‘H
& COMPUTER
% AIDED
GEOMETRIC
DESIGN

ELSEVIER Computer Aided Geometric Design 18 (2001) 483-502
www.elsevier.com/locate/comaid

A subdivision scheme for surfaces of revolution

Géraldine Morin, Joe Warren Henrik Weimer
Rice University, Department of Computer Science, Houston, TX 77251-1892, USA

Received June 2000; revised February 2001

Abstract

This paper describes a simple and efficient non-stationary subdivision scheme of order 4.
This curve scheme unifies known subdivision rules for cubic B-splines, splines-in-tension and a
certain class of trigonometric splines capable of reproducing circles. The curves generated by
this unified subdivision scheme a6 splines whose segments are either polynomial, hyperbolic
or trigonometric functions, depending on a single tension parameter. This curve scheme easily
generalizes to a surface scheme over quadrilateral meshes. The authors hypothesize that this surface
scheme produces limit surfaces that @rzcontinuous everywhere except at extraordinary vertices
where the surfaces a€@! continuous. In the particular case where the tension parameters are all set
to 1, the scheme reproduces a variant of the Catmull-Clark subdivision scheme. As an application,
this scheme is used to generate surfaces of revolution from a given profile cue@81 Published
by Elsevier Science B.V.

1. Thecurve scheme

We begin by considering the three related curve schemes: cubic splines, splines-
in-tension and a certain class of trigonometric splines. Based on the description of
these splines in terms of their locally supported basis functions, we generate known
subdivision masks for each scheme. Finally, we derive a new, common subdivision mask
that unifies these three families of splines. More details on the study of these splines,
their characteristic differential equation, and the links between differential equations and
subdivision are given by Warren and Weimer (2001).
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1.1. The underlying spline spaces

The curve subdivision scheme proposed in this section converges to piecewise functions
whose segments are solutions to the differential equation

pPx]—yp@x]==0. 1)

Depending on the sign of, the solutions to this differential equation can be expressed as
follows:
e If y ==0, then the solutionp[x] to this equation are the polynomialsxl x2, x3.
e If y >0, then the solutionp[x] to this equation are the functionsi, cosh,/y x1,
sinh./y x].
¢ If y <0, then the solutiong[x] to this equation are the functionsa, cog./—y x],
sin[/—y x].
(If y <0, then we assume that—y Bo < .)
Given a uniform knot sequend@g of the form

ﬁkZ: { ) _2131(7 _1310 07 ﬁ]ﬂ 213167 .- -}v

we can consider the spa®g of splines whose segments satisfy Eq. (1) and that are at least
C? continuous at the knot#,. These splines are instances of a general class of splines
known as L-splines (Schumaker, 1981). Due to the uniformity of the knot sequence, the
spaceV, can be expressed as the span of the translates of a ﬂﬁgiesis functionVy[x]
that is supported on the interviat 28, 28x]. (In the trigonometric casg < 0, we restrict
Bk suchthat/—y B <m.)

Due to the fact that the function 1 is in the solution space of Eg. (1), these basis functions
can be normalized such that the translates of the basis fur¥tien] form a partition of
unity, i.e.,

Z Nilx —iBe] == 1. 3

Fory == 0, the spacé is the space of cubic splines and the basis funcNgfx] is the

cubic B-spline basis function. For > 0, the spacéd/; is the space of splines-in-tension
(Hoschek and Lasser, 1993). The paramegtserves as a “tension” parameter that forces
the resulting spline to vary between a linear and cubic splineyFar0, the spacé/ is

a “mixed” space consisting of polynomial and trigonometric functions. This spline space
has been studied previously in (Zhang, 1996) and Koch and Lyche (1991). When used
parametrically, the functions of this mixed space are capable of reproducing circles.

1.2. The corresponding subdivision masks

Henceforth, we assume that the knot spacing between successive levels is related by a
factor of two, i.e. 8 = %,Bk,l. Since the initial knot sequendg is centered at the origin,
the knot sequencg,_1 is how a subsequence &f. In particular, the functions i _1
are automaticallfz at the knots off;.. Therefore, these spaces are nested,Wye C Vi
for all £, due to the fact that their segments satisfy Eq. (1) independéeat Dfius, the
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basis functionV,_1[x] can be expressed as a linear combination of translates of the basis
function N [x]. In particular, there exists a unique subdivision mask such that

2

Ni-1lx]== Z Sp_q1Nilx —iBil, 3

i=—2

wheres,’;f1 is theith entry ofs;_1. Since the basis functiaN;_1[x] is supported over the
interval [—28k—1, 2B8k—-1] == [—4Bk, 4Bk], the masks,_1 has only five non-zero entries
s,i corresponding to the basis functioVs[x + 28], Ni[x + Bil, Nilx], Nilx — Bkl
and Ny[x — 2B;]. For y == 0, this subdivision mask, first introduced by Lane and
Reisenfeld (1980), has the form

