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Abstract

Motivated by applications in architecture and manufacturing, we
discuss the problem of covering a freeform surface by single curved
panels. This leads to the new concept of semi-discrete surface rep-
resentation, which constitutes a link between smooth and discrete
surfaces. The basic entity we are working with is the developable
strip model. It is the semi-discrete equivalent of a quad mesh with
planar faces, or a conjugate parametrization of a smooth surface.
We present a B-spline based optimization framework for efficient
computing with D-strip models. In particular we study conical
and circular models, which semi-discretize the network of princi-
pal curvature lines, and which enjoy elegant geometric properties.
Together with geodesic models and cylindrical models they offer a
rich source of solutions for surface panelization problems.
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1 Introduction

Modern architecture employs different kinds of geometric primi-
tives when segmenting a freeform shape into simpler parts for the
purpose of building construction. For most of the materials used
(glass panels, wooden panels, metal sheets, . . . ), it is very expen-
sive to produce general double-curved shapes (such as illustrated
by Fig. 2, right). A popular way is to use approximation by flat
panels, which most of the time are triangular (see Fig. 2, left). A
third way, less expensive than the first and capable of better approx-
imation than the second, is segmentation into single curved panels
(Fig. 2, center). The decision for a certain type of segmentation de-
pends on costs, but also on aesthetics. The visual appearance of an
architectural design formed by curved panels is different from a de-
sign represented as a polyhedral surface. Therefore, the geometric
problem of approximate segmentation of a freeform shape into sin-
gle curved panels is very attractive: its satisfactory solution would

Figure 1: Semi-discrete surfaces consisting of single curved panels
can approximate freeform shapes and are accessible with geometric
modeling tools like a combination of subdivision and optimization.
This design is based on a conical strip model.

place at our disposal a way to realize a freeform shape with curved
panels without the high cost of manufacturing molds or other aux-
iliary devices for the double curved parts.

The problem of covering a freeform surface by single curved panels
leads to a systematic study of semi-discrete surface representations.
From a theoretical viewpoint, these represent a – so far missing –
link between the category of smooth surfaces and the category of
discrete surfaces. Loosely speaking, they are surface parametriza-
tions with one continuous and one discrete parameter. We are natu-
rally led to surfaces composed of ruled surface strips, and especially
developable surface strips (“D-strip models”). These models are
obtained as limits of quad meshes under a refinement which oper-
ates only on the rows and leaves the columns (see Fig. 4). While this
limit viewpoint turns out to work well for certain theoretical consid-
erations, it is not the best way of efficient processing. It is the goal
of the present paper to derive the main properties of D-strip models,
to study important special cases and to develop efficient algorithms
for geometric modeling with this new surface representation.

Related work. In his monograph on difference geometry, Sauer
[1970] uses strip models to generalize Clairaut’s law of geodesics
from rotational to helical surfaces. No further strip models nor other
semi-discrete surface models seem to appear in the mathematics lit-
erature. However there is work dealing with piecewise developable
surfaces: Subag and Elber [2006] approximate NURBS surfaces
by piecewise developables. Several algorithms have been proposed
for the construction of papercraft models [Mitani and Suzuki 2004;
Massarwi et al. 2007; Shatz et al. 2006]. These contributions do not
aim at smoothness of boundaries and even widths of developable
pieces; consequently they are not required to exploit the semi-dis-
crete viewpoint or, as we do, the relation to conjugate curve net-
works and meshes with planar quadrilateral faces.

For the investigation of semi-discrete surface models one must
study the geometry of its smooth pieces; so for us developable sur-



Figure 2: Segmentation of curved surfaces. From left: flat panels
(Milan trade fair), single-curved panels (TGV train station, Stras-
bourg), and double-curved panels (St. Lazaire metró station, Paris)

faces are very important. Recall some facts from differential ge-
ometry [do Carmo 1976]: Developability of a surface means that it
can be unfolded into the plane such that in-surface distances remain
unchanged. Such surfaces consist of pieces of ruled surfaces with
the special property that all points of a ruling have the same tangent
plane. These torsal ruled surfaces consist of cylindrical pieces, con-
ical pieces, and tangent surface pieces, which means that rulings are
parallel, or pass through a common point, or are tangent to a curve
of regression, respectively.

Obviously developables occur in the analysis of materials which
do not stretch, like crumpled paper [Cerda et al. 1999] or buckled
metal [Frey 2004]. On the practical side developables are employed
in industry and architecture in connection with such materials (e.g.
by F. Gehry’s designs, cf. [Shelden 2002] and the monograph by
Pottmann, Asperl et al. [2007]). Various ways of geometric de-
sign with torsal ruled surfaces have been proposed: Maintaining
developability as a side condition in n×1 spline surfaces [Aumann
2004; Chu and Séquin 2002], achieving developability in an ap-
proximate way [Pérez and Suárez 2007], working in the space of
tangent planes [Pottmann and Wallner 2001], working with suffi-
ciently often subdivided planar quad meshes [Liu et al. 2006], or
modeling based on triangle meshes [Frey 2004; Wang and Tang
2004; Mitani and Suzuki 2004]. Mesh parametrization and seg-
mentation with help of developables is the topic of [Julius et al.
2005] and [Yamauchi et al. 2005]. Rose et al. [2007] show how to
find ‘optimal’ developables from boundary curves.

The topic of semi-discrete surface representations belongs to dis-
crete differential geometry, even if it appears not to have been sys-
tematically addressed before. Partial limits in quad meshes (see
Fig. 4) were considered in higher dimensions and rather had an in-
terpretation in the transformation theory of surfaces which is pre-
sented in textbook form in [Bobenko and Suris 2005] (using their
terminology, the D-strips of the present paper are 1-dimensional
Jonas pairs, and the circular D-strips are Ribaucour pairs). Our limit
approach to developable strip models is based on quad meshes with
planar faces, circular and conical meshes, and their focal geometry
[Liu et al. 2006; Pottmann and Wallner 2007].

