, when the distanges; | go to zero, that the angular defect is asymptotically
equivalent to a homogeneous polynomial of degree two in the principal curvatures. To state the results

Fig. 2. Can the curvatures of a smooth surface be estimated from the angular defect of a triangulation?
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more precisely, one need to distinguish between regular and irregular meshes. By regular mesh, we refer
to a mesh such that thes lie in normal sections two consecutive of which form an anglemofi2 with
the additional constraint thdipp; || is a constant. A mesh which is not regular is called irregular.

Regular meshes. We provide the closed form expression of the afore-mentioned polynomial as a function
of the principal curvatures andt2Zn. In particular, we show that = 4 is the only value of: such that

2mw — ) . y: depends upon the principal directions, and ihat6 is the only value such that2— ) . y;
provides an exact estimate fbg. A corollary of these results is that the principal curvatures—whence
kg andky—can be computed from the angular defects of any two triangulations whose valences are not
four.

Irregular meshes. We show that the angular defect weighted by the so-called module of the mesh
estimatesg within an error bound depending upép andk,,.

Practical relevance of our results. From a practical standpoint, normalized angular defects are
advocated as an estimator for the Gauss curvature in a significant number of papers—see, e.g., (Calladine,
1986; Meyer et al., 2002; Cskny and Wallace, 2000; Dyn et al., 2001). We show that the statements made
in these papers are erroneous in general, although they may be true pointwise for very specific meshes.
A direct consequence is that normalized angular defects should be used to estimate the Gauss curvature
for these cases only where the geometry of the meshes processed is precisely controlled.

Finally, it should be emphasized that along the derivation of these results, we prove several
approximation lemmas for curves and surfaces. These results may find applications in surface meshing,
surface subdivision, feature extraction,.

1.5. Paper overview

The paper is organized as follows. Section 2 provides the notations used throughout the paper. In
Section 3 we present approximation results for the curvature of plane curves. These results are used in
Section 4 to derive a formula on Euclidean triangles providing a piecewise linear approximation of a
smooth surface. Using restricted hypothesis on the geometry of these triangles, we show in Section 5
that the angular defect does not provide, in general, an estimatg; fdn Section 6, the hypothesis
of Section 5 are alleviated and a general result about the accuracy of the angular defect is proved.
lllustrations of the main theorems are provided in Section 7.

2. Notations

Consider a poinp of a smooth surface together withEuclidean triangle$p; ppi+1}i=1... .—Wwith
pni1 = p1—forming a piecewise linear approximation ®faroundp. The following notations are used
throughout the paper—see Fig. 3:

Normal sections; IT;, ¢;. Consider the planél; containing the normah, p and p;. We assumdT; is
defined by its angle; with respect to some coordinate system in the tangent plane—for example,
the one associated with the principal directions.
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Fig. 3. Notations. Fig. 4. p; in spherical coordinates.

Distanceto one-ring neighbor; ;. The Euclidean distance fromto itsith neighborp; is denotedy;.
Angle between normal sections; 8;. The angle between two consecutive normal sectignandI7; ;1
is denotedB;, that is8; = ;11 — ¢;. Put differently, 8; measures, in the tangent plane, the angle
between the tangents to the plane curSesi7; andS N I7; ;.
Polyhedral angle; y;. Consider the Euclidean trianglep; pi + 1. The angle atp, i.e., /p;ppi.1 IS
denotedy;. (Notice that the angle; is different from the angle; of Proposition 1.)
Directional curvatures; 1;. We let; stand for the curvature of the plane curye I7;. Notice that if
IT; contains a principal direction,; reduces to the corresponding principal curvatyyeor k,,, .

3. Planecurves

In this section, we provide an estimate for the curvature of a plane curve from the angular defect of an
inscribed polygon.

3.1. Alemma on plane curves

Let C be aC* smooth regular curve. Lgiy be a point ofC. It is well known thatC can locally be
represented by the grapgh, f(x)) of a smooth functionf, such thatpg = (0, 0) (i.e., f(0) = 0), and
such that the tangent 0 at pg is aligned with thex-axis (i.e., f’(0) = 0). Letk be the curvature of at
the origin (i.e..k = f”(0)), and letv = f"”(0). Near the origin we have

2 x3

Fo0 =+ 7 ot (4)

Let us now use polar coordinates:= n cosf andy = nsiné. In order to approximate the curvature
of C at po, we shall need an expressionéfs a function of;. Obtaining such an expression involves
the implicit function theorem, and the reader is referred to Appendix A for the proof of the following

Lemma 1. Let f(x) be aC> smooth regular function wittk = f”(0) and v = f”’(0). For a point
p = (ncoss, nsin@) on the graph off near the origin, one has

kn .