1
Sk—1= é(lv 45 67 45 1)’ (4)

For y > 0, the subdivision mask;_; for splines-in-tension can be expressed as an
exponential B-spline using imaginary exponents (Dyn and Ron, 1992). Using the definition
of hyperbolic cosine cosh, this mask can be reduced to the real form:

1

~ 4+ 4coshy Bl

(1, 2+2cosH /v 8], 2+ 4 coslf /v Bi].,
2+ 2cosh /¥ Bc]. 1). (5)

Sk—1

Warren and Weimer (2001) give a full derivation of this mask starting from the original
differential equation. Finally, fop < 0, Zhang (1996) expresses the subdivision mask for
“mixed” trigonometric splines (C-splines in his terminology) as:

1
- 4+4CO$Hl3k](1’2+2C0{\/__y'Bk]’2+4CO{\/__VIBk]a
2+ 2cog/—=ypi]. 1). (6)

Note that Zhang restricts the initial knot spacifgto satisfy./—y Bo < 7. (We will also

assume this restriction.) An order 3 variant of this subdivision scheme is presented by Dyn
and Levin (1999). As we shall see, Egs. (4), (5), and (6) share enough common structure
that these three separate schemes can be expressed as a single common subdivision mask.

Sk—1

1.3. The unified subdivision scheme

The common thread linking all three of these subdivision schemes is that they can be
expressed in a single maskof the form

Sk—1 (1, 2+ 20, 2+ doy, 2+ 20, 1), 7

4+ Aoy
where the value of; depends on the sign ¢f. Note that the mask,_1 uses the tension
paramete;, notay_1. The reason for this indexing choice is explained in the next section.
Here we distinguish three cases, based on the sign of

o If y ==0, thena; = 1.
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o If y >0, theno, = cosH,/y Bk]. Note that for this case; > 1 for all k.
e If y <0, theno = cog./—y B]. Given the restriction thay/—y Bo < 7, thenoy < 1
for all £ in this case.
At first glance, this separation af; into three cases seems to provide little help.
However, the following theorem makes these three cases unnecessary once the initial
tensionag has been chosen.

Theorem 1. If the knot spacing satisfigg = %ﬁk,l, then, for all three of the cases above,
ax—1 andoy satisfy the recurrence

14+ ap_
e (8)

forall £ > 0.

Proof. In the hyperbolic case/(> 0), the initial tensionyg is always greater than 1 and
the theorem follows directly from the hyperbolic identity cpi == 19121 | the
trigonometric casey < 0), the restriction/—y o < = implies thatw; > 0 for k > 0 and
the theorem follows directly from the trigonometric identity g8 == M. a

Given the tensiomry_1, the subdivision mask;_1 is derived by first computingy using
Eqg. (8) and by then substituting, into Eg. (7). This non-stationary subdivision scheme
combines the three previous schemes in a very elegant manner. Instead of choasthg
Bo, the user simply chooses an initial “tensiamy. If the initial tension iseg == 1, then
a == 1 for all k and the subdivision scheme is the cubic B-spline subdivision algorithm
of Lane and Reisenfeld. g > 1, then the scheme converges to a spline-in-tension. As
desired, larger initial tensiong lead to curves that behave more like linear splines. If
—1< ap < 1, then the scheme converges to a “mixed” trigonometric spline.

Fig. 1 shows the effect of varying initial tensiong on the resulting splines. In
particular, the figure shows a diamond-shaped polygon and the corresponding splines for
ag=1{—1,0, 1,10, 100. Varyingap control the distribution of the curvature of the spline.
Larger value ofyg causes most of the curvature to be concentrated need the vertices of the
control polygon, i.e., the spline “clings” to the control polygon. Smaller values tends to
distributes more of the curvature along the edges of the control polygon. At the extreme
case ofeg = —1, almost all of the curvature occurs near the midpoints of the control
polygon.

The second example from the left in this figure illustrates the main application of
the trigonometric case; reproducing a circle. Settinge== —1 yields a spline that can
represent the functions ¢ and cogx] on the periodic domaifi0, 2r7]. Splitting this

DOOOO

Fig. 1. The effect of varying the initial tensiar on the limit curve.
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Fig. 2. Subdivision of a regula-gon using the initial tensiosag = cog2r /m] converges to a circle.

domain intom intervals by settinggo = 27 /m yields an initial tensiog == cog2x /m].
Fory == —1, we requirefp > 7, therefore we must take > 2. Given a regulam-gon
as the initial shape, the resulting scheme converges to a circle. Fig. 2 shows an example of
this scheme applied to a diamond £= 4).

Subdivision of a regula-gon using the initial tensiong == cog 2z /m] converges to
a circle. We conclude this section by noting that the tensiqrsatisfying Eq. (8) converge
to 1 ask — oo. In practice, this fact means that the subdivision mask of Eq. (7) is
converging to the subdivision mask for cubic B-spline& as co. The following theorem
establishes a useful bound on this rate of convergence.