Contributions. This is essentially the first paper to deal with
semi-discrete surface representations. We consider both the theo-
retical and geometry processing viewpoints, and focus on semi-dis-
crete models consisting of single-curved strips (D-strips), their op-
timization by means of a B-spline representation, geometric prop-
erties, and applications – e.g. to the ‘hugely important issue of pan-
elizing double curved surfaces’ [Spuybroek 2004, p. 187].

We believe that the semi-discrete perspective on surfaces is not just
an elegant geometric insight, but highly relevant for applications.

From the viewpoint of theory, the three notions of conjugate curve
network, D-strip model, and quad-dominant mesh with planar faces
(PQ mesh) are manifestations of the same entity in the smooth/
semi-discrete/discrete categories. Knowing this, we can e.g. initial-
ize optimization of a strip model towards developability either from
a conjugate curve network, or from a PQ mesh. Similar relations
are true for principal networks, offsets, and other geometric proper-
ties. It is an aim of our paper to demonstrate that for an application
like architecture the semi-discrete viewpoint is the appropriate and
preferred way to look at single-curved strips.

2 Developable strip models

2.1 Geometry of developable strips

A strip of planar quadrilaterals (Fig. 3a) can be unfolded into the
plane. A refinement process which keeps planarity of quads there-
fore, in the limit, generates a developable surface strip (a D-strip,
Fig. 3b). The edges where successive quads are joined together be-
come rulings of the strip; and these rulings are the tangents of the
curve of regression associated with the strip. In the notation of Fig.
3, the limits of polygons p1,p2, . . . , q1,q2, . . . , and r1, r2, . . .
are the boundary curves p(u) and q(u), and the regression curve
r(u), resp. (the osculating cone of Fig. 3c is discussed in Sec. 3).

D-strip models as semi-discrete surfaces. Liu et al. [2006]
discuss the following property of PQ meshes (i.e., quad meshes
with planar faces): A PQ mesh undergoing a refinement procedure
where row and column polygons converge to a curve network on a
smooth surface, yields, in the limit, a conjugate curve network. Re-
call that two tangent vectors v, w in a surface point are conjugate
if and only if II(v, w) = 0, where “II” is the second fundamen-
tal form (cf. [do Carmo 1976]). Sauer [1970] concludes that a PQ
mesh is a discrete model of a conjugate curve network, which is
also the viewpoint of [Liu et al. 2006].

If we refine only the rows in a PQ mesh, and leave the columns
as they are (or vice versa), then each row will converge to a devel-
opable strip, and the entire mesh will converge to a D-strip model
– see Fig. 4 for an illustration and the definition of edge curves,
ruling polygons, and ruling segments. We conclude: A developable
strip model is a semi-discrete representation of a conjugate curve
network in a surface.
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Figure 3: Smooth developables as limit of discrete ones. (a) In a
strip of planar quads pjqjqj+1pj+1, edges lj = pjqj intersect in
the vertices rj = lj∩lj+1 of the regression polygon. (b) The rulings
l(u) = p(u)q(u) of a D-strip D with boundary curves p(u) and
q(u) are the tangents of the regression curve r(u); along the ruling
l(u), D has first order contact with a plane spanned by co-planar
vectors p(u)−q(u), ṗ(u), and q̇(u). (c) For each parameter value
u, D is in second order contact with a certain cone of revolution
∆(u) along the entire ruling l(u).
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Figure 4: Semi-discrete models as limits of discrete models. Par-
tially subdividing quadrilateral meshes with vertices pi,j and pla-
nar faces pi,jpi+1,jpi+1,j+1pi,j+1 yields, in the limit, a D-strip
model consisting of developable strips Di. Each strip is bounded
by edge curves pi(u) and pi+1(u). We call the polygon with
vertices p1(u),p2(u), . . . a ruling polygon, and each segment
pi(u)pi+1(u) is called a ruling segment.

Parametric representation of D-strips. A ruled surface gener-
ated by boundary curves p(u) and q(u) has the parametrization
x(u, v) = (1− v)p(u)+ vq(u). Its developability is equivalent to

{p, q, p + ṗ, q + q̇} co-planar for all u, (1)

as illustrated by Fig. 3b. Following an idea of P. Schröder, we re-
place (1) by a measure of planarity which is defined by the distance
of two lines in space. With the notation a ∨ b for the straight line
spanned by points a, b, we let

δp,q := dist
“
p∨ (q+

‖p− q‖
‖q̇‖ q̇), q∨ (p+

‖p− q‖
‖ṗ‖ ṗ)

”
. (2)

These lines are diagonals in a quad which is constructed from the
quad in (1) by moving the two vertices p + ṗ and q + q̇ such that
their respective distances from p and q equal ‖p − q‖. Clearly,
δp,q = const . = 0 is equivalent to (1). The curve of regression
r(u) is found as the location r(u) = x(u, v∗(u)) on each ruling
where the parametrization x(u, v) is singular. It is easy to see that
v∗(u) is determined as a quotient of parallel vectors:

v∗ =
ṗ× (p− q)erp,q

, where erp,q = (ṗ− q̇)× (p− q). (3)

2.2 Optimization of D-strip models

A D-strip model consists of D-strips Di, parameterized by xi(u, v),
and joined together along edge curves pi(u) as shown by Fig. 4.
We want to work with B-spline surfaces, so we let

pi(u) :=
X

j
B3(u− j)bi,j , (4)

xi(u, v) := (1− v)pi(u) + vpi+1(u).

Here B3 is the cubic B-spline basis function for integer knots. This
makes the point pi(j) on the curve pi lie close to the control point
bi,j . In the special case bi,j = 1

2
(bi,j−1 + bi,j+1), the curve

passes through a control point, because then pi(j) = bi,j .