==+ —= fx>0,

0 2—|— 6+0(17) ifx>0 (5)
k .

9——”—”—+o(n) if x < 0. (6)

2 6
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Fig. 5. Smooth curve and inscribed polygon.

3.2. Approximating the curvature of a plane curve

The previous lemma can be used to estimate the curvature of a curve from the angulax;deffact
inscribed polygon. See Fig. 5 for the notations.

Theorem 2. Let p;,_1, p; and p; 1 be three points as indicated on Fi§y, with n; _, (1;+1) the distance
from p; to p;_1 (pi1)- Also letn; = (;_1 + n;11)/2. The angular defea; at p; and the curvature
satisfy

o if mig=nipa=n:

2% k+om, (7)
o if ni_1# Miga
= =kt o). ®)

Proof. Since the proofs of the two statements are similar, we focus just on the first one.
Egs. (5) and (6) applied tp;,1 and p;,_; vield 6;_1 + 6;.1 = kn + o(5?). But we also have
0;_1+ 6,11 = — a;, whence the result. O

Interestingly, the speed of convergence is faster when the two neighbors are located at the same
distance fronmp;.

Remark. The previous theorem can be extended to space curves.

4. A lemmaon normal sections and Euclidean triangles

This section is devoted to a general result involving Euclidean triangles and smooth surfaces. This
result is the cornerstone of the next two sections.
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Using the notations of Section 2, we aim at finding a dependence relationship between; and
n;+1. More precisely, we shall consider that the normal secti@rs are fixed—which determines the
©;S, Bis andx;s—and study the dependence betweem; andn; 1.

Lemma 2. With the above notations, let = max(n;, n;11). Define the following sum and product
functions

s(Miy Nit1) = —kizniz i 21'2+177i2+1, P, nit1) = 7)”)”“:" it
Theg;, y;, n; andn; 1 quantities satisfy

Bi=vi+ % — s(i, Mi+1) COty; + 0(n%) 9
and

Bi=vi+ %Zfl) — s(ni, mi+1) COtB; + 0(n). (10)

Proof. The proofs of the two claims following the same guideline, we just prove the second one. Assume
point p is at the origin. Let us write the coordinates gf in spherical form with the conventions of
Fig. 4—that isp measures an angle in the tangent plané at p. If X’ stands for the transpose &f,
the coordinates op; are p; = (; C0SY; COSy;, n; COSH; Sing;, n; sinb;)’, and similarly forp; ;.

Sincep; = ¢;+1 — @i, expressing the dot produpp; - pp,.1 = nini+1COSy; in spherical coordinates
yields

COSy; = COSf; COSH; COSH; 11 + SiNG; Sinb; ;1. (1))
Since the curvél; N S is a plane curve, using Eq. (5) which expresgées a function of, we have

A2n? _ Aini
cos; =1— =L+ 00r?). sing; = “ZL +o(,).

Plugging these values into Eqg. (11) yields

cosy; = (1= s, ni+1)) COSB; + p(ni, Mmi+1) + 0(n?).

To turn the previous expression into a relationship betweemd g;, we use the Taylor formula of order
one tof (x) = arccosx) together witha = cosg; andb = cosy;:

-1
n=ht g (=s(ni, mi1) €OSB; + p(ni, miva) +0(%) + 0(n%).
Re-arranging the terms completes the proafi
5. Surfacesand regular polygons

5.1. Main result and implications

Using the lemma proved in the previous section, we are now ready to analyze the angular defect for
regular meshes. We shall need the following definitions.
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Fig. 6. Regular triangulation around tangent plane seen from above.

Definition 1. Let p be a point of a smooth surfaceand letp;, i = 1,...,n be its one ring neighbors.
Point p is called aregular vertexif (i) the p;s lie in normal sections two consecutive of which form an
angle of6 (n) = 2 /n, (i) the n;s all take the same valug

Definition 2. Consider the directions of maximum and minimum curvature§ af p. Assume these
directions are associated two vectggs andvy, such thatyy A v, = n—with n be the normal of at p.
The offset angle: is defined as the angle [0, 2z [ between the vectong, andpsw (py) with 7 (p,) the
projection of p; in the tangent plane.