Theorem 2. Given an initial tensionxg > —1 (ag # 1), the sequence of tensiong
satisfying Eq(8) obeys, for alk > 0, the bound

1— o . 1

0< < = 9
l—ag 2% ©)
Proof. It suffices to show that & lf;‘;‘fl < % Define the functiorn as follows
o] ! (10)
o] =————.
24+ 21+«
Given Eq. (8), it is straightforward to verify thafa_1] == 11_%51 using simple algebra.

Forax—1 > —1, 0< o[ax-1] < 1/2 and the bound holds. Given Eq. (9), then theare
converging to 1 ag — oo. Sinceco[1] == 1/4, the bound of Eq. (9) can be tightened
to ¢/d* for any constant in the range 4 d < 4 with the constant depending onxg
andd. O

2. Practical considerationsfor the curve scheme

Since the thrust of this paper is to develop a subdivision scheme for surfaces that is
of practical interest, we next address several issues for the curve scheme that impact the
surface scheme. In this section, we first reformulate the curve scheme in terms of repeated
averaging. This reformulation leads directly to an analogous surfaces scheme. Next, we
modify the averaging method to allow for differing tensions on distinct curve segments.
Finally, we derive a simple subdivision rule for curve endpoints.
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2.1. The curve scheme as repeated averaging

Eqg. (3) expresses a basis function at level 1, Ny_1[x], as a linear combination of
translates of a basis function at lexgIN,[x]. This relation can be applied to an arbitrary
functioninVy_1 as follows. Given a functiop[x] in V;_1, p[x] can be expressed as linear
combination of the translatéé;_1[x — i 8x—1], i.e.,

plx1=>_ pi_1Ni-1lx —ifial,

1

wherep;;_1 denotes théth entry of a vector of coefficienis,_1. (The entries opx_1 may
also be points defining a closed polygon.) Substituting Eq. (3) into this relation yields that
plx]= Zp,’cNk [x — i Br] where the entries of the vectpr are given by the equations

. 1 . _ .
2 -1 +1
Pi = At 4oy (P71 + @442 pp_1 + P 7).
2i+1 _ }( i i+1)
Py = 2 Pr—1 7T Pr-1)

These equations relating,_; to p; can be written in matrix form agy = Sg_1pk—1.
The matrix S;_1 is the subdivision matrix associated with the scheme. Given an initial
polygonpo, the matricesS;_1 define an increasingly dense collection of polygppghat
converge to a smooth limit curye,,. (In the functional case, this curyg, is simply the
graph of the functiorp[x].) For this particular schemsé;_1 is a 2-slanted matrix of the
form below. For convenience, we have dropped the subseriigim o4 in the following
matrices.

.0 3 1 0o 0 o.
1 142 1
'04+—4azizg aida O 0 0.
.00 3 3 0 0 oO.
Sca=| .0 0 gl EE L 0 o, a1
.00 o % 1 o0 o0.
1 142 1
.00 0 4+—4azizg4+—4ao~
.00 o o0 3 % o0.

The key to reformulating this scheme as repeated averaging is to observe that the
subdivision matrixSx_1 can be factored into three separate matrices. Eq. (12) shows this
factorization. (Note that only a small portion of the entire matrices is sho$n,), the
left-hand matrix in Eq. (12), can be expressed as linear subdivision (i.e., the right-most
matrix in Eq. (12)) followed by two rounds of averaging.
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OO0

Fig. 3. One round of subdivision can be composed into the three steps linear subdivision, weighted
averaging based a#,, and midpoint averaging.

1 142 1
inzzmr—mx 0 0
1 1
0 5 5 0 0
1 142 1
0 4+—4azizg4+—4a 0
1 1
0 0 5 5 0
1 142 1
0 04-{-—4021254-{-—40
11
5000
1 2 2
11 1+_a1%a 0 0 0 0 O
550000 01000
- 0 1% & 0 0 0 0 L1
053000 o 0.1 <« 0 0 o0 05500
__ 11 T+a I+a
==]1005500 o o « 1 0 o 00100
11 I+a I+a 11
000550 ¢ l“a 00550
11 0 0 0 01+_a1+_ao
000053 3 1 00010
0 0 0 0 Oﬁ_an_a oooll
2 2
(12)

Given a coarse polygopy—1, let px be the new polygon produced by linear subdivision.
The first round of averaging applies weighted combinations of the tengitm py. This

weighted averaging computes new vertices of the fei*—ﬁé\p—k or %ﬁkl depending
on whetheri is even or odd. Most notably, this rule onents the averaging mask such that
those vertices ofy lying at vertices ofp;_1 are weighted by“—" Finally, the left-most
matrix on the right-hand side of Eq. (12) computes a second round of averaging and places
the vertices o at the midpoint of these weighted averages.

