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Peter Schröder (Caltech)

January 2002

Technical Report
MSR-TR-2002-28

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052



This page intentionally left blank.



(SIGGRAPH 2002 submission)

Isosurface Topology Simplification
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Abstract

Many high-resolution surfaces are created through isosurface ex-
traction from volumetric representations, obtained by 3D photogra-
phy, CT, or MRI. Noise inherent in the acquisition process can lead
to geometrical and topological errors. Reducing geometrical errors
during reconstruction is well studied. However, isosurfaces often
contain many topological errors, in the form of tiny topological han-
dles. These nearly invisible artifacts hinder subsequent operations
like mesh simplification, compression, and parameterization. In
this paper we present an efficient scheme for removing topological
handles in an isosurface. Our scheme makes an axis-aligned sweep
through the volume to locate handles, compute their sizes, and se-
lectively remove them. Additionally, the algorithm is designed for
out-of-core execution. It finds the handles by incrementally con-
structing and analyzing a surface Reeb graph. The size of a handle
is measured as the shortest surface loop that breaks it. Handles are
removed robustly by modifying the volume rather than attempting
“mesh surgery.” Finally, the volumetric modifications are spatially
localized to preserve geometrical detail. We demonstrate topology
simplification on several complex models, and show its benefit for
subsequent surface processing.

Additional Keywords: topological artifacts, genus reduction, surface reconstruction,
marching cubes.

1 Introduction
Highly accurate geometric models of physical objects are often ac-
quired through discrete scanning techniques. For example, mod-
els are regularly obtained using laser range scanners, computed to-
mography (CT) or magnetic resonance imaging (MRI). Laser range
scanners achieve full coverage of complex objects by acquiring and
merging multiple scans. Many surface reconstruction algorithms
perform the merging of scanned data using a volumetric grid repre-
sentation, in which the model is represented as the zero-contour of
its sampled distance function, i.e., as an isosurface [4, 12, 14, 19].
Similarly, CT or MRI produce data volumes from which isosurfaces
are extracted [20].

For surface reconstruction, one key advantage of an isosur-
face representation is that it naturally supports models of arbitrary
genus, i.e., with any number of “handles”. For instance, the Buddha
object used in Figure 1 has genus 6. Unfortunately, reconstructed
isosurfaces may have higher genus than expected, due to the pres-
ence of extraneous topological handles. In fact, the scanned Buddha
surface has genus 104 because of nearly invisible artifacts like the
one revealed in Figure 2. Similar artifacts also arise in models ac-
quired from CT and MRI scans, and can result in incorrect connec-
tivity of biological structures, such as a brain surface with non-zero

Genus 104 Genus 104 (2K triangles) Genus 6 (2K triangles)
Original scan Topologically simplified

Figure 1: This scanned Buddha mesh has genus 104 instead of
the expected 6. Regions with extraneous handles are highlighted
in red. The two images on the right compare mesh simplification
results before and after topology simplification. The high-genus
mesh requires many triangles to needlessly represent topological
artifacts, resulting in loss of overall geometric quality.

genus. In general, topological defects are caused by a number of
factors, including sampling density, sampling noise, misalignment
of scans, and grid discretization.

While often invisible, extraneous topological handles create sig-
nificant problems for subsequent geometry processing like model
simplification, smoothing, compression, and parameterization. As
seen in Figure 1, traditional mesh simplification preserves all han-
dles, resulting in inferior overall quality at coarse resolutions. Also,
topological artifacts hinder any processing that must parameterize
the surface, such as texture mapping and remeshing (see Section 3).
Finally, correct topology can be essential for applications such as
the fitting of organ templates to medical MRI data [26].

We present a method for removing topological defects in an iso-
surface. Rather than attempting to repair the defects on a mesh
already extracted from the volume [9], our approach operates on
the volume representation directly, as this offers advantages of ef-
ficiency and robustness. Our method performs a single sweep
through the volume grid to locate topological handles, compute
their sizes, and selectively remove them. The method offers the
following contributions:

Figure 2: Sequence of progressively closer views revealing an ex-
traneous topological handle in the Buddha mesh.
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15,000 triangles 15,000 triangles 1 million triangles
(a) Original model (genus 957) (b) Topologically simplified model (genus 0)

Figure 3: Comparison of progressive meshes of the David model before and after topology simplification. On the far left, many triangles are
wasted representing invisible topological artifacts. The right image demonstrates that topology simplification only requires minute changes
that do not alter the visible appearance of the model.