Let us now get back to the notations of Section 2 at a regular vertex. Aniglehe angle fromvy
to the normal section of the first normal section. For a regular vertexg;thare constant and equal to
6(n), so thaty; = a + (i — 1)6(n). Under these hypothesis, we provide a closed form expression for the
angular defect. The reader is referred to Appendix B for the proof of the following theorem.
Theorem 3. Consider a regular vertex of valenee The following holds

(1) There exists two function&(a, n) and B(a, n) such that
27 — Z vi = [A(a, )k + B(a, n) (k3 + k2) |n? + o(n). (12)
(2) The only vaIue ofi such that the functiond (a, n) and B(a, n) depend upom is n = 4, and then
21 — i yi = [(1—2coS asirfa)kg + cos asirf a(ky, + k2 )]n* + o(n?). (13)

@3) If n #4:

Z 2—cos4—n —cosz—n k
Vi= 165|n21'/n n n )¢

1 4 3 2
(1 +5005— — 3 cos—) (K3, + k2 )] n? + o(n?). (14)
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Fig. 7. The coefficienta\ (a, 4), B(a,4) and A(a, 4) + B(a, 4)—respectively (solid curve, top), (solid curve, bottom), (dotted
curve).

0.2

n

Fig. 8. The coefficient®\(a, n), B(a,n) andA(a, n) + B(a, n)—respectively (solid curve, top), (solid curve, bottom), (dotted
curve).

In particular, the only value of such thatB(a, n) =0isn = 6, and thenA(a, 6) = v/3/2, that is

3
21 =Y yi= %kGTI2 +0(7?). (15)

The graphs of the functions(a, 4) andB(a, 4), as well asA (a, n) andB(a, n) for n # 4 are presented
on Figs. 7 and 8. For the angular defect to provide an estimate;faa sufficient condition is to have
a regular triangulation of valence = 4 with the one-ring neighbors are aligned with the principal
directions. Another sufficient condition is to have a regular valence six triangulation. Therefore, the
angular defect is expected to provide good results for triangulations where valence six vertices are



330 V. Borrelli et al. / Computer Aided Geometric Design 20 (2003) 319-341

prominent. Example such triangulations are those generated by subdivision processes. Apart from the
two favorable configurations just mentioned, several other configurations are of course possible. From a
practical standpoint, these results show that normalized angular defects should be used to estimate the
Gauss curvature for these cases only where the geometry of the meshes processed is precisely controlled.
Thevalence six almost everywhesbservation is also related to the following question. In Section 1.2
we recalled the Gauss—Bonnet theorem for a polyhédeand a compact orientable surfageAssume
P and S are homeomorphic. An interesting issue is the global convergence of the sum of the angular
defects overP when P is refined so as to converge $0 The fact that valence six vertices are expected
almost everywhere is certainly related to the answer. Fully resolving this issue is a geometric measure
theory related question.
At last, the previous theorem fully explains the observation made in (Meek and Walton, 2000), based
on a counter-example, that the angular defect does not estimate the Gauss curvature.

5.2. Corollaries

Interestingly, although the Gauss curvature is not estimated by the angular defect, the principal
curvatures can be recovered from two different meshes:

Corollary 1. The principal curvatures of a smooth surface can be computed from the angular defects of
any two meshes of valencesandn, such thate, £ 4, n, # 4, ny # n».
In particular, consider a sequenc®, of triangulations of valenc@p with p > 3 and p # 4. LetT,
be any regular sequence of sub-triangulationsI'gf. (That is any triangulation irfl’, is regular in the
usual sensg.The principal curvatures can be computed from the angular defedts,@nd 7.