For example, Fig. 3 shows the three separate transformation steps comprising the first
round of subdivision in Fig. 2. The left-most polygps is a square whose initial tension is
ap = cog2x /4] == 0. The polygon immediately to its righfg, is the result of applying
linear subdivision. The next polygon (a stop sign) is the result of weighted averaging using
the tensiorw; = 4/1/2. Note that applying midpoint averaging here (icg.== 1) would
not produce a regular octagon. The right-most polygeiis another regular octagon that
results from the final round of averaging using midpoints.
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2.2. Non-uniform tensions

One standard generalization for splines-in-tension is to allow distinct valugsfarf
each interval of the initial knot sequengg On the interior of each interval &, the de-
sired subdivision mask is exactly that of Eq. (5). However, at the knofs,dhe subdivi-
sion mask depends the valueyobn the two neighboring intervals. One possible approach
to this problem is to compute local;? basis functions by taking linear combinations of
solutions to Eq. (1) on each interval. From these basis functions, we could then derive ap-
propriate subdivision masks. Unfortunately, the resulting subdivision masks appear to be
extremely complicated functions depending on the respegtvand the knot spacing.

A simpler alternative is to abandon the basis function approach and to simply generalize
the weighted averaging rule as follows. Each segmenidé assigned an initial tension
«p. During linear subdivision, each segment is split into two new segments. These new
segments inherit a new tension via Eq. (8).

The resulting subdivision process is still remarkably simple. Given a vertgx stiaring
segments with tensiong and o, respectively, the subdivision matrisg_; centered at
vertex O is a simple modification of the matrfx_1 in Eq. (12). The only modification
is to replacex; by & in the last three rows of the weighted averaging matrix. This new
non-uniform subdivision matri$;_1 has the form (with subscriptsdropped),

1 142 1
Tiha 2t2a pw 0 0
0o 3 3 0 0
1 1 1 1
0 4440 1_4+4a_4+4& 4+4q 0
1 1
0 0 : i 0
1 1+2¢ 1
0 0 4+44 2+zgm
11
L~ 0 0 0 0 0 22000
1lo0000
2 2 w 1 01000
i 0 % 0 0 0 0 -
oilooo0 Lo oiloo
0 0 g5 0 0 O
==1003300 00100
0 0 0. -2 .1 0 o0
14+a 1+ 11
oooilo R 00330
0 0 0 0 & & 0
14+a 1+
OOOO%% o« lta 00010
o 1
0 0 0 0 0x5155) \ooo}}

(13)
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Fig. 4. A basis function with tensioag = 0.2 on the left and with tensioag = 1.9 on the right,
together with the first and second divided differences.

ENOOLOBSUICY

Note that the resulting scheme has uniform rules everywhere except at the central vertex
in question where the subdivision rule is

o__ 1 4 (1 1 o .1
CT ar a0 Pt T A a2 e )P A ag Py
One price for abandoning the basis function approach is that we must now explicitly
determine the smoothness of this new scheme at vertex 0. The left-most plot of Fig. 4 shows
the basis function associated with this vertexdgr== 0.2 anda@g == 1.9. The middle
and right plots show the first and second divided differences associated with this basis
function after seven rounds of subdivision. Since the second divided differences appear to
be continuous, the basis function is most likelgafunction.

The following theorem confirms the observation that the curve scheme prodices
limit curves.

Theorem 3. Given a subdivision matri$;_ of the form in Eq(13), the limit curvepo,
defined by the subdivision relatign = Sy_1px_1 is aC? curve.

Proof. See Appendix A. O
2.3. An endpoint rule

Any practical subdivision scheme for curves should include a subdivision rule for the
endpoints of the curve. For our scheme, we suggest forcing interpolation at the endpoints
of the curve while leaving the subdivision rules on the interior of the curve unmodified.

If the endpoint has parameter value== 0, then this rule produces limit functiongx]
that areC? continuous at == 0 and satisfy the natural boundary conditj@?’[0] == 0.
The reader can verify these facts by explicitly constructing the appropriately sup@trted
basis functions.

This approach has the main advantage of simplicity. In particular, there is no need to
modify the subdivision rules away from the endpoint. In the case of surfaces, this property
avoids the complication of rules that vary as a function of their distance from the boundary
and extraordinary vertices. Unfortunately, this rule also has a significant drawback. The
scheme for closed curves is capable of representing circles. However, the rule for endpoints
produces limit curves that are flat (i.e., have zero curvature) at the endpoints. Therefore,
the proposed scheme can not represent circular arcs.