In order to approximate a given surface Φ by a D-strip model, we
must subject the control points bi,j to optimization by minimizing
the target functional

λ1fprox + λ2f∂, prox + λ3fdev + λ4ffair/edge + λ5ffair/ruling, (5)

whose constituents measure closeness to Φ, closeness to the bound-
ary curve ∂Φ if necessary, developability of the strips, and fairness.
We could also augment (5) by a term fregr which pushes the curve
of regression away from the strip under interest (fregr is defined
below but has not been used in producing the figures contained in
this paper). Developability of the final surface has the nature of
a constraint, which is achieved by letting λ3 grow during iterative
optimization.

Setting up geometry functionals. For the definition of the sin-
gle terms in (5), we use the symbols π and eπ for the closest point
projections onto the surface Φ and its boundary ∂Φ, respectively.
Further, τx denotes Φ’s tangent plane in the point x, and Tx de-
notes the tangent of the boundary curve ∂Φ. Then the two func-
tionals which express proximity of a point sample x1,x2, . . . to Φ,
or to the boundary ∂Φ, are defined by

fprox =
X

k
dist(xk, τπ(xk))

2, f∂, prox =
X

k
dist(xk, Teπ(xk))

2.

Developability of the surface, and a far away location of the curve
of regression are expressed by small values of the functionals

fdev =
X

i

Z
δpi,pi+1(u)2du, fregr =

X
i

Z
‖erpi,pi+1‖

2du,

resp., using notation from (2) and (3). Fairness is measured with
linearized bending energies of edge curves and ruling polygons:

ffair/edge =
X

i

Z
‖p̈i(u)‖2 du,

ffair/ruling =

Z “ X
i
‖pi+1 − 2pi + pi−1‖2

”
du.

Remark: For the proximity functionals we use point-plane dis-
tances, because it is known that their use instead of point-point
distances considerably improves the ICP algorithm and fitting al-
gorithms [Pottmann et al. 2006].

Initializing optimization. For the approximation of existing data
sets by D-strip models we must find an initial ruled strip model
which is subsequently optimized towards developability. It has al-
ready been mentioned that a D-strip model is a semi-discrete ana-
logue of a network of conjugate curves, and at the same time an
analogue of a PQ mesh (cf. Liu et al. [2006] and Pottmann et al.
[2007]). This leads to different ways of initializing strip models:

• Initialization from a conjugate curve network: One family of
curves in the network leads to edge curves, whereas the other fam-
ily leads to ruling polygons (see Fig. 5). For every direction tangent
to a surface there is a unique conjugate direction [do Carmo 1976].
Thus we can prescribe one family of curves and find the other by
integrating a vector field (as in Figs. 5 and 16). We could also use
the principal curve network (as in Fig. 21), where curves intersect
at right angles. In general, the curves of that network must intersect
transversely, but the actual angle of intersection is not critical for
successful optimization.

• Initialization from a PQ mesh, constructed e.g. by the method of
Liu et al. [2006]. Figures 6 and 22 have been created in that way.

Design of D-strip models, as opposed to approximation with D-strip
models, is discussed below.

Topology of D-strip models. For a D-strip model of a surface
of higher genus a sequential arrangement of strips is not sufficient.
As developable strips follow a conjugate curve network with trans-
verse intersections, and such networks usually have singularities,
this might happen also for surfaces of simple topology but com-
plicated geometry. When initializing a strip model from a curve
network we must be able to handle more complicated arrangements
(the same goes for design of strip models). We explain our way
of setting up a network of control points and defining associated
strips by the typical example of Fig. 7, where three D-strips meet in
a common point. Other singularities are handled in a similar way;
there is no principal difficulty except the writing up is cumbersome.

For the purpose of optimization, this singular vertex of the edge
curve network is split into three vertices b∗

1, b∗∗
1 , and b∗∗∗

1 . We



(a) (b) (c) (d) (e) (f) (g)

Figure 5: Initializing optimization from conjugate curves, and influence of parameters. (a) Surface Φ with a conjugate curve network and an
initial choice of B-spline control points for the purpose of generating a D-strip model. (b) Superposition of Φ with the D-strip model resulting
from optimization. (c) the same, but with the influences of ffair/edge and f∂, prox reduced to 10% of their original values. (d) the same, but
additionally, fprox is reduced. Figures (e)–(g) correspond to (b)–(d) and show the measure of developability: δpi,pi+1 divided by mean strip
width ranges between 0 (blue) and 4.2 · 10−3 (red) – for numerical values, see Table 2. Model courtesy of Waagner-Biro.

(a) (b)

(c) (d)

Figure 6: Initializing optimization from PQ meshes, and using sub-
division. (a): Planar quad mesh used for initializing a strip model.
(b) Optimized strip model. (c) The model in (b) has been subdi-
vided and optimized again. (d) Iteration of this procedure.

use a network of control points as illustrated by Fig. 7. Using the
notation of Fig. 7, the B-spline curve p∗(u), defined in an inter-
val [1, t∗1] has control points b∗

0,b
∗
1, . . . , where b∗

0 (not shown) is
initialized by b∗

1 = 1
2
(b∗

0 + b∗
2). Analogously we define B-spline

curves p∗∗ and p∗∗∗, so that three B-spline curves are now emanat-
ing from the singular vertex. During optimization, the distances of
points p∗(1), p∗∗(1), and p∗∗∗(1) from each other are penalized.

The B-spline curve p(u) with control points {bj} together with
the curve p∗(u) now defines a strip x(1); and a relabeling of pointsebk := b2−k gives the control points of a curve ep(u) which together
with p∗∗(u) defines a strip x(2). Those two strips are indicated in
Fig. 7 by hatching. In a similar way the remaining neighbourhood
of the singular vertex is filled by a total of six strips; gaps between
strips are filled by cones (as the fairness functional wants to shrink
strips, overlaps do not occur). Each gap emanating from the singu-
larity is bounded by rulings of strips xleft, xright. With the notation
[v]0 = v

‖v‖ we augment the functional (5) with the term

fgaps =
X

gaps

‚‚‚h∂xleft

∂u
× ∂xleft

∂v

˜
0
−

h∂xright

∂u
× ∂xright

∂v

˜
0

‚‚‚2

.