Proof. Assume we are given two meshes with valencgandn, different from four. LetE (n;) be the
limit value of (27 — ", y:)/n? andA(n;), B(n;) be the coefficients df; andk2 + k2, in Eq. (12) have:
E(n1) = A(npkg + (k2 + k%) B(ny),
{ E(n2) = A(no)kg + (k2 + k%) B(n2).
Sinceny # ny; = A(n1)B(ny) — A(np) B(ny) # 0, we have
o= E(n1)B(nz) — E(n2)B(ny)
A(ny)B(nz) — A(nz) B(ny)

If E refers to one of thé (n;) and similarly forA and B, once the Gauss curvature is known, we are
left with the system

kmkm = ke,
{ (k2 +k2)B =E — Akg.
Letting D = E — Ak and observing thaB # 0 sincen # 4 yields
Bk} — Dk2 + BkZ =0, (17)
which solves to

E — Akg — \J(E — Akg)? — 4B,

k2 = . 18

(16)
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Notice that the sign of the square root chosen in the previous expression does not matter since the two
solutions corresponding th /are actually conjugated with respectkigpk,, = k¢, that is

2 E-Akg+ \/(E — Akg)? — AB%2
= g = 2B .

k2, (19)

Oncek? and k2, have been computed,, andk,, are determined observing that the product of their
signs is the sign ok, and thatk,, < k). Oncek,, and k), are known, the mean curvatukg, is
kir = Gk + kar) /2.
For the second part, just apply the first part to the two regular sequences of triangufajcarsd
T,. O

In the same spirit, we also have:

Corallary 2. Umbilics can be detected from the two angular defects without computing the principal
curvatures.

Proof. At an umbilic point, we havé,, = k). Using the notations of the previous proof, it is easily
checked thatE — Akg)? — 4B%k2 = 0 and sigitkg) > 0. O

Since two meshes are enough to infer the principal curvatures, it is tempting to infer the position
of the principal directions using the valence four mesh and Eq. (13). This equation yields the value of
cog a sir? a, from which one is unable to distinguish betweeand 2r — a.

Remark. It is important to notice that Corollary 1 compares the Gauss curvature and the squares of the
principal curvatures of against the angular defect normalized/ffy—see Section 1.2 for a discussion
of the dimensionality issues.

6. Surfaces: thegeneral case

This section generalizes the analysis carried out in the previous section. We relax the hypothesis on
the edges’ lengthsg;s as well as on the anglgss, and provide an expression of the angular defect as a
Taylor expansion in the edges’ lengths.
6.1. Angular defect ankl;

We shall need the following definition:

Definition 3. Consider the one-ring neighbors @f For the sake of conciseness, let= cosy;,
s; = Sing;, and define the following quantities:

B 1
~ 4siny,

COosy;
(et i) = SR () | @)

i
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1 cosy;
"= Zsiny, [’7" miva(efela) — ——(nicf + ni2+lC;1+1)j|’ (1)
1 22 COSYi, 24 2 4
a 4siny; |:m aa(57555) = 2 (n7si* +n7sastia) | (22)
S,=A+B+C withA=>"A;, B=) B, C=) C. (23)
i i i

The quantityS,, is called themoduleof the mesh ap.

The first lemma we shall need is about the independence of the module with respect to the positions
of the normal sections:

Lemma 3. The module of the mesh atis independent from the angles, ..., ¢,.

Proof. Simply observe that

cosy;
I —’<nf+n,a1>] g

Ai+Bi+Ci=-——
B 4smy,-[ 2

The second lemma states, as in the regular case, that the angular defect is a homogeneous polynomial
of degree two in the principal curvatures:

Lemma 4. Letn = sup n;. The angular defect and the principal curvatures satisfy

2 — > "y = (Ake + Bkl + CKZ) + o(n?). (24)
i=1

Proof. We express the directional curvatuxe using Euler’s relation. Plugging the values xf and
Aiy1 into Eq. (9), summing over the one-ring neighbors and grouping termskig, k2, andk? yields
Eqg. (24). O

The main result, at last, provides an upper bound for the discrepancy between the normalized angular
defect and the Gauss curvature:

Theorem 4. Let T,, be a sequence of meshes on a surface hayiag a common vertex. Consider the
one-ring aroundp. Letn,, = sup 0, n, = inf; n,,,. Suppose that

(1) there exist two positive constantsin, Ymax such thatvi, Vm, 0 < ymin < Vi, < Ymax:
(2) there exist two positive constanis, n, such thatvm, n, < 7,,/ n, <2

Then, there exists a positive consté&rguch that

lim su%m—k < [ — k) + 12— 2] (25)

G| X .
Pm 2 SIr.l)/mll’l



V. Borrelli et al. / Computer Aided Geometric Design 20 (2003) 319-341 333

Proof. Let us consider a particular mesh in the sequence, and for the sake of clarity, let us omit its index
m. We haveB; < n?/(2siny;) whenceB < nn?/(2siny;). The same inequalities hold far; and C.
From Eq. (24), we get

+0(n?)