Another solution, similar to the one used by Zhang (1996) for C-curves, is to extend the
control polygon by an extra segment and to use the standard, uniform rules. During each
round of subdivision, the new endpoint is placed at the midpoint of the last segment, i.e.,
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Gt

Fig. 5. Subdivision of a curve with boundary can model circular arcs.

the last segment of the refined curve is trimmed away. In our three phase implementation
of the subdivision scheme, this trimming occurs automatically during the two rounds of
weighted averaging after linear subdivision. If the original control polygon is chosen to be
a portion of a regulat-gon, then the limit under this scheme is a circular arc. Fig. 5 shows
an example of this technique used to represent a quarter circle.

As it is obvious from Fig. 5, this approach is still not an entirely satisfactory method for
modeling circular arcs. An third approach is to blossom the space of solutions to Eq. (1) and
to attempt to derive more general subdivision rules at the endpoint. Unfortunately, all of
the authors’ attempts in this direction have resulted in rules that vary on the interior of the
curve and that are extremely complicated. More research remains to be done in this area.

3. The surface scheme

In the previous section, the curve scheme was expressed as linear subdivision followed
by two rounds of averaging. In this section, we generalize this method to arbitrary
quadrilateral surfaces. Then, as an application of the scheme, we give an algorithm for
generating control polyhedra whose associated limit surfaces are surfaces of revolution.
We conclude the section by performing a preliminary analysis of the smoothness of the
surface scheme.

3.1. The basic scheme

A quadrilateral mesHTp, po} (short quad mesh) consists of a topological mé&sh
of quadrilaterals and a vector of vertex positigns We propose to develop a surface
subdivision scheme that is a generalization of the scheme of Catmull and Clark (1978).
Given a quad meskiTy_1, px—1}, the Catmull-Clark scheme produces a new collection
of quadsT; by topologically subdividing each quad if.—; into four new quads and
a vector of new vertex positiong;. These vertex positions satisfy the matrix relation
Pk—1 = Sk—1pr—1 Where the subdivision matri%,_1 depends on the topolody;_1.

Our proposed surface scheme is essentially a generalization of the curve scheme in the
previous section. To perform this generalization, we must determine surface analogs for
the two key components of the curve scheme: linear subdivision and weighted averaging.
The analog of linear subdivision is simply bi-linear subdivision. Each quad is split into four
new quads with new vertices placed at the midpoints of edges and at the centroid of each
face. Given a meskT;_1, pr—1}, bi-linear subdivision produces a refined me#h, pi}
with the desired topolog¥y.
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All that remains is to determine an analog of the two rounds of averaging used to produce
the final vertex positiongy . In the curve case, the first round is a weighted averaging using
the tensiony, assigned to each edge®f, to compute a weighted midpoint for that edge.
Recall that this tensios, was computed via Eq. (8) from the tensien ; associated with
the parent of this edge ifi._1. In the surface case, we assign two tens'tmg]andacl,, one
for each local coordinate direction, to each quad@fNow, given a quad if;_1 with
tensionS)z,E’_1 anda,}_l, each of these tensions is updated using Eq. (8) and assigned to the
children of this quad iy during linear subdivision.

Consider a quad iffi, with indices(l.’o lfll) where vertexg is also a vertex of}, vertices
i1 andijg lie on edges off;_; paraﬁ)ellto coordinate directions 0 and 1, respectively,
and vertexiq1 lies on the center of a face ifi,—1. (Note that the coordinate directions
correspond to the superscripts(zﬁ anda,}.) The centroid associated with this quad has
the form

1

nt=—+————
@+ D)} +1)

In the curve case, the second round of averaging computed the midpoint of the weighted
averages. For quad meshes, the first round of averaging may produce meshes that are no
longer quad meshes. However, the second round of averaging always restores the topology
T, of the mesh. For non-quad meshes, this second averaging step can be viewed as simply
taking the center of all of those weighted averages lying on a common face. In practice,
these two averaging steps can be expressed directly as a single composite averaging rule
of the form:

0 1ai 1 i 0 Al N
(e P + Bt + @ B + B (14)

Weighted quad averaging.Given a vertex of Ty, compute the centroids of those quads
in T, containingv using Eq. (14) and repositianat the center of these points.

Fig. 6 illustrates weighted quad averaging in action. The bold lines denote the mesh
{Tk, pr} produced by bi-linear subdivision. To compute the new vertex position of the
central black vertex, weighted quad averaging computes the gray centroids for each quad
in T;. Note that the Weighrrx,?a,} is always attached to the vertex of the quad that is also
a vertex ofTy_1. Finally, the central black vertex is repositioned at the center of the gray
vertices.

]
|
|
— — — - —=|—=

l ay ay l ai

|
IR U [ S —
|
|
|

Fig. 6. Weighted quad averaging.
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Note that weighted quad averaging is equivalent to two rounds of averaging in the previ-
ous sense; the first weighted, the second unweighted. Due to its simplicity, weighted quad
averaging can be implemented in a very straightforward manner with a minimal amount
of topological computation: Given a mes$f, px} produced by bi-linear subdivision of
{Tx—1, pr—1}, first compute vdl], the number of quads ifi; that contain the vertex.