Out-of-core execution Complex 3D models are represented by
large volumes that may not fit entirely in memory. The model in
Figure 3 is from a 885×709×736 grid, and much larger models now
exist [19]. Our sweep method reads the volume in planar slices,
so its data access pattern is highly regular. Moreover, we encode
surface topology as the sweep progresses, using a Reeb graph so
that few slices need be in memory at any time.
Fast identification of topological handles Handles are effi-
ciently identified during the sweep, either as cycles in the Reeb
graph as it is incrementally constructed, or as handles contained
within a slice itself. We are guaranteed to detect all topological
handles during the sweep.
Handle size estimation Some models have genus that should be
preserved, such as the handles formed by the Buddha’s arms. We
introduce a novel measure of handle size as the length of its minimal
surface loop, and remove all topological handles with a size smaller
than a threshold.
Volumetric modification To remove a topological handle, we al-
ter the scalar values of the volume, thus indirectly modifying the
isosurface. Since isosurfaces are always manifold, operating on the
volume is robust. In contrast, traditional “mesh surgery” must deal
with issues of surface self-intersection and non-manifoldness.
Local repair To retain as much as possible the fine geometric
detail of the model, our handle removal scheme aims to minimally
perturb the original volume data. This is achieved by removing the
shortest surface loop that simplifies the topology.

1.1 Related Work
Reeb graphs Given a scalar function defined on the surface, a
Reeb graph tracks the connected components of the pre-image of
the function. For instance, if the scalar function returns the z co-
ordinate of the volume, its pre-image is the intersection of the sur-
face with z planes, and the connected components consist of closed
planar contours. The Reeb graph tracks how these contours split
and merge as z varies. It is often used to analyze surface topol-
ogy, since cycles in the graph correspond to topological handles.
Shinagawa et al. [27] use this framework for the reconstruction
of surfaces from contours. Axen and Edelsbrunner [2], Hilaga et
al. [11], and Wood et al. [28] analyze Reeb graphs induced by a
geodesic distance function with respect to a seed point. Because
these geodesic-based schemes require a breadth-first traversal of the
surface, the irregular accesses to the volume make out-of-core pro-
cessing difficult. Like Shinagawa et al., we construct a Reeb graph

based on a scalar height function, and thus only require an axis-
aligned sweep. We consider a discrete set of z grid intervals, rather
than the continuous z function, and modify the graph construction
accordingly.

Mesh-based topology simplification Guskov and Wood [9] re-
move topological noise from already extracted meshes. They re-
peatedly grow ε-balls over the surface, and remove any topological
handle enclosed within such a ball using mesh surgery. Their ap-
proach has several drawbacks. For large ε, locating the topological
handles is slow. Additionally, their definition of topological feature
size fails to detect long thin handles, since they do not fit in a small
ball. Finally, topological repair using mesh surgery can give rise to
surface self-intersections.

Using the concept of alpha hulls, El-Sana and Varshney [6] re-
duce surface genus by re-tessellating small handles in a model.
Their algorithm creates candidate tessellation regions by heuristi-
cally detecting crease edges in mechanical CAD models. The ap-
proach has not yet been generalized to work on more general sur-
faces. Edelsbrunner et al. [5] also use alpha hulls to characterize
the sizes of topological features, by tracking the evolution of com-
plexes. This allows for a combinatorial definition of topological
feature size. While theoretically useful, the resulting structure is
too heavy and rich for our purposes.

Volume-based topology simplification Nooruddin and Turk [22]
convert a polygonal model into a volumetric representation in order
to repair its topology. They apply morphological operations (dila-
tion and erosion) to the volume data, causing topological handles to
close. However, the operators affect the entire volume, resulting in
the smoothing of geometry and thus loss of fine detail. We prefer
a more targeted approach that exactly preserves geometric detail in
regions away from topological artifacts.