=\B<k§4—ka>+c<k;—kc>

21 =Y v — (A+ B+ Olkg

+0(n?)

B+C -C
:‘ (kyy — k,,,)+ 5 —— (k5 —k2)

B+C B—-C
< =k — k)2 + — ks — k3| + o). (26)

Using the upper bounds ah andC and sinceS, does not depend on the angles.. . ., ¢,, we get:

21 =Y v n
- = G g B
Let us now get back to the sequence of meshes, i.e., consider that the previous equation is indexed by
m—that isn =, Vi = Ym;» Sp = Sp.m. The assumptions on thg,, angles and those on./n imply

that there exists a constafitsuch thaty?/|S,| < C, whence the result. O

(Gew — k)2 + K2, — K2]) + 0(D). (27)

The previous theorem deserves several comments:

e The limsup accounts for the fact that the limit of the discrepancy between the normalized angular
defect andcg may not exist. The hypothesis used make it bounded, but one may have a sequence of
alternating triangulations (e.g., indexed by odd and even integers) with different properties.

e Theorem 4 shows that the error uncured when approximating the Gauss curvaire-by . y;)/S,
depends upoky, andk,,. In particular, this error in minimum ity = k,, if kg > 0—orky = —k,,
if kg < 0. Although the Gauss curvature is intrinsic, i.e., invariant upon isometric transformations of
the surface, the accuracy of the estimate depends upon the particular embedding considered.

e In using geodesic triangulations to estimatg the natural quantity to divide the angular defect
by is the area of the triangles surroundipg As the previous analysis shows, using Euclidean
triangles induces the module of the mesh rather than its area. (Notice however that in both cases,
the denominator is homogeneous to a surface area.)

e It should be observed that the error term may vanish under very special circumstances. We have
encountered two of them in Section 5, namely for a valence six triangulation, or a valence four
triangulation witha = 0 mod /2. Other cancellations can certainly be obtained exploiting the
independence of the s and they;s.

6.2. Angular defect and the second fundamental form

We proceed with a couple of examples illustrating the relationship between the angular defect, the
Gauss curvature and the second fundamental form.

Example 1. Consider the monkey saddle of Fig. 9, popteing at the origin. Using a triangulation
whose one-ring neighbors are located above or below th@ plane results in a positive angular defect—
as if we were processing an elliptic vertex. Using a triangulation whose points are distributed on the two
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Fig. 9. Monkey saddle. Fig. 10. Local fold.

sides of the tangent plane results in a negative angular defect—as if an hyperbolic vertex was processed.

Does this mean that two different triangulations may yield Gauss curvatures with opposite signs?
Fortunately not! For a surface such as the Monkey saddle, the second fundamentdllforsn

null so that the point is a planar point and any directional curvature arpuisdalso null. No matter

what triangulation is used, the angular defect will converge to zero which corresponds to a null Gauss

curvature.

Example 2. Consider now the two surfaces of Fig. 10 and assume they differ by a small “fold” located
in-between two consecutive one-ring neighbors of the mesh! |fdoes not change—the fold affects
third or higher order terms of the Monge form &t p, neither the directional curvatures not the angular
defect are affected.

7. Illustrations
7.1. Experimental setup

This section discusses two examples illustrating the theoretical results of Sections 5 and 6. Since all
the properties we care about are second order differential properties, we focus on degree two surfaces
near a given point—taken to be the origin without loss of generality. We assume the surfaces are given
as height functions in the coordinate system associated with the principal directions and the normal, and
we study experimentally the normalized angular defect for a sequence of triangulations converging to the
origin.

With the usual notations, the surface is locally the graph of the bivariate function

2= 3 (knx® + kny?). (28)

Let p be a point on the surface and den6tey, z) its coordinates. Using polar coordinates in the tangent
plane, that igx, y, z) = (r cos, r sinb, z(x, y)), and using Euler’s relation, Eq. (28) also reads as

1, .2
z:ikvr,

with k, the directional curvature in the normal section at arfgl@he square distanog between the
origin and the poinp (x, y, z) satisfies

n2 — r2 4 (%kurZ)z’
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or equivalently,

5 2(=1+ /14 n%?)
2 v | (29)

kS
From the previous equation and ontdas been set, one easily computes the coordinates of the point
p lying in the normal section at angke and at distancey from the origin. Repeating this operation
for n pairs(6;, n;);=1..., defines the triangulation we are interested in. We shall consider three different
sequences of triangulations:

Scenario #1: theregular case The angles and the edges’ lengths are chosen as in Section 5. The
sequence of triangulations is parameterized Jghe common edge length.