This quantity can easily be computed during a single pass thrgugbr maintained dur-
ing topological subdivision). Next, initialize a table of new vertex positippgo be all
zero. Finally, make a second pass throdghFor each quad iff;,, compute the centroid
cent of its vertices inp; using Eq. (14) and update the position of vert@f the quad via
; cent

v (15)
Since there are exactly ¥a] quads containing vertex p;'c accumulates the center of the
val[i] centroids.

Combing bi-linear subdivision with weighted quad averaging yields a subdivision
scheme for quad meshes. In general, factoring a subdivision scheme into several simpler
steps is a concept that is increasingly in popularity. For example, the idea of expressing a
surface subdivision scheme in terms of repeated averaging has also appeared in two recent
papers by Zorin and Schréder (2001) and Stam (2001). However, these papers use only
uniform averaging and thus produce piecewise polynomial limit surfaces.

Fig. 7 shows the effect of applying this subdivision scheme to an initial quad mesh
consisting of six squares forming a cube. The top row shows the effect of bi-linear
subdivision. The bottom row shows the effect of weighted quad averaging, in this case
with tensionSag == acl, == 1 for all quads. Note that the resulting mesh has a tensor
product structure everywhere except at the extraordinary points. Since bi-linear subdivision
together with weighted quad averaging (Witglzz acl, == 1) reproduces the subdivision

Fig. 7. Bi-linear subdivision (top row) followed by weighted quad averaging (bottom row).
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rule for bi-cubic B-splines on tensor product meshes, the limit surfacag’egerywhere
except at extraordinary points. Later in this section, we perform a more general analysis
that considers the structure of the resulting subdivision rules at extraordinary vertices and
examines the effect of non-uniform tensions on the smoothness of the limit surfaces.

3.2. Surfaces of revolution via the surface scheme

As a useful application of the previous scheme, we describe a simple construction
for generating surface meshes whose limit surfaces are surfaces of revolution. Given a
control polygonpg (and a list of tensions of its segments) in theplane, we construct a
tensor product surface mes$fo, go} (and associated tensions)iryz-space whose limit
{Tx, g0} is the surface formed by revolving,, around thez-axis. We constructyg
by makingm copies of po and by revolving theth copy around the-axis by 2ti/m
radians. If we decompossg into its components i andz, i.e., po = (p§ p§). then the
components ofig have the form

go= (ccod Z ] p5. esin[ %] ps. pf) (16)

fori =0,...,m — 1, wherec = 2= csc[ £ ].

Given thatTp is a uniform tensor product mesh, we next assign tensions to each quad
in Tp that are compatible with the tensor product structure. Tensi@n’e the direction
parallel to pg are inherited from the tension associated with the appropriate segment of
Po- Tensionsué in the direction orthogonal tpg (i.e., around the-axis) are initialized to
cog2x/m]. Consequently, cross-sections of the limit surfd€g, g~} perpendicular to
the z-axis are circles. The constanis chosen as to stretdfi’x g0} in thex y-direction
and to force{T, g0} to interpolateps, in thexz-plane.

If ¢ =2 csc[Z] in Eq. (16), then the limit surfacéls g0} associated with the
polyhedron{To, go} interpolates the limit curvp, associated with the control polygeg.

Recalling the curve case, we chgse- —1 andBp = 27 /m to reproduce the functions
cos and sin on the periodic domdih 2] split into m segments. Each basis function for
this scheme was supported over four segmentsuipr4, the values at the three interior
knots are, respectively,

40 2p0
2 .
csc[ 2]"(Bo — sinl fol) }
480 ’
The key to determine is to observe that the intersection 6fs goo} With the xz-
plane depends only on the portion {df, go} for which i = —1,0, 1. Specifically, the
x-coordinate of{7Tw, g0} is the linear combination of the three vecters codfolpy.
c* pp, andexcog —Bol py weighted by the corresponding values of Eq. (17). Given that we
wish to reproducey, we can usélathematicao solve forc; the result isc = Bocsd ol
wherefo = 21 /m.
Fig. 8 shows an example of this process used to construct a vase. The upper left-most
polygon is the control polygopg. The polygons to its right are refined polygoms p2,

{ csq[£21%(Bo — sinlol) ~ csq] 22]%(Bo cod ol — sin Bol)

(17)
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Fig. 9. A sphere, a cylinder and a torus generated via subdivision for surfaces of revolution.

and p3. The lower left-most portion of the figure is the tensor product surface meghes
formed by revolvingpg around thez-axis. Note that a vertical cross-sectiorygfis “fatter”
than pg due to the constanrt Subsequent meshes, g2 andgs appearing to the right are

the result of subdivision using weighted averaging. Note that vertical cross-sections of
these mesheg, are converging tgy.