Shattuck and Leahy [26] address the specific problem of con-
structing a genus-zero model of the human cortex from MRI scans,
for use in cortical flattening and mapping. In contrast to the previ-
ous methods, they build Reeb graphs over the volume rather than
the mesh. Specifically, they construct two Reeb graphs, encoding
the connectivity of foreground and background voxels respectively.
Their scheme removes all handles without regard to size, and al-
ways breaks handles along axis-aligned planes (Figure 9 shows an
example where their strategy fails). In contrast, our approach per-
forms one main sweep, constructs a single graph, has a more accu-
rate measure of handle sizes, and repairs the volume with a more
general and minimal operation.
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Model simplification Several schemes simplify topology as a
byproduct of model simplification [7, 10, 23]. Since these schemes
simultaneously simplify geometry and topology, removing topo-
logical artifacts invariably involves loss of geometrical detail. In
contrast, our focus is on simplifying topology while preserving ge-
ometrical detail.

Figure 4: An isosurface and its corresponding Reeb graph. In the
graph, contour nodes are shown in blue, and ribbon nodes in pink.

2 Our Approach
For clarity, we first introduce some definitions and terminology.
Our input consists of a regularly sampled 3D grid of scalar values.
A grid cube is bounded by 8 grid data points. Within each cube,
an isosurface generation algorithm (such as [18] or [20]) defines a
set of surfels (for surface elements) [28]. Each cube may have up
to 4 surfels. The surfels from all cubes together form a polygonal
mesh, which is a discrete representation of the isosurface. For our
algorithm, the important element is connectivity of the surfels, as
this connectivity defines the topology of the surface.

An axis-aligned sweep through the volume visits the grid data
along parallel planes. The isosurface intersects each such plane
along a set of contours (oriented closed polylines) as depicted on
Figure 4 and 5. A slice of the volume is the set of grid cubes be-
tween two adjacent data planes. Within each slice, the surface may
have several connected components; each such component is called
a ribbon. The boundaries of a ribbon consist of one or more con-
tours in the two adjacent planes.

A topological handle corresponds to a surface region with
genus 1. The genus of a region with boundaries is computed by
closing each boundary component with an end-cap. Note that a
topological handle is unchanged if all data values in the volume are
negated, i.e., the model is turned inside out. Thus, we avoid the
terms “tunnel” and “hole,” as these have connotations of orienta-
tion. We define a surface loop as a closed path on the surface that
spans a handle, i.e., the surface remains connected when cut along
the loop.Problem statement The topology of a surface is characterized by
its genus, its orientability, the number of its connected components,
and the number of its boundary components [21]. Isosurfaces have
the property that they are always orientable, and never have bound-
aries (if one pads all sides of the volume with “outside” scalar val-
ues). Thus, our problem of topology simplification corresponds to
reducing surface genus, i.e., removing topological handles.

Our algorithm deals with multiple disconnected components by
concurrently simplifying them independently. Typically, for the fi-
nal output, one discards all but the largest component, since the oth-
ers are usually spurious artifacts, particularly for range data. How-
ever, for completeness we simplify the topology of all the compo-
nents in the volume.

Our goal is to locate topological handles in the isosurface and
selectively remove them. Removing a handle involves modifying
the data values of nodes in the grid, from positive to negative or
vice-versa. The ideal choice of which handles to remove is likely

Figure 5: Example surfaces and their associated contours and Reeb
graphs. The examples are: a torus on its side, an upright torus, and
a bowl-like surface.

subjective, since some topology may be “inherent” to the model.
While our system could be designed to locate handles and repeat-
edly ask the user for guidance, we sought an automatic solution. To
make this problem computationally tractable, we introduce a defi-
nition for handle size, and let our scheme remove all handles whose
measured sizes are smaller than a user-provided threshold �. Specif-
ically, we define the size of a handle as the length of the minimal
loop spanning the handle. See Figure 6 and 9 for an illustration
of such loops. The issue of setting the handle size threshold � is
discussed in Section 3.2.
Approach overview Our approach can be summarized as:
• Sweep through the volume to locate all topological handles.
• For each handle found, measure its size.
• If the size is sufficiently small, remove the handle.

We now present each of these steps in more detail.

Figure 6: On this irregularly shaped torus, the Reeb loop is shown
in magenta, and the cross loop is shown in blue. Note that the cross
loop, which corresponds to the shortest loop around the handle, is
not limited to a single slice of the volume in this example.