Scenario #2 The angles are chosen as is the regular case, but the edges’ lengths are chosen uniformly at
random in the ranggo, n]. More precisely and in order to be able to study the convergence over the
sequence, we assume that for each one-ring neighbor and whatever the value blaven; = rd;n
with rd; a random number if0, 1].

Scenario #3 The angles are chosen at random but the edges’ lengths are all eguaktim the previous
case and in order to be able to study the convergence over the sequence, the; arglebosen once
for all for then one-ring neighbors.

The statistics considered over a sequence of triangulations are the following ones:

e the angular defec =27 —"/_, v,

e the normalized angular defegitn?,

¢ the expected limiL of the normalized angular defect as stated in Theorem 3 for the regular case and
in Lemma 4 for the general case.

7.2. Experimental results

As a first example, we present convergence results of regular triangulations for the elliptic paraboloid
z = (2x%2 4+ y?)/2. Tables 1 and 2 present the results for a sequence of uniform valence six and eight
triangulations. For the valence eight triangulations, three such triangulations with decreasing edges’
lengths are displayed on Fig. 11.

In both cases and when the edges’ lengths tend to zero, the triangles get flatter and the angular defect
converges to zero. The convergence rate is captured upon re-normalizatirabyl one indeed observes

Table 1 Table 2
Convergence of the angular defect. Surface: Convergence of the angular defect. Surface:
7= (2x2 + y2)/2; Scenario #1y = 6 7= (2x2 + y2)/2; Scenario #1y = 8
1 8 8/n? L 1 8 8/n? L
1.000 0.97151 0.97151 1.73205 1.000 0.91462 0.91462 1.61396
0.500 0.35429 141716 1.73205 0.500 0.33104 1.32416 1.61396
0.100 0.01716 1.71563 1.73205 0.100 0.01599 1.59887 1.61396
0.010 0.00017 1.73188 1.73205 0.010 0.00016 1.61381 1.61396

0.001 0.00000 1.73205 1.73205 0.001 0.00000 1.61396 1.61396
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Fig. 11. A sequence of valenae= 8 regular triangulations for the elliptic parabolaig= (2x2 +y2)/2. The normalized angular
defect does not converge to the Gauss curvatug= 2 for this example.

Fig. 12. Triangulations of the hyperbolic parabolgig (22— y2)/2: (a) Regular triangulation; (b) Uniform angles but random
edges’ lengths; (¢) Random angles and uniform edges’ lengths. The normalized angular defects computed over such sequences
converge to different limits depending upbkg but alsok,% andklzw.

Table 3 Table 4

Convergence of the angular defect. Surface: Convergence of the angular defect. Surface:

(2x2 — y2)/2; Scenario #2p = 8 (2x2 — y2)/2; Scenario #3; = 8

n 8 8/n? L 1 8 8/n? L

1.000 -0.77612 -0.77612 —0.83335 1.000 -0.69576 —0.69576 —1.09207
0.500 -0.26690 —1.06758 —1.06824 0.500 -0.26373 —1.05492 —1.24080
0.100 —0.01247 —1.24723 —1.24629 0.100 —0.01346 —1.34561 —1.35641
0.010 -0.00013 -—-1.25667 —1.25666 0.010 -0.00014 -1.36311 -1.36322
0.001 -0.00000 -1.25677 —1.25677 0.001 -0.00000 -1.36329 —1.36329

that §/n° converges to the expected limit. The sequence of valence six triangulations provides, up to a
V/3/2 factor, the exact value for;. The valence eight triangulations does not since the limit value
involves the squares of the principal curvatures.