Many fundamental surface primitives such as spheres, cylinders and tori are surfaces of
revolution. Traditionally, these primitives had either been modeled as implicit surfaces or
through the use of rational surface schemes. For example, Sederberg et al. (1998) describes
a subdivision scheme based on an extension of NURBS that is capable of representing these
primitives. However, due to the fact that the rational parameterizations for these surfaces
are non-uniform, the resulting scheme cannot represent these surfaces in their natural arc-
length parameterization. Fig. 9 shows a sphere, a cylinder and a torus created using our
scheme. Note that the grid lines in the direction of revolution are uniformly spaced, since
the scheme we propose use a uniform parameterization. (The grid lines orthogonal to the
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Fig. 10. Subdividing a degenerate quad mesh around a pole.

direction of revolution on the cylinder are spaced non-uniformly due to the use of repeated
control points to interpolate the corners of the generating square.)

A sphere, a cylinder and a torus generated via subdivision for surfaces of revolution.
In the cases of both the sphere and torus, the original profile cyryewere circles. In
the case of the torus, the profile curve did not intersectthgis and, thus, the surface of
revolution was a smooth, single-sheeted surface. In the case of the sphere, the profile curve
was a circle symmetrically positioned on thexis. Due to this positioning, the resulting
surface of revolution is a smoottpuble-sheetedurface. More generally, revolving any
profile curve that is symmetric with respect to th@xis through 2 radians results in a
double-sheeted surface.

In practice, we wish to avoid this behavior when the profile cupue is symmetric
with respect to the-axis. The solution to this problem is to revolve the initial symmetric
polygon pg through onlys radians. Since the polygopy is symmetric with respect to
the z-axis, the new polyhedrady is closed (and single-sheeted). If the intersection of the
z-axis and polygorpg occurs at vertices oo, then this quad mesy has poles at these
vertices. These poles consist of a ring of degenerate quads (triangles) surrounding the pole
(as shown by the dark lines in Fig. 10).

Remarkably, applying the scheme described in the previous subsection to this polyhe-
drongg yields a single-sheeted limit surfagg that agrees with the double-sheeted surface
of revolutiong.,. The key to this observation is to note that applying bi-linear subdivision
to go andgp yield the same surface (single-sheeted and double-sheeted, respectively) as
long as the degenerate quads at the polés afe treated as such and subdivided as shown
in Fig. 10 (the dotted lines). Weighted quad averaging also repositions the pajgsnof
the same manner as thosegef Thus, the limit surfaceg,, andg~ agree.

3.3. Smoothness analysis

Given a mesh Ty, po} with tensor product topology whose initial tensions obey the
tensor product structure, Theorem 3 ensures that the resulting limit surfad@$ ewatin-
uous. For example, the polyhedr&, o} produced by the surface of revolution algorithm
have such a tensor product structure. Therefore, the associated limit syiffaces } are
C? continuous. However, if the tensions for each quadigére chosen without respect to
this topology, then Theorem 3 is not sufficient to ensure that the limit surf@#&edsntinu-
ous. In general, the authors hypothesize that, for any choice of initial tem{j%s—l, the
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Fig. 11. A basis function for a vertex surrounded by four quads with all distinct tension
parameters, together with all three possible second divided differences. The second differences
appear continuous.

limit surfaces{Too, poo} are C2 continuous. Specifically, we believe that a generalization
of the proof for the curve case (given in Appendix A) is sufficient to establish this as a fact.
For now, we present numerical evidence that the scheme prodifcémit surfaces
on tensor product meshes. Consider a vertex surrounded by four quads with each quad
assigned distinct tensiom@ andacl, (eight distinct tensions in all). Fig. 11 shows such a
basis function and plots all three possible second divided differences. These second divided
differences appear to be continuous, supporting the hypothesis that the scheme produces
C? continuous limit functions.
At extraordinary vertices, we restrict our smoothness analysis to the stationary case,
ie., ozg == aé == 1. Given an extraordinary vertex of valenegbi-linear subdivision
plus quad averaging yields a subdivision rule that weights the central vert%c ledge
adjacent vertices bg?—l and face adjacent vertices lgé,g Forn == 4, this rule reproduce
the uniform rule for bi-cubic B-splines. This rule is mentioned by Catmull and Clark (1978)
as an alternative to their standard rule that uses the Weﬂ@;h{%, % T%Z}' respectively.

We leave it as an exercise for the interested reader to show thdthe , -+-} rule
defines a subdivision matrif,_1 whose spectrum has the form=1xr == 1 > --- and
whose associated characteristic map is exactly that of the standard Catmull-Clark scheme.
Since the characteristic map for the standard scheme is known to be regular (see (Peters
and Reif, 1998)), the stationary version of our scheme is@lsat extraordinary vertices.