We thus penalize the difference of normal vectors at the two sides of
the gap, and achieve a smooth transition. By developability, these
normal vectors do not depend on v.

Designing D-strip models. It has been shown by Liu et al.
[2006] that applying subdivision of meshes and optimization to-
wards planarity of faces in an alternating way is an efficient tool

Figure 7: Combina-
torics of the B-spline
control net at a sin-
gularity. For the way
of defining six ruled
strips x(1), x(2), . . .
around this valence
three vertex, see text.
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for the design of meshes with planar faces. This is true also in the
limit case of D-strip models. To implement such a method, we de-
fine subdivision rules for D-strips. In the regular case (a sequence
of strips) these rules consist of applying univariate subdivision to
the rows in a grid of B-spline control points. If the strips exhibit
non-trivial connectivity, we subdivide the strip model by applying
a subdivision rule like Catmull-Clark to the control points and re-
extract a strip model. The specific rule employed does not matter
much, as the result is subject to optimization anyway. As a refer-
ence surface Φ for the functional fprox which is employed during
optimization we take the result of linear subdivision applied to the
initial data. A result is shown by Fig. 6.

Boundaries and Trimming.
Arbitrary boundaries and
sharp edges in shapes are in
practice not realized as ruling
polygons of strip models.
Thus in general trimming is
necessary. We show this in
the small figure here, but not
in the other figures.

3 Principal strip models

When approximating a surface by D-strips, it is natural to let edge
curves follow the principal curvature lines of maximal curvature
and to place rulings along the directions of the smaller principal
curvature. This method, however, would pick up too much detail
which should probably not be present in the D-strip model. There-
fore we give separate definitions of principal strip models (circular
and conical ones) which can be thought of as limits of circular and
conical meshes. A further reason why we consider these models is
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Figure 8: Circular strip and its Gauss image. Left: As each in-
finitesimal quad has an inscribed circle, we have equality of angles
^(p2 − p1, ṗ1) = ^(ṗ2,p2 − p1). The boundaries p1,p2 of the
strip K at left possess parallel curves ep1(u) and ep2(u) in the unit
sphere, which define the Gauss image σ(K ) (at right). The vectorsep1(u), ep2(u) serve as normal vectors in points p1(u), p2(u), resp.

their remarkable geometric properties, especially those which are
important for panelization of freeform surfaces.

3.1 Circular and conical models

Recall that a quad mesh is circular if all faces are equipped with
a circumcircle of vertices; it is conical if all vertices have an asso-
ciated right circular cone which is tangent to the faces adjacent to
that vertex. The analogous notions for D-strip models are found by
a passage to the limit according to Fig. 4:

Circular strip models (Fig. 8) have the property that for each index i
and parameter value u there is a circle tangent to the curves pi and
pi+1 in the points pi(u) and pi+1(u). It follows that the angles
between a ruling and its two boundary curves are equal.

Conical strip models (Fig. 9) are limits of conical meshes, so for
each point pi(u) of the edge curve which is common to strips
Li−1, Li, there exists a right circular cone which touches the sur-
faces Li−1, Li along the rulings emanating from the point pi(u).
By symmetry of a right circular cone, the tangent of the edge curve
forms the same angle with both rulings.

Optimization towards circular or conical strips makes use of ge-
ometry functionals which penalize deviation from the appropriate
angle equalities: We let

fcirc =
X

i

Z D
pi+1 − pi,

ṗi

‖ṗi‖
+

ṗi+1

‖ṗi+1‖

E2

du,

fcone =
X

i

Z D pi − pi−1

‖pi − pi−1‖
− pi − pi+1

‖pi − pi+1‖
, ṗi

E2

du,

and add either fcirc or fcone to the functional (5).

A strip model to be optimized towards circularity or conicality is
best initialized from a curve network not too far from principal cur-
vature lines. An example of such an approximation is shown by
Fig. 13. A design made by subdivision and optimization towards
conicality in an alternating way is illustrated by Figs. 1 and 19.

D-strips made from normals. In a conical model, the cone axes
associated with the points of an edge curve (see Fig. 9) form a con-
tinuous developable surface and the tangent planes of that devel-
opable are the bisector planes of the D-strips which meet in the edge
curve under consideration. This follows from the tangent cone: the
cone axis lies in a bisector plane of the tangent planes of the adja-
cent D-strips. Thus, the set of cone axes is the envelope of bisecting
planes and therefore developable – see Fig. 10.

Parallel models, Gauss images, and offsets. We can extend
the theory of parallel meshes by Pottmann et al. [2007] from the

discrete case (meshes) to the semi-discrete case (D-strip models),
because the latter are limits of the former, as illustrated by Fig. 4.

We consider here a strip model defined by edge curves pi, and an-
other one with edge curves epi which is combinatorially equivalent
to the first one, as regards the combinatorics of strips and boundary
curves. Combinatorial equivalence also means that corresponding
edge curves are defined over the same parameter interval. For sim-
plicity, we use the notation M = {pi} and fM = {epi} for these
models. M and fM are parallel, if (i) corresponding rulings are
parallel, and (ii) edge curves have parallel tangents in correspond-
ing points.

It follows easily, e.g. from the analogous statements for meshes
[Pottmann et al. 2007], that a D-strip model M is circular if and
only if there is a parallel ‘Gauss image’ model σ(M) whose edge
curves lie in the unit sphere. M is conical if and only if there is a
parallel ‘Gauss image’ model σ(M) which is tangentially circum-
scribed to the unit sphere. Further, for circular M , one point of an
edge curve of σ(M) can be chosen freely, and the rest is uniquely
determined (see Fig. 8), whereas for a conical model, the Gauss
image is unique.

A further property of D-strip models is that once we have a Gauss
image, we can construct offset models Md, as explained by Fig. 10.
If M is circular, then the distance of corresponding points on edge
curves of M and Md equals the constant d. If M is conical, then
corresponding rulings and tangent planes of rulings for M, Md are
at constant distance d.