A second example is provided by the two sequences of triangulations of the hyperbolic paraboloid
z = (2x? — y?)/2—see Fig. 12 (b), (c). These triangulations correspond to scenarios #2 and #3 of the
previous section. For scenario #2 and since we assume the ratio of any pair of edgesjghgtis
fixed over the sequence wherdecreases, it still makes sense to consider the normalized angular defect,
whose limit value is given by Lemma 4. For scenario #3, the normalized angular defect also makes sense
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sincen; = n for all one-ring neighbors. The results are displayed on Tables 3 and 4. The concordance
between the computed value and the theoretical one is that expected. The limits associated with the two
triangulations are different and involve the squares of the principal curvatures.

8. Conclusion

Let S be a smooth surfacep a point of S, and consider a mesh providing a piecewise linear
approximation ofS around p. This paper establishes, asymptotically, several approximation results
relating the curvatures of at p and normalized angular defects of meshegpatn particular, we
show that the angular defect does not provide in general, an accurate point-wise estimate of the Gauss
curvature.

From a practical standpoint, these results show that normalized angular defects should be used to
estimate the Gauss curvature for these cases only where the geometry of the meshes processed is precisely
controlled. From a theoretical perspective, we believe these contributions might find applications for
the many operations involving differential operators on meshes, that is fairing, smoothing, as well as
subdivision. A clear understanding of the geometry of meshes in certainly one step forward more robust
algorithms.

On a broader perspective, these contributions illustrate the difficulties one has to face in order
to perform differential geometryon non smooth objects. It would therefore be very interesting to
generalize the analysis presented in this paper to all the methods—least-square quadrics, gradient-based
operators, etc.—which are used to estimate the normal, mean curvature, principal directions, ridges, etc
of triangulated surfaces.
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Appendix A. Proof of Lemma 1

Using spherical coordinates & ncost, y = nsind) to express the position of a poipte C, we get
that C is implicitly represented by (5, 6) = 0 with

F(n,0) =y — f(x) =nsing — f(ncosv). (A1)

Obtaining an expression éfas a function of; involves the implicit function theorem applied foat
(n=0,0 = 0). Unfortunately,d F /96 (0, 0) = 0. We get around the difficulty using an auxiliary function
@ defined as follows:

Lemmab. Let @(n, 0) be defined by

Fn.6) = sind
n

140 B(n.0)= —@,

n=0: &(0,0)=sind. (A.3)

(A.2)
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The function® is C2, and the poinin = 0, § = 0) is a regular point of®. Moreover, near the origin
6 = An+ B1* +0(n°).

Proof. The proof consists of three parts.

Part . @(n, ) versusF(n,0). We first observe that working with'(n, ) or @ (n, 0) is equivalent.
Whenn # 0, the solutions off = 0 and® = 0 are the same. lf§ = 0, the only solution o> =0 is
(0,6 = 0) which is also a solution of' = 0. To be more precise, any paD, 0) is a solution ofF =0,
and working with® instead ofF retains only one of these solutions, namgly0).

Part Il. @(n, 6) is C?. To begin with, observe that

f(x)=kx%/24+vx3/6+0(x% and f'(x)=kx+vx?/2+ 0(x?).
Using these two expressions in the following calculations are straightforward.
P is C°.
. F(@n,0 . .
lim L = lim sind — f(ncosh) = sind.
n—0 n n—0
@ is C. We consided®/3n(0,9) andd®/36(0, 6) in the two settings—# # 0 andn = 0.

e n#0,0D/3n(0,0)
9 6.0y = lim 2. 6y — kcos 6
87’] k) _n_>0 877 n’ - 2 .

e n=0,30/n(0,8)

0P
—(0, 8) = Ilim
817( =1 2

n—0 n n—0

¢(@,6) - 20.6) = lim (sine — 7f(77 ;050) — sin@) = _kco§0.

o n£0,30/30(0,0)

0P . 09
—(0,60) = lim —(n, 6) = coss.
on n—0 06

e n#£0,09/36(0,0)
P asind
—(0,0) = (0,0) = cosh.
an 90

@ is C?. The equality of the four second order derivativée / (du'du?) with u' = {n, 0} andu? = {n, 6}
in the two settings are checked similarly.

Part 1ll. Expression of6 as a function of(n). To see that(0, 0) is a regular point, observe that
dd/36(0,0) = cos 0= 1. Sinced is C2, applying the implicit function theorem yields

0=An+Bn®>+o0(1n?. O
The proof of lemma is now straightforward:
Proof. From Eq. (9), one easily derives the equivalents oféc@d sird as a function ofx.