2.1 Locating Topological Handles
Determining the genus of an isosurface is a relatively simple task.
One can sweep through the volume and count the number of ver-
tices, edges, and faces which would be generated during isosur-
face mesh extraction [18]. The Euler characteristic is then χ =
|V | − |E| + |F |, and the surface genus is g = (2 − χ)/2. How-
ever, this genus analysis fails to provide any information as to the
location or size of topological handles.

To locate handles, we perform a sweep through the volume along
the z axis, and construct a Reeb graph to track the connected com-
ponents of the surface as the sweep advances. More precisely, we
analyze the isosurface one slice at a time, which corresponds to an
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interval in z. Within a slice, the surface is made up of ribbons,
whose boundaries are contours in the two adjacent z planes. Both
the ribbons and contours are identified using breadth-first search to
find connected sets of surfels (in the slice) and edges (in the planes)
respectively. We create nodes in the Reeb graph corresponding
to both ribbons and contours, and record their adjacency as graph
edges, as illustrated in Figures 4 and 5. Cycles in the Reeb graph
correspond to topological handles on the surface.

Because our Reeb graph considers surface connectivity over dis-
crete z intervals, rather than continuously, some topological han-
dles may not be detected as cycles in the graph because they are
entirely contained within a slice. We detect these by computing the
Euler characteristic of each surface ribbon. If a ribbon has non-zero
genus, it obviously contains handles. One such intra-ribbon handle
is shown in Figure 7. In practice, these intra-ribbon handles com-
pose 10-20% of the total topology, depending on the input and the
sweep direction (see discussion in Section 3). Note that an isosur-
face cannot have a handle within a single cube, nor in a single row
of cubes. Within a slice, the smallest configuration appears to be a
6×6 cube configuration which brings about the surface in Figure 7.

To summarize, the genus of the isosurface S is partitioned as:

g(S) = #cycles(Reeb Graph) +
∑

r∈ribbons

g(r) .

We next discuss how to locate the handles in both cases.
Finding cycles in the Reeb graph Cycles in the Reeb graph are
detected incrementally as the sweep advances through the volume.
This progressive detection allows for handle removal to occur con-
currently during the sweep. Our approach is as follows.

For each Reeb graph node, i.e., both ribbons and contours, we
associate a label that identifies the connected component to which
it belongs. The only way that a cycle can form is when an edge is
added in the Reeb graph from a ribbon node to a contour node in
the previously visited plane. When adding such an edge, we test
whether the two nodes have the same label. If so, they belong to the
same connected component and a cycle is formed. In any case, after
the edge is added, we relabel the graph nodes to reflect the merging
of connected components. This process is implemented efficiently
using a Union-Find algorithm on a disjoint-set data structure [3],
taking negligible time.

When a cycle is detected, we perform a breadth-first search
through the graph to find the shortest cycle. Note that there may
be multiple paths, due to nested cycles associated with handles we
chose to preserve earlier. The cycle path consists of alternating rib-
bon and contour nodes and defines a topological handle.

The following pseudocode summarizes the key parts of the de-
tection algorithm:

function Add ribbon to Reeb graph(ribbon r, ReebGraph G)
Add ribbon r as node in Reeb graph G.
label(r) := unique label().
Identify previous contours C adjacent to r on surface.
Foreach (pair contours c1, c2 ∈ C)

if label(c1) = label(c2) then
path P := shortest path from c1 to c2 in G.
Report cycle as (c2, r) + (r, c1) + P .

Foreach (contour c ∈ C)
Add edge (c,r) to G.
Unify labels of contour c and ribbon r.

Finding intra-ribbon handles Recall that we must also consider
the case of a topological handle contained entirely within a ribbon.
When a ribbon is identified as having non-zero genus, our task is
to locate the surface loop(s) within it. To avoid writing a special-
purpose algorithm for this 2D case, we create a temporary mini-
volume composed of just the relevant slice, padded on both sides

Figure 7: Example of intra-ribbon handle. This torus tilted at an
angle is formed by two “C” shaped contours. As shown on the
right, the Reeb graph does not contain any cycle.

by exterior values such that the contours are closed by end-caps.
In the rare case that these contours are nested, this padding must
be appropriately widened to always close contours with end-caps.
Within this mini-volume, the isosurface matches the original iso-
surface only within the slice. However, it has the same genus as
the original ribbon, and notably, it has no intra-ribbon handles. We
then apply our regular sweep algorithm to this mini-volume along
an orthogonal direction. For each cycle detected in the resulting
Reeb graph, we find the restriction of the ribbon cycle to the orig-
inal slice of the volume, since the geometry of the isosurface only
matches there.