Remark: An architectural realization of a D-strip model involves
several distinct types of elements: Glass panels, metal tubes sep-
arating the single strips, and beams which separate glass panels
within a strip (cf. Fig. 1). If the model is conical, these elements can
be arranged in virtual layers of constant surface-surface distance
from each other (these layers are offsets of the original model).

3.2 Relation between circular and conical models

There is a close relation between circular and conical strip models,
and it is possible to convert one type of model into the other one. It
turns out that a conical/circular strip model pair is also associated
with a certain smooth principal patch assembly. We describe the
following conversion methods:

(i): conversion of conical models into circular ones, and vice versa;

Figure 9: Conical D-strip model.
In each point of the edge curve
p2(u), a right circular cone with
axis N2(u) touches the adjacent
strips L1, L2 along the rulings
p1 ∨ p2 and p2 ∨ p3. It fol-
lows that the angles enclosed by
ṗ2 with these rulings are equal.
The cone axes serve as surface
normals.
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Figure 10: Offsets of princi-
pal strip models. If pi andepi are edge curves of model
and Gauss image, then pi +
depi are edge curves of an off-
set. Note that the ruled strips
which connect curves pi and
pi +depi are also developable.
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Figure 11: Model conver-
sion conical→circular. The
edge curves q1,q2 of the cir-
cular strip K1 run orthogo-
nal to the rulings of adjacent
conical strips L1, L2; their
inscribed circles c2(u) lie on
the cones Γ2(u) associated
with points p2(u) of the con-
ical model.
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c2(u)

Figure 12: Canal surface
from circular/conical model
pair. Capping the circles
c2(u) with spheres Σ2(u) in-
stead of cones yields, as an
envelope, a canal surface C1

which smoothly blends be-
tween the conical strips L1,
L2.
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(ii): conversion of a conical/circular model pair, e.g., obtained via
(i), to a series of smoothly joined canal surface patches.

Model conversion. Conversion conical→circular. Fig. 11 de-
scribes conversion of a conical model L = {pi} to a circular model
K = {qi}. We select one seed point, say q1(u) on the ruling
p1(u)∨p2(u); the curve q1 shall orthogonally intersect all rulings
of the strip L1 which is bounded by p1,p2. L1 is enveloped by
the cones Γ2(u), and each cone carries a circle c2(u) which touches
the curve q1 in the point q1(u). Now the adjacent strip L2, which
is bounded by p2p3, is enveloped by the same cones Γ2; in L2 the
circles c2(u) determine another envelope curve q2 orthogonally in-
tersecting the rulings. By construction, distances ‖q1(u)−p2(u)‖
and ‖q2(u)− p2(u)‖ are equal. This mapping of curves q1 → q2

can be iterated and yields the full model K.

Conversion circular→conical: Construct a Gauss image eK to a
given circular model K, and consider the circles eci(u) and ci(u),
which are inscribed in the respective strips of these models. By
construction, eci(u) lies in S2 and there is a unique cone eΓi(u)
which touches S2 along eci(u). It is not difficult to see that par-
allel translating eΓi(u) such that it passes through c2(u) yields the
cones Γi(u) of a conical model L.

Optimization of convertible models. Conversion of the conical
model L = {pi} into a circular model K = {qi} (Fig. 11) starts
with a seed point, which determines the entire curve q1, and in turn
all other edge curves qi. This represents one degree of freedom. It
is easy to associate circular models with a conical one, but the way
of conversion renders it unstable with respect to perturbations of
the initial data, and there is no guarantee that the orthogonal trajec-
tories qi stay within the strips bounded by pi,pi+1. We therefore
add further terms to the target functional (5): fmiddle favoring the
curves 1

2
(pk + pk+1) as orthogonal trajectories, and fwidth, which

penalizes uneven strip widths:

fmiddle =
X

i

Z D
pi − pi+1, ṗi + ṗi+1

E2

du,

fwidth =
X

i

Z
(‖pi − pi+1‖ − ‖pi+1 − pi+2‖)2 du.

Experiments like the one shown in Fig. 13 show that for conical
models optimized in this way conversion works well.

Figure 13: Model conversion. 3D data are approximated by a con-
ical D-strip model (blue edge curves, at left), which is converted
into a circular model (white edge curves are shown in both fig-
ures). Conversion to a ‘canal surface model’ yields a smooth sur-
face (at right), where the edge curves of the original circular model
are orthogonal trajectories of a one-parameter family of smooth arc
splines covering the surface.

Conversion of D-strip models to principal patch models. We
again consider the conversion of a conical model L to a circular
model K according to Fig. 11 and add another feature: Each circle
ci(u) is capped by a spherical patch Σi(u) which is tangent to the
cone Γi(u). This procedure is illustrated by Fig. 12. Then the
surface enveloped by the Σi(u)’s as the parameter u varies is a
canal surface Ci which smoothly blends two strips of the original
conical model. Ci contains circular arcs which smoothly blend the
generators pipi−1 and pi+1pi, as illustrated by Fig. 12. The union
of Ci’s is a smooth surface, which is tangent to the strips of L along
the edge curves pk of K.

Remark: The principal curvature lines of Ci are known: they are the
circular arcs where the generating spheres Σi(u) touch Ci, together
with their orthogonal trajectories (including curves qi and qi+1).
Therefore approximation of a surface by a conical model and sub-
sequent conversion to a canal surface model achieves a “principal
patch assembly” according to of R. Martin et al. [1986].

Applications to panelization. The principal strip models have
properties important for the segmentation of strips into panels. For
that purpose, the angle between rulings and edge curves is impor-
tant. For both circular and conical models, this angle is near 90
degrees. In the following we discuss approximate segmentation of
a principal model into pieces of right circular cones, and into pieces
of Dupin cyclides. Results are shown by Fig. 14.

