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Abstract
In this paper we will discuss various methods of picture deformation recovery.

These methods work like commonly known image registration methods, which use
control points to describe how parts of an image will be transformed. All methods
are explored and their accuracy in the picture deformation recovery are compared.
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1 Introduction
Motivation for this paper was a need for an accurate geometric correction of scanned
cadastral maps (maps of land lots and owners). Many of these maps are very old and
they are distorted or deformed by climatic in�uences. The identi�cation points (Geodetic
Control Points), that represent part of distinguish objects such as old trees, corners of big
buildings, etc. are often used in the process of a map creation. If we know their accurate
position, they can help us remove map deformation. Cadastral maps have also another
type of identi�cation points, which make regularly spaced rectangular grid.

Our paper describes some picture transformation methods. All of them can be divided
into two classes � one-segment or many-segment transformation methods.

The paper is structured as follows. Section 2 introduces image processing of maps.
Section 3 describes one-segment and many-segment transformation methods. Section 4
contains comparison of here presented methods. Finally, section 5 concludes the work.

2 Image Processing
When we obtain a picture in a digital form, it is often necessary to modify it for further
processing. At �rst, we choose proper picture cutout in order to eliminate unwanted parts
of the picture. Then we adjust the brightness and contrast, eventually we apply the gamma
correction to it. Next, the �ltration process removes some unwanted artifacts like scanned
hairs or dust. The cadastral maps use only black & white information therefore the
picture is converted to grayscale and then it is binarized3. Finally, applying morphology
operations we can remove isolated points, eventually we emphasize thin lines.

1This paper was supported by VEGA Grant No. 1/3024/06.
2Department of Algebra, Geometry and Didactics of Mathematics, Faculty of Mathematics,

Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia, email: bo-
hdal@fmph.uniba.sk

3This conversion also takes away yellowish tint of old maps.
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Filtration
Bilateral �ltration or �ltration based on the anisotropic di�usion is very convenient for
�ltration of map pictures because it preserves edges of objects.

Anisotropic di�usion �lter. Perona and Malik formulate the anisotropic di�usion
�lter as a di�usion process that encourages intraregion smoothing while inhibiting inter-
region smoothing. Mathematically, the process is de�ned as follows [5]:

∂tu(x, t) = div
(
g(|∇u(x, t)|) · ∇u(x, t)

)
, (2.1)

where g(s) =
1

1 + (s/λ)1+α
or g(s) =

1

e(s/λ)1+α with α > 0.
In our case, u(x, t) represents the input image. The symbol x refers position in the image
and t refers to the iteration step. The function g(s) is called the di�usion function. It is a
monotonically decreasing function of the image gradient magnitude. It allows for locally
adaptive di�usion strengths; edges are selectively smoothed or enhanced based on the
evaluation of the di�usion function.

Bilateral �ltering. This �ltering technique smooths images while preserving edges,
by means of a nonlinear combination of nearby image values [6]. The kernel of a bilateral
�lter is composed of an inner product of two �lters. The �rst of these �lters is a normal low
pass �lter, which basically averages the neighboring pixel intensity values with decreasing
weights for pixels at larger distances. In the second one, weights for the neighboring pixels
are derived from the pixel intensity value di�erences to the center pixel intensity value
instead of geometric distances. Combined �ltering can be described as follows [6]:

h(x) = k−1(x)

∞∫

−∞

∞∫

−∞

u(ξ)cd(x, ξ)cr(x, ξ)dξ, (2.2)

where k(x) =
∞∫
−∞

∞∫
−∞

cd(x, ξ)cr(x, ξ)dξ. The symbol cd(x, ξ) = e
− 1

2

“ ||x−ξ||
σd

”2

denotes the

Euclidean distance between ξ and x and the cr(x, ξ) = e−
1
2(

||u(x)−u(ξ)||)
σr

)
2

is distance
between the two intensity values u(x) and u(ξ).

RGB to Grayscale Conversion
There are many color conversion functions which convert a pixel with the color compo-
nents (R,G, B) to its grayscale value Y . One of the good choices is to use expression:

Y = 0.212656R + 0.715158G + 0.072186B.

Binarization
Binarization (or tresholding) is based upon simple concept. A parameter θ called bright-
ness treshold is chosen and applied to the image u(x) as follows:

u(x) =

{
1 if u(x) > θ

0 else
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An alternative approach is to use an adaptive tresholding. For each pixel in the im-
age, a local threshold is calculated by statistically examining the intensity values of its
neighborhoods.