As a sidenote, an alternative scheme we explored to deal with
intra-ribbon handles is to sweep across the volume along all 3 axis
directions, hoping to detect the handle as an ordinary Reeb cycle.
To our regret, we found that there can exist handles that are intra-
ribbon in all 3 directions simultaneously. Fortunately, our current
approach of performing orthogonal sweeps only locally (on mini-
volumes) guarantees finding all handles, and is more efficient.

handle collapse handle pinching
Figure 8: Two ways of removing a topological handle, illustrated on
two tori. The “fat” torus is best repaired by collapsing the handle,
and the “skinny” torus is best repaired by pinching the handle

.
2.2 Measuring Topological Handle Size
Recall that a cycle in the Reeb graph identifies a cycle of ribbons
forming a topological handle. There are two natural ways to remove
a handle (Figure 8):
• handle collapse by filling the interior of the cycle, and
• handle pinching by breaking the ribbon cycle.

Local surface geometry determines whether the collapse or pinch-
ing operation is more appropriate, as illustrated in Figure 8. Both
handle collapse and handle pinching are in fact the same opera-
tion applied to two different surface loops. (Recall that a loop is
a closed curve that spans the handle.) We call this operation loop
closure. Intuitively, loop closure removes the handle by removing
a thin strip of surface about the loop, and closing the resulting two
boundaries using two parallel “membranes” spanning the loop. The
actual implementation of this operation on our discrete grid volume
is discussed in the next section.
Two characteristic loops To find the best loop closure operation,
we compute two surface loops:
• the Reeb loop which is the smallest loop around the ribbon cy-

cle, and
• the cross loop which is the smallest loop “transversal” to the

Reeb loop, i.e., pinching the handle.
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Thus, for a vertical torus, the Reeb loop length measures its inner
circumference, and the cross loop length measures its girth. See
Figure 6 and 9 for an example of both loops. Since we perform
only a single sweep, it is important that we consider both types of
handle removal operations. We therefore define handle size to be
the smaller of the Reeb loop length and the cross loop length.

We find the Reeb loop using two successive searches as follows.
The Reeb cycle contains at least one pair of contours in the same
plane. We compute the all-points shortest paths from points on
the first contour to points on the second contour, constrained to go
through the lower portion of the ribbon cycle. Then using the end-
points of this first search, we continue the all-points shortest paths
back to the first contour, constrained to the upper portion of the rib-
bon cycle. Among all shortest paths ending at their starting point,
the shortest is the Reeb loop. As an implementation detail, we cur-
rently represent paths over surfels instead of the mesh vertices and
edges that a MC extraction would produce, as the difference is not
significant due to the regular sampling of our volume data.

We construct the cross loop in a similar manner. We now pre-
tend that the surface has been cut along the Reeb loop. Starting
from one side of the Reeb loop, we compute the all-points shortest
paths to the points on the other side of the Reeb loop. Among all
shortest paths forming cycles, the shortest is the cross loop. Note
that this cross loop is not required to lie along a contour. It can cut
diagonally through the volume, as shown in Figure 6 and 9.
Measure of topological handle sizes From these two character-
istic loops, we can now derive a measure of the topological handle.
Generally, we use the smaller of the two loops as the measure of
handle size. If desired, we can provide additional user-control. For
example, if the user wants to avoid removing long skinny handles,
we can preserve handles that have a large ratio between the two
loop sizes. Also, the user can specify that material is to be only
added or only subtracted from the volume. From the orientation of
any contour in the Reeb graph cycle, one can determine whether the
ribbon cycle encloses a void or encloses material. It is always the
case that exactly one of the two loops (Reeb loop and cross loop)
encloses empty space while the other encloses the model interior.
We can therefore exclude the appropriate loop if desired.