Panelization with Dupin cyclides and right circular cones. By its
construction, a canal surface model C is covered by arc splines (i.e.,
smooth curves consisting of circular arcs) orthogonal to the edge
curves (see Fig. 13, right, and Fig. 14a). We can thus decompose
C into curved quad patches, whose boundaries intersect at right an-
gles. They can be fitted by a Dupin cyclide or even with a right cir-

(a) (b) (c)

Figure 14: (a) Canal surface model with edge curves (blue) and arc
splines orthogonal to them. (b) Panelization by cyclide patches. (c)
Panelization by pieces of right circular cones.



cular cone, if the distance of successive arc splines is small enough.
We based cyclide fitting on [Pottmann and Peternell 1998].

Panelization by cyclides is related to the conversion of a conical
mesh into cyclide patches according to [Huhnen-Venedey 2007]. In
general, cyclide patches and cone patches do not exactly fit together.
However, numerical experiments show that we can expect to be
within tolerance in architectural applications (the gaps in Figures
14b,c are hardly visible). The significance of this construction lies
in the fact that one family of panel boundaries is now a sequence
of arc splines, whose realization as beams is considerably simpler
than that of arbitrary spatial curves.

Cyclide patches, being double curved, are more expensive in man-
ufacturing than cone patches. However, by clustering in ‘cyclide
space’ we can hope to reduce the number of different cyclides
which are employed in the segmentation of a certain freeform
shape, and so this shape can be covered by double curved panels
manufacturable with a number of molds significantly smaller than
the total number of patches.

Multilayer constructions. The geometric properties of circular
and conical meshes have implications on multilayer constructions:
For any conical model L = {pi} with strips Li, developable strips

Ni consisting of discrete normals
connect pi with the edge curve pd

i

of an offset model Ld. We let
the web of a curved I-beam fol-
low Ni, while its top and bottom
flanges follow circular strips asso-
ciated with the conical strip pairs
Li, Li+1 and L d

i , L d
i+1 by model

conversion. (see also Fig. 11).
Glass panels are aligned with fur-
ther offset models (not shown).
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L d
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2
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3.3 Focal geometry and curvatures

Curvature centers. We consider a conical strip model L = {pi}
and its Gauss image σ(L) = {epi} which is tangentially circum-
scribed to S2. Both models look like Fig. 9. Each point pi(u)

(epi(u), resp.) has an associated cone axis Ni(u) ( eNi(u), resp.).
Consecutive cone axes eNi(u), eNi+1(u) are coplanar (both pass
through the origin), and therefore so are Ni(u), Ni+1(u). Thus
the discrete normals along a ruling polygon belong to a discrete
developable (cf. Fig. 15).

Curvatures in the discrete direction. The ratio of parallel vectors
κ(1)

i,i+1(u) :=
epi+1(u)−epi(u)

pi+1(u)−pi(u)
and the point c(1)

i,i+1(u) := Ni(u) ∩
Ni+1(u) are considered to be the principal curvature and the cor-
responding center of curvature associated with the ruling segment
pi(u)pi+1(u). It is easy to see that c(1)

i,i+1(u) is the center of a
sphere with radius 1/κ(1)

i (u) which touches both cones Γi(u) and
Γi+1(u).

Curvatures in the smooth direction. The curvature center c(2)
i (u)

for the smooth direction must be the intersection point of ‘in-
finitesimally close surface normals’, which means the point of re-
gression of the developable surface Ni traced out by the normals
Ni(u) as u is varying (see Fig. 15). The ratio of parallel vectors
κ(2)

i (u) := depi(u)/du
dpi(u)/du

is considered the principal curvature.

Osculating cones. We still consider a conical model. For each
ruling there is a certain osculating cone which is in second order
contact with the strip (see e.g. [Pottmann and Wallner 2001, p. 332]
and Fig. 3c). The osculating cones along a strip could be used for

pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)pi(u)
Ni(u)

Ni+1(u)pi+1(u)

LLLLLLLLLLLLLLLLL

c(1)
i,i+1(u)

c(2)
i (u)

F (2)

Figure 15: Curvatures. In a conical model L = {pi} (blue), the
cone axes associated with each point pi(u) define discrete normals
Ni(u). Along an edge curve, these normals trace out a developable
Ni. The regression point c(2)

i (u) of Ni serves as curvature center in
the smooth direction, whereas the intersection points c(1)

i,i+1(u) =

Ni(u)∩Ni+1(u) define a principal curvature center in the discrete
direction. The c(2)

i ’s span the semi-discrete focal sheet F (2).

panelization into conical pieces, similar to Fig. 14c. However now
the rulings of cones are aligned with the other principal direction.

Focal surfaces. Without proof we list some properties of the fo-
cal geometry of conical models (which means the surfaces formed
by the curvature centers, cf. e.g. [Yu et al. 2007]): The axis of the
osculating cone ∆i(u) associated with the ruling pi(u)pi+1(u)

contains the curvature centers c(2)
i (u), c(2)

i+1(u) and is parallel to
the vector eri(u), where eri(u) is the regression point in the Gauss
image. The curvature centers c(2)

i (u) form themselves the edge
curves of the ‘second focal’ D-strip model F (2). It is interesting
that F (2) is a geodesic strip model in the sense described below.
The curvature centers c(1)

i,i+1(u) constitute the edge curves of the
‘first focal’ D-strip model F (1), where the ruling polygons may be
seen as geodesics.

4 Other types of D-strip models

Geodesic strip models. Geodesic (i.e., shortest) curves in sur-
faces have been employed, to a varying degree of success, in archi-
tectural design: E.g. the gluing of paper strips onto physical models
guides the alignment of wooden panels [Spuybroek 2004]. Such
arrangements have also been used by F. Gehry (Fig. 16, left). There
have been, however, no systematic investigations, and no general
algorithmic solutions are available. We here describe how a D-strip
model can be made a semi-discrete version of a surface covered
with geodesics. The global manner of strip optimization and width
control leads to results which we believe to provide a first satis-
factory solution for the problem of covering a surface with panels
having approximately straight development.