Plugging them into Eq. (4) yields Eqg. (5). Eq. (6) is proved in the same way observing;that
(—=7i-1C0S0; 1, ;—1SING;_1). O



V. Borrelli et al. / Computer Aided Geometric Design 20 (2003) 319-341 339

Appendix B. Proof of Theorem 3

The proof of Theorem 3 consists of working out the expressions(@fn), B(a, n) andC (a, n) from
Eg. (10). We begin with a lemma about trigonometric sums.

Lemma 6. Define the three trigopnometric sums

f(a.n)=_cod2p),

i=1
1 n
fr(a,n) = > Z CoS2¢; + 2¢;_1), (B.1)
i—1

ta(a,n) = ) | cosdg;).

i=1

For a regular uniform mesh of valeneg we have

27 — Z vi = [A(a,n)kg + B(a, n)ky; + C(a,n)k2]n* + o(n?) (B.2)
with -
A(a,n) = erw(n)(zn —ncosd(n) —ncosd(n) — ta(a, n) + tz(a, n) COsH(n)), (B.3)
B@.n) = fpas (n + 5 cosB(n) - 37” cost (n) + 2(1 — cosh(n) ) (a. n)
+ta(a,n) — Cose(ng(a,n)), (B.4)
Clam = et (n + " cosB(n) — 2 cosh(n) — 2(1 — cosd(n))ta(a, n)
sinf (n) 2 2

So(n)

+ tr(a,n) — co tg(a,n)>. (B.5)

Proof. Since the angles in the tangent plane are known, we work out the angular defect using Eq. (10)
rather than Eq. (9). Assuming that=n andg; = 6(n), we rewrite Eq. (10) as follows:

4sinf (n)

T((,Bi — %) =i +0(1) (B.6)
with

i = Midip1 — 3(A2 + A2, ;) cosd(n). (B.7)

Expressing the directional curvaturgswith Euler’s relation, that is
Ai ICOSZQDikM +Sinz§0ikm, (88)
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and substituting intdy_;_, u; yields a homogeneous polynomial of degree four in sines and cosines.
We linearize this polynomial using the standard formulae?gos (1 + cos2)/2, sifa = (1 —
cos 21)/2, cosa cosb = (coda—+b)/2+coga—b))/2,aswell as cds sifa = (1—cos 41)/8, costa =
(cos 4 +4cos 2 + 3)/8, sin'a = (cos4 — 4cos 2 + 3)/8. Theses calculations simplify to Egs. (B.3),
(B.4) and (B.5).

Notice that the expressions d(a,n) and C(a,n) just differ by the sign of the coefficient of
ti(a,n). O

Lemma7. Leta an 8 be positive integers, and consider the sum

B n ﬁ_jT
S(a,,B,n)_Zcos<oc+k . ) (B.9)

k=1
If Br/n =0 mod 2r, then S(«, 8,n) =ncosu. If Br/n %0 mod 2r and B = 0 mod 2Zr, then
S(a, B,n)=0.

Proof. If B7/n =0 mod 2r, the result is trivial. Otherwise, consider the two terms:

S(a, B,n) =Zcos<a+kﬁ—”>, T(a,,B,n)=Zsin(a+kﬂ—n). (B.10)
n n
k=1 k=1
Let B(n) = Bz /n. Using complex numbers we have the geometric sum
s iT 3 de(@Pinyf = glatpom L= €07 B.11
(o, f.) +1T (o ) = ) €(€7")" = TG (B.11)

k=1
whose numerator is null #8(n) = 7 =0mod Zr. O

We are now ready to prove Theorem 3:

Proof. To prove (1), we need to show thB{a, n) = C(a, n) in Lemma 6. Using the trigonometric sum
of Lemma 7, we have (a, n) = S(2a, 4, n), t,(a,n) = S(4a — 4 /n, 8,n), tz(a,n) = S(4a, 8, n).

But #1(a, n) = 0 for all values ofn since, by the same lemma, we never haxg¢ 4= 0 mod 2r for
n > 3. SinceB and(C just differ by the sign of the coefficient of, B = C for all ns.

For (2), A(a,n) and B(a,n) depend upor if the trigonometric sums, or f3 are non vanishing.
According to the above lemma the condition is/& = 0 mod 2r, which occurs fon = 4 only.

For (3), it is easily checked that the only valueno$uch thatB(a, n) vanishes iss =6. O
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