As a measure of loop size, we chose the perimeter length of the
loop. This length corresponds to the extent of the cut along the sur-
face necessary for loop closure. An alternative would be to measure
the area of the loop, e.g., the area of the spanning minimal surface.
This area would correspond to the extent of the new surface nec-
essary for loop closure. We have chosen loop length because it
seems a tighter measure than area. Consider a handle in the shape
of a wide, thin-walled vertical tube. The cross loop is then a tall,
thin rectangle. Even though the loop area may be quite small, its
perimeter is quite long, and will therefore be preferable to identify
this handle as a large feature. Notice finally that this measure is
independent of sweep direction.
Considerations for intra-ribbon handles The intra-ribbon han-
dles require special treatment. As noted in section 2.1 we find
intra-ribbon handles by performing an orthogonal sweep on a mini-
volume containing the intra-ribbon handle. This approach is guar-
anteed to discover the intra-ribbon handle. However, it may not
find the minimal loop to simplify the handle since we restrict our
simplification to collapsing the Reeb loop. Recall that we ignore
cross loops in this mini-volume because their geometries would not
correspond to the original volume. Therefore, we use the following
modification in practice:
• We first find just the Reeb loop within the mini-volume using

an orthogonal sweep as previously described. Most intra-ribbon
handles are small and have Reeb loops of size < �. For exam-
ple, 22 of the 26 intra-ribbon handles in the Buddha model have
Reeb loops of size 4.

• For the few intra-ribbon handles that do not have small Reeb

Figure 9: Close-up of the feline mesh with the Reeb loop shown in
blue, and cross loop shown in red. The right image shows the result
of pinching the handle at the cross loop as done by our algorithm.

loops, we expand our orthogonal sweep to a larger mini-volume
of size 2�.

In this expanded mini-volume, we are no longer restricted to only
collapsing Reeb loops. If the intra-ribbon handle has a cross loop
of size < �, the handle is simplified by closing this loop. These sec-
ond passes seldom occur. This slight modification both guarantees
a correct handling of intra-ribbon handles and finds the minimal
loops.

2.3 Removing Topological Handles
The same minimal loop used to define handle size is also used to re-
move the handle through loop closure. We perform loop closure on
the isosurface by scan-converting a surface spanning the loop into
the volume grid data [15]. Since the loop is generally non-planar,
one could construct some approximation to the minimal spanning
surface. For efficiency, we simply use a triangle fan about the cen-
troid of the loop. The scan-conversion writes either positive or neg-
ative scalar values in the grid, depending on the orientation of the
loop (discussed in Section 2.2). This rasterization technique both
collapses and pinches off handles through insertion of a thin wall.
The modified isosurface is guaranteed to remain a manifold and to
have no self-intersections. See Figure 10 for an example of topo-
logical simplification.

There are a few potential problems to consider. The fan of trian-
gles closing the non-planar loop could be self-intersecting, or could
intersect other regions of the surface, for instance, if the handle
were to contain another, nested handle. In practice, this is unlikely
since we find a minimal loop and only close it if it is small. At
worst, the loop closure could introduce additional topological han-
dles. But since we locally re-build the Reeb graph after a loop clo-
sure operation, these new handles would be processed subsequently.

3 Results and Discussion
We have run our topology simplification scheme on a number of
volumes, as shown in Table 1. The Buddha, dragon, feline and
David models are from laser range scans at Stanford University.
The brain model is from an MRI scan from the Harvard Medical
School [17].

The number of intra-ribbon handles varies strongly depending
upon the data and the sweep direction. For example, the brain MRI
has 120 intra-ribbon handles in the original scan direction. This
high number is due to the nature of the data. MRI is typically seg-
mented by hand, and small misalignments between these segmented
contours commonly give rise to intra-ribbon handles. Sweeping
the brain MRI data along an orthogonal direction produces only 6
intra-ribbon handles. Given this observation, we choose to sweep
all MRI volumes in a direction orthogonal to the original data ori-
entation. This reduces execution time since fewer mini-volumes are
created. For range scans, intra-ribbon handles are less frequent, and
seem to be independent of sweep direction.
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Model Grid size #Faces Thresh. Genus #Intra- Handles removed Timing
size � original simplified ribbon #collapse #pinching (minutes)

Buddha 400×400×950 4,736,292 9.5 106 6 26 42 58 6.5
Dragon 500×714×324 3,222,612 46.5 60 1 18 31 28 3.8
David 885×736×709 15,244,302 166.5 1063 0 76 332 731 87.5
Brain 125×255×255 688,248 32.5 366 0 6 320 46 2.8
Feline 332×148×316 653,922 4.5 6 2 1 2 2 0.2

Table 1: Quantitative results: The handle threshold size � is expressed in units of cube edge size. The number of removed handles (original
genus minus simplified genus) is broken down into handle collapse and handle pinch operations. Times are shown in CPU minutes. All values
listed are for the entire volume, i.e., for the surface and any spurious disconnected components in the volume data.