First recall some facts from differential geometry: The boundary
p(u) of a D-strip has a certain curvature κ(u) as a space curve, and

Figure 16: Left: Assembly of wooden strips onto the framing for
the interior of the Disney Concert Hall (courtesy Gehry Technolo-
gies). Center and Right: Example of a simple geodesic strip model
and its development. An edge curve of the geodesic model leads to
oppositely congruent curves in the development (blue curve pair).



Figure 17: Geodesic D-strip models (in total five) which cover the
interior of a freeform surface.

a geodesic curvature κg(u) with respect to the strip it is contained
in. The curvature of the strip boundary after development into the
plane also equals κg . Meusnier’s theorem says κg = κ cos α,
where α is the angle between the osculating plane of the curve p
and the strip surface.

A geodesic curve in a surface Φ has osculating planes orthogonal
to Φ. In the semi-discrete case (D-strip models), we therefore de-
fine that a D-strip model is geodesic, if the edge curves’ osculat-
ing planes bisect adjacent strips. The reasons for this definition
is that such bisector planes are reasonable planes “orthogonal” to
the strip model (which is itself not smooth). If the strip model con-
verges to a smooth surface, those planes converge to exactly orthog-
onal planes. It follows that each edge curve has oppositely equal
geodesic curvatures with respect to adjacent strips. Consequently,
developing these strips yields oppositely congruent boundaries (see
Fig. 16). The two latter properties are equivalent characterizations
of geodesic models. These curvature properties of strips imply that
the development of the single strips is approximately straight. It
seems feasible to cut them out of long rectangular panels. Typi-
cally a freeform surface is covered not by one, but by several D-strip
models (see Fig. 17).

For Fig. 17, optimization was initialized by conjugate curve net-
works, where one curve family consists of geodesics. Optimiza-
tion employed fwidth for well distributed strip widths. For the
geodesic property, the following functional, which penalizes de-
viation of the edge curves’ osculating planes from the bisector
planes of adjacent strips, is added to the target functional (5). With
n−

i+1 = (pi+1 − pi)× ṗi and n+
i = (pi − pi−1)× ṗi, we let

fgeod =
X

i

Z D n+
i

‖n+
i ‖

−
n−

i+1

‖n−
i+1‖

, p̈i

E2

du.

(a) (b) (c)

Figure 18: (a) A cylindrical model consisting of strips Zi, whose
rulings are parallel to prescribed vectors u1,u2, . . . , and which are
tangent to a given surface. The images in (b) and (c) show the
strips which result from rotating the vectors ui. The interesting
fact here is that even with a rather acute angle between rulings and
edge curves we obtain an aesthetically pleasing strip model.

Cylindrical strip models. Panels shaped as general cylinders
(i.e., developable surfaces where all rulings are parallel) can some-
times be manufactured at reasonable cost, e.g. by rolling metal
sheets in constant direction, or by hot bending of glass panels. We
therefore consider cylindrical D-strip models, where all strips are
cylinders.

Figure 18 illustrates how a smooth surface can be approximated by
a cylindrical model: We choose a sequence u1,u2, . . . of source
directions for parallel illumination, and compute the contour gener-
ator curves q1,q2, . . . for each. The cylinders Zi with directrix qi

and rulings parallel to ui have intersection curves pi = Zi∩Zi+1.
Then Z = {pi} is a cylindrical model. This short description does
not take degeneracies and strip width into account, but systematic
exploration of local surface geometry (convex points and saddles)
shows that evenly distributed strip widths can be achieved, at least
locally (see Fig. 18). We do not go into details but leave this topic
for future research. Optimization for cylindrical models is not dif-
ficult, since maintaining parallelity of edges automatically implies
developability, and univariate linear subdivision schemes applied to
a sequence of parallel rulings keeps these rulings parallel.

Models with planar edge curves. Manufacturing of edge curves
in a D-strip model which are to be supporting beams in an architec-
tural design is much simpler if these curves are planar. It is easy to
incorporate this constraint into our optimization framework.

5 Results and Discussion

5.1 Applications

•Architecture. A main application of D-strip models is architec-
tural design. Either an existing design is approximated by a D-strip
model (Figures 5, 17 and 21), or a D-strip model is designed, e.g.
by subdivision and optimization as described in Section 2 (cf. the
conical model of Figures 1 and 19). Geodesic models are a tool for
segmentation into panels with approximately straight development
(see Figures 16, 17 and 20). We emphasize again that the conical
property is useful for multilayer constructions. Principal models
and the canal surface models derived from them can be used to
solve further panelization problems (Fig. 14).
•Manufacturing Technologies. There are potential applications of
D-strip models in the ship and aircraft industry. Steel plates for ship
hulls are manufactured in a two stage process: rolling followed by
pattern heating. The latter is hard to control and thus plates which
can almost exclusively be formed by rolling (i.e., developable ones)
are preferred. Rolling becomes particularly simple if the rolling di-
rection can be constant (i.e., the strips are cylindrical). In the man-
ufacturing of composite materials the placement of fibers (tape/tow
placement) is an important topic. Apart from other considerations

Figure 19: Exterior view of the architectural design of Fig. 1.



Fig. # ctrl points # Iterations sec δmax δmean fprox f∂, prox ffair/edge ffair/ruling fcone fgeod fmiddle fwidth fgaps

1,19 2972 44 704.7 2.2·10−2 5.0·10−3 .012 2·10−3 2·10−4 2·10−6 2·10−5 3·10−4

5b 285 12 8.64 4.2·10−3 1.0·10−3 .06 .02 10−2 9·10−4

13 660 17 134.4 1.9·10−2 7.8·10−3 .006 10−4 10−4 10−3 10−4 10−4

17 1263 17 137.6 1.3·10−2 2.1·10−3 .14 10−2 5·10−3 10−3 9·10−4

20 418 10 26.1 5.2·10−3 1.2·10−3 .06 10−2 9·10−4 10−3 9·10−4

21 787 27 128.7 2.9·10−2 9.3·10−3 .06 10−5 9·10−3 9·10−3 6·10−4

22 320 13 18.5 1.9·10−2 9.2·10−3 .06 10−4 10−4

Table 1: Run times, and the choice of parameters for optimization. We use the following abbreviations: δmax = max δpi,pi+1 / mean ‖pi −
pi+1‖ (developability measure, worst case), δmean = mean δpi,pi+1 / mean ‖pi−pi+1‖ (mean developability measure). The values of δmax,
indicating developability, show that we are within tolerance for architectural applications. Each geometry functional fdev, . . . is numerically
represented as a sum involving a certain number Mj of samples. In order to have a geometric meaning, the coefficient λj associated with this
functional must be multiplied with Mj . We here show these meaningful coefficients, normalized such that the coefficient of fdev equals 1.