Morphology operations
Morphology operations are very useful when we want emphasize objects in the picture or
remove isolated dots. We can choose any undermentioned operation or their combinations:
dilatation � D(A,B) = A⊕B,
erosion � E(A,B) = AªB,
opening � O(A,B) = A ◦B = (AªB)⊕B,
closing � C(A,B) = A •B = (A⊕B)ªB,
where A is an object and B is a proper structural element. Symbols ⊕ and ª denote
two known Minkowski operations. Dilatation, in general, causes objects to grow in size,
while erosion causes objects to shrink. The opening operation can separate objects that
are connected and the closing operation can �ll in small holes.

Figure 1: Stages of maps correction

3 Transformation Methods
Suppose, we are given two sets of n points P ,V ∈ E2, P = {pi[xi, yi] ∈ E2; i = 1, . . . , n}.
The set P consists of identi�cation points on a deformed picture and the set V comprises
of points on an ideal undeformed picture. We call pairs (pi, vi) as corresponding points.
Then we seek a transformation function f : E2 7→ E2 such that f(pi) = vi, where
i = 1, . . . , n. Using the function f(x), we will transform all points of the input picture.
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3.1 One-segment Transformation Methods
Methods in this class are given by one formula on the whole domain. Advantage of these
methods is their simple expression and possibility to compute pixels of the new picture
laying outside the convex hull of the input corresponding points. Their transformation
functions have almost global in�uence on the transformed picture.

3.1.1 Thin Plate Splines Method
Thin Plate Splines method (or radial basis function methods) is the most preferable
method for the image warping. We can also use it in the picture deformation recovery.

The interpolating transformation function f(x) has the form [2]:

f(x, y) = c1 + c2x + c3y +
1

2

n∑
i=1

λir
2
i log(r2

i ), where [x, y] ∈ E2, (3.1.1.1)

r2
i = (x − xi)

2 + (y − yi)
2 and c1, c2, c3,λi are unknown quantities. The parameters

λi, i = 1, . . . , n have to satisfy the boundary conditions:
n∑

i=1

λi = 0 and
n∑

i=1

λipi = 0. (3.1.1.2)

Applying interpolation conditions f(pi) = vi, where i = 1, . . . , n together with
boundary conditions 3.1.1.2 we can compute the unknown values via the next system of
equations:



0 0 0 1 1 · · · 1
0 0 0 x1 x2 · · · xn

0 0 0 y1 y2 · · · yn

1 x1 y1 0 r2
21 log(r2

21) · · · r2
n1 log(r2

n1)
1 x2 y2 r2

12 log(r2
12) 0 · · · r2

n2 log(r2
n2)... ... ... ... ... . . . ...

1 xn yn r2
1n log(r2

1n) r2
2n log(r2

2n) · · · 0







c0

c1

c2

λ1/2
λ2/2
...

λn/2




=




0
0
0
f1

f2
...

fn




, (3.1.1.3)

where r2
ij = r2

ji = (xj − xi)
2 + (yj − yi)

2.

3.1.2 Shepard's Method
Shepard de�ned his interpolating function f(x) to be weighted mean of the coordinates
vi [4]:

f(x) =
n∑

i=1

ωi(x)vi. (3.1.2.1)

Weight functions ωi(x) from formula 3.1.2.1 can be expressed:

ωi(x) =
σi(x)∑n

j=1 σj(x)
, (3.1.2.2)
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where σi(x) = ||x− pi||−µi , for µi > 0. The parameter µi allows to control the shape of
the �nal surface in the neighborhood of the interpolated points.

The global character of this method can be made local by multiplying weighted func-
tion ωi(x) by mollifying function [4]:

λi(x) =

(
1− di(x)

Ri

)µ

+

, where Ri > 0.

The radius Ri we can set to 1/2D(Nw/n)1/2, where D is the maximum distance
between arbitrary two points of the set P and Nw = 19.

Franke and Nielson in [3] proposed to replace vi by local interpolating functions Li(x)
with interpolation property Li(pi) = vi. Then we get:

f(x) =
n∑

i=1

ωi(x)Li(x). (3.1.2.3)

If the interpolation functions are quadratic, we obtain su�ciently smooth surfaces with
relatively low computational complexity.

Modi�ed quadratic Shepard's method is expressed by formula:

f(x, y) =
n∑

i=1

ωi(x, y)Qi(x, y), (3.1.2.4)

where the local quadratic interpolant Qk(x, y) is de�ned by:

Qi(x, y) =ci,1(x− xi)
2 + ci,2(x− xi)(y − yi)+

ci,3(y − yi)
2 + ci,4(x− xi) + ci,5(y − yi) + vi.

(3.1.2.5)

The coe�cients ci,j in Qj(x, y) can be computed by least