During topology simplification, collapse and pinch operations
appear with approximately equal frequency. Excess topology is
generally small, in terms of both Reeb and loop sizes, and is ori-
ented randomly throughout the volume, leading to equal likelihood
of either the Reeb or cross loop having size < �.

The scatterplot in Figure 11 shows a typical distribution of han-
dle sizes for an object with large-scale topology. Typically, extra-
neous handles in the isosurface are small with 90% having loop
lengths of 4–8 (see Figure 10). However, there are some volumes
containing handles with larger Reeb and cross loops. For laser
range data, these larger loops are typically associated with spuri-
ous data, external to the intended surface. For example, whereas
the surface of the dragon has predominantly small handles, one of
its spurious external surface component has a handle of size 46.

The timing for our algorithm depends on the size of the volume
and on the number of topological handles. It depends particularly
on the number of handles that need to be simplified, since the Reeb
graph must be locally rebuilt each time a handle is simplified. In
general, our processing takes on the order of minutes.

We have verified the robustness of our algorithm using con-
voluted geometry (Figure 14) and large volumes (Table 1). Our
method is also able to robustly simplify topology for large han-
dle sizes. For example, setting � to infinity produces a genus-zero
Buddha, where even the large handles (with lengths up to 246) are
removed (Figure 10).

Figure 10: Histogram of handle sizes for the original scanned Bud-
dha model. Recall that handle size is the smaller of the Reeb and
cross loop lengths. Setting the loop size threshold � to infinity for
topology simplification results in a genus-zero Buddha.

3.1 Applications

Topology simplification facilitates many surface operations:

• Fewer triangles are wasted to encode topological defects dur-
ing mesh simplification, as shown in Figures 1, 3, 14 and 13
using the progressive mesh representation of Hoppe [13]. Con-
sequently, coarser meshes can be created, and geometric quality
is improved at all levels of detail.

• Better surface parameterization improves texture mapping, as
shown in Figure 15 using the scheme of Sander et al. [24].
Fewer charts are necessary to partition the surface, which re-
sults in a nicer parametric domain.

• Removal of topological defects permits remeshing, as shown in
Figure 12 using the method of Guskov et al. [8]. The remesh
has nice regular face sizes and allows for efficient progressive
geometry compression [16] as well as many other semi-regular
geometry processing algorithms [25]. The topologically clean
volumes can also be more readily used for semi-regular mesh
extraction [28].

• Greater mesh compression is achievable. With the scheme of
Alliez and Desbrun [1], the compressed size of the Buddha is
reduced from 838,446 bytes to 796,066 bytes.

3.2 Discussion
Setting the handle size threshold For our examples, we first
make an initial pass over the volume to gather statistics on han-
dle sizes, and examine these using a histogram or scatterplot (Fig-
ures 11 and 10). By looking at the relative sizes of topological han-
dles, we select an appropriate �. For most of the models, the excess
topology has loop lengths in the range of 4–8. Thus, our setting of
� typically ranges from 10–20.

We observed that the initial statistics can change significantly as
topological handles are filtered. Figure 11 shows a large handle
with a small nested handle. For this configuration, the large han-
dle has a large Reeb loop and small cross loop, and the small han-
dle has an even smaller Reeb loop and shares the same cross loop.
During topology simplification, the small handle is removed first
leaving only the large handle which now has both large Reeb and
cross loop. This phenomenon is also reflected in the scatterplots
before and after topology simplification (Figure 11), where a data
point near the � line moves to the top right once the small handle is
removed.