(heat transfer, speed, etc.), it may be guided by a geodesic strip
model. We emphasize that this is a topic for future research.
• Investigation of surface isometries. Precise isometries of triangle
or quad meshes with rigid faces offer very few degrees of freedom,
so meshes are no proper tool for discretizing exact isometries of
smooth surfaces [Sauer 1970]. As a topic of future research we
therefore propose to study surface bending via isometries of D-strip
models (Fig. 20). There are potential applications in art and design.

Figure 20: Isometric bending of a geodesic model. One of the
geodesic models contained in Fig. 17 undergoes experimental iso-
metric deformations after it has been built from paper. Bending
strip models has many more degrees of freedom than isometric
bending of meshes (false color photos of paper models).

5.2 Implementation details

Numerics of optimization. We minimize (5) using a Gauss-
Newton method. The target functionals which contain integrals are
converted into sums approximating these integrals; the derivatives
required by the Gauss-Newton method are computed exactly. As all
functionals express solely local conditions, the matrices of linear
systems to be solved in each optimization step are sparse. We use
Levenberg-Marquardt regularization [Kelley 1999], so these matri-
ces are positive definite. We compute the solution, using Cholesky
factorization, with the sparse matrix solver library TAUCS [Toledo
2003]. Table 1 shows run times on a 2.6 GHz PC with 2 GB RAM.

Influence of user-defined parameters. In the present ‘aca-
demic’ implementation, the choice of the parameters λi is the re-
sult of experience gathered from numerical experiments. To give
an idea, Table 1 shows corrected values of λi associated with each
function. More important than the actual values of the coefficients
is the fact that small variations have basically no influence on the
result, as demonstrated by Figure 5 and Table 2.

Comparison with quad mesh methods. As a D-strip model is
a limit of quad meshes (cf. Fig. 4), we tried to reproduce our results

Fig. δmax δmean fprox f∂, prox ffair/edge

5b 4.2·10−3 1.0·10−3

5c 1.3·10−3 2.8·10−4 ×0.1 ×0.1
5d 1.1·10−3 2.4·10−4 ×0.1 ×0.1 ×0.1

Table 2: Stability of optimization w.r.t. choice of parameters. This
table shows how downweighting closeness and fairness functionals
influences optimization. Changes in the influence factors of sin-
gle geometry functionals have rather small effects on the result (by
visual inspection of Figure 5), while improving developability.

by optimizing suitable dense quad meshes according to Liu et al.
[2006]. This turned out to be difficult even for simple cases, mainly
because one must optimize many more variables than we do in this
paper. For Fig. 5, a mesh with 1185 vertices has been used (which
means 4 times as many variables as with the B-splines approach).
Quad mesh optimization needed 21 iterations to achieve compara-
ble developability, but strip boundaries still lacked fairness.

Limitations. The ‘semi-discrete surface’ viewpoint of the present
paper is appropriate for approximating smooth surfaces by devel-
opable strips with smooth boundaries, where aesthetics plays an
important role. If one only aims for a few developable pieces and
small approximation error, other methods such as [Massarwi et al.
2007; Subag and Elber 2006] may perform better.

Failure cases. We did not experience problems with strip model op-
timization when we started either from a conjugate curve network
or from a planar quad mesh. If we do not initialize optimization in
this way, however, we cannot expect success. If surface complexity
is high compared to the number of strips, the terms (proximity to
reference surface, smoothness, and so on) may adversarially com-
pete. Simultaneous minimization of our different terms may then
become impossible.

Figure 21: Sheet metal freeform design. The shape of a piece of
felt has been approximated by a D-strip model (2 views). Gaps at
singular vertices of the edge curve network have not been closed.



5.3 Conclusion

We have investigated the problem of covering a freeform surface
by developable strips, thus introducing semi-discrete surface repre-
sentations to geometry processing. The various types of different
strip models (circular, conical, geodesic, cylindrical, . . . ) may all
be computed within the same optimization framework, each having
their own applications in architecture, design, and manufacturing. It
turned out that the circular and conical strip models enjoy a wealth
of interesting geometric properties which have been presented here
only insofar as they contribute to applications.

Apart from the topics mentioned above (cylindrical models, models
with planar edge curves, applications in manufacturing, isometries),
future research should address other interesting semi-discrete sur-
face representations. One is asymptotic models, which occur as a
limit of quad meshes with planar vertex stars; an asymptotic model
is the union of ruled strips and at the same time a smooth surface of
negative curvature. There is much to do in semi-discrete curvature
theory, which includes minimal surfaces, constant mean curvature
surfaces, constant Gaussian curvature surfaces, and others.
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faces. Computer Aided Geom. Design 21, 661–670.

BOBENKO, A., AND SURIS, YU. 2005. Discrete differential ge-
ometry. Consistency as integrability. arXiv math.DG/0504358.

CERDA, E., CHAIEB, S., MELO, F., AND MAHADEVAN, L. 1999.
Conical dislocations in crumpling. Nature 401, 46–49.
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Figure 22: A D-strip model which
consists of only 1 strip. It was
produced by covering most of the
sphere by a model consisting of 4
strips (2 long and 2 short ones),
and closing the remaining gaps
with cones. Optimization of this
strip model was initialized from
a quad mesh generated by Quad-
Cover [Kälberer et al. 2007].