In the non-stationary case, we leave the problem of smoothness analysis at extraordinary
vertices as a topic for future work. However, we observe that the rate of convergence of the
non-stationary rule to th€* stationary rule is compatible with known bounds &t non-
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stationary schemes from the uniform case. Dyn and Levin (1992) provide the basic tools
for performing such an analysis. We intend to investigate the possibility of generalizing
their proof techniques to extraordinary vertices in future work.

Appendix A. A proof of C? continuity for the non-uniform curve scheme

In this appendix, we provide a proof for Theorem 3. Specifically, we consider the
behavior of the subdivision schempg = S;_1 px WhereS;_1 has the form

1 1420y, 1 0 0
* A+4ay 2420 A4+-Aoy
1 1
o 1 i 0 0
1 1 1 1
0 414y, 1- Atdey ~ A4+4%, A+day 0
0 0 3 ;3 0
0 0 1 1420 1
4+46y 2420 A+4Aqy ¢

with o = /%=1 andéy = / %=1 Our goal in this appendix is to show that the limit
2 2 pp

curve ps, associated with this scheme ig& curve. Our approach is two-phased. In the
first phase, we compute a subdivision matfix_; for the divided differences associated
with our original scheme. In the second phase, we show that the limit curves associated
with this divided difference scheme a2 continuous and conclude that original scheme
must produce’? limit curves.

In phase one, we follow the approach of Dyn et al. (1991) and Warren (19951, et
be the two-banded matrix whose produttp; is the vector consisting of the divided
differences ofp; with respect to the knot sequentie If Dy_1 satisfies the matrix equation
Ag.Sk—1 = Dx—1.Ak—1, thenD;_1 is a subdivision matrix relating the divided differences
of the form A px = Dx—1(Ar—1pik—1). SinceSi_1 has rows that sum to one, the matrix
Dy, exists and has the form

1+4+20y 1
0 3o wom O 0 0.
1 1+4+204
O oo 7w O 0 o.
1420 1
D= 0 0 L MW@, 4 g
Zheme 212(a), ’
1+2(&) 1
0 0 0 %@, e, 0
1 l+2(5¢)
00 0 amE; e, O



500 G. Morin et al. / Computer Aided Geometric Design 18 (2001) 483-502

Next, we analyzed the subdivision procegs= Di_1qr—1. If the limit curvesg.
associated with this scheme af#, then limit curvesp,, associated with the original
subdivision procesgy = Sy_1pr—1 are Cc? (see the two references above for details).
Ideally, we would like to repeat this process and build a divided difference scheme for
Dy_1 with respect toT;_1. Unfortunately, the rows of subdivision matri®;_; do not
sum to one. Therefore, such a subdivision matrix for these differences do not exist. In
phase two, we use the non-stationary analysis technique of Dyn and Levin (1999, 1995).
In particular, we show that the divided differencégq; are converging to a continuous
curve. Specifically, if we defing) [x] to be piecewise linear function whose value at the
ith knot of7;, is exact theth entry of Ax ¢y, then we will prove that the) [x] are uniformly
converging to a continuous function and therefore conclude that the limit gunieaC?
curve.

The key to the proof is to examine the differences betwgen[x] andg) [x]. If L;_1
is the subdivision matrix for linear subdivision, then

|gi_10x1— qix]| o, = ILe-1Ak-1gx—1 — Aigilloos
= [[Lk-1Ak-19k—1 — A Dk—1gk—1lloc,
= || (Li1dk-1— ADr—Dail| o »
< | (Lr-18k-1 — AeDr1) || I gr—1lloo- (18)

Now, the matrixL;_1Ax—1 — A Dr—1 has a particularly simple form

-1+« 11—«
0 T akk ir af 0 0 0
1—ag —1+a
ok 02y O 2(1+&) 0.
~—|.0 o Hu Ll 0 0
,30 : 1+oy 1+dy
1—oy —1+q;
0 0 sy O zivan O
—1+ay 1-&
0 0 0 1+ay 1+ay 0.

where gy is the knot spacing fof. (Recall thatg, = %,Bk_l.) Based on Theorem 2, we

observe that

|(Lk1Ak-1— AcDr-1)|| o < %

for any 1< d < 2 with the constant depending onxg, &o, o andd. Using a similar
method, one can show that, for alb 0,

~ k—1 N
C C
lgklloo < (1+ W)nqk_lnoo < ( [ (1+ g)) lIg0lloc

i=0
< l90lle-
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Substituting the bounds from the last two equations into Eq. (18) yields that

¢ % € [lgolloo

—

To complete the proof, we observe that the limit functign[x] can be written as the
infinite sum

|y _alx] — q;lx]] <

e¢]

gholx]=qolx] = Y (g;_1lx] — g} lx]).
i=0
For bounded gol| o, this infinite sum must converge for allbased on the ratio test applied

to the previous equation. Therefore, the continuous funcggps] uniformly converge to
a continuous limit functiog . [x].
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