Handle size approximation Our method for computing the min-
imal loop size makes several approximations. First, the shortest
loop is not computed as the geodesic over the continuous surface,
but as the shortest path over the discrete surfel connectivity graph.
Second, our current implementation assigns all edges in this graph
a constant cost, motivated by the fact that all cubes have uniform
size. Euclidean distance costs could be computed, but the resulting
effect is too small in our examples to matter as the minimal loops
are very small to begin with. Even for large loops, our approxima-
tion remains reasonable as shown in Figure 9.
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Buddha loop data before topology simplification

Buddha loop data after topology simplification
Figure 11: Scatterplot of the Reeb loop and cross loop lengths of
the handles of the Buddha, before and after topology simplifica-
tion. Hollow circles identify handles whose minimal loop encloses
a void. The red lines mark the range of � that keeps exactly these
6 handles. On the right we see corresponding close up view of two
adjacent handles on the Buddha model with a shared small cross
loop. After topology simplification (bottom), the small handle is
collapsed and the larger handle now has a larger cross loop.

Algorithm time complexity With respect to time complexity, in
practice the overriding term is the traversal of the volume, which re-
quires accessing O(n3) grid values, where n is the extent of the grid
in each dimension. Typically the surface has only O(n2) surfels,
and the Reeb graph only O(n) nodes and edges, so the processing
steps related to the surface and Reeb graph do not require signifi-
cant time. However, there is processing time associated with each
topological handle discovered and its subsequent measurement and
possible removal. We can restrict this processing time based on
the size of loop we are simplifying, i.e., we can short-circuit any
breadth-first search that is already less than �. However, for every
handle that is simplified, we must reconstruct the Reeb graph lo-
cally to account for the resulting changes. For large volumes with
many changes, e.g., the David volume, this reconstruction cost can
be significant, but is required in order to accurately code the topol-
ogy of the isosurface.
Algorithm space complexity Probably more important are the
space requirements. Computing the Reeb loop for a handle requires
access to the surfels in all ribbons referred to in the Reeb cycle.
Accurate computation of the cross loop requires additional slices
above and below the cycle. The number of additional slices is de-
termined according to �, such that we are guaranteed to find a cross
loop of length less than � if one exists. The worst case situation
is that of a very long handle with a thin cross-section somewhere
along its length. Given a strict memory budget, Reeb and cross
loop computation may require reloading previous slices of the vol-
ume that have already been flushed from memory. In practice, we
only keep 50 slices of volume in memory at any time, making the
algorithm viable even for low-end computers.

4 Summary and Future Work
We have introduced a scheme for automatically removing topologi-
cal handles from isosurfaces through direct processing of the origi-

Figure 12: A remesh of the genus 1 dragon. Remeshing the original
scanned dragon with genus 46 would be nearly impossible, given
the difficulty of achieving a high-quality parameterization for high-
genus models.

base mesh (752 triangles) simplified mesh (1,000 triangles)
(a) Original model (genus 43)

base mesh (52 triangles) simplified mesh (1,000 triangles)
(b) Topologically simplified model (genus 1)

Figure 13: Comparison of progressive meshes with a given triangle
budget on the dragon before and after topology simplification.

nal volume data, and demonstrated its effectiveness on several com-
plex models. We have also demonstrated that removing topological
defects is important for many subsequent modeling operations.

One area of future work is to improve the local surface geome-
try after handle removal. The handles removed in our test exam-
ples were so small as to be nearly invisible, so we did not consider
smoothing to be important. However, it is conceivable that topo-
logical defects could be of more substantial size. Since we have
information about the local region affected by the loop closure, we
could smooth the newly inserted surface. For example, this smooth-
ing would improve the visual appearance of the regions bounded
by the arms in the genus-zero Buddha (Figure 10). In range data
reconstruction algorithms, it is already common to smooth the un-
scanned, filled-in regions of the surface [4].

For larger handles, it may be desirable to use more accurate ap-
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Topologically simplified (genus 0)

base mesh (5,464 triangles) base mesh (4 triangles)
Original (genus 366) Topologically simplified (genus 0)

Figure 14: Comparison of the base meshes of progressive meshes
on a brain model (MRI).

proximations of true geodesic surface loops rather than the discrete
graph approximation. More generally, we are interested in explor-
ing alternative methods for measuring topological handle size.

To explore data such as MRI, some systems allow the isosurface
value to be varied interactively. Efficiently removing handles in the
changing isosurface is an interesting problem. Perhaps it is possi-
ble to pre-process the volume to remove topological artifacts for a
range of isosurface values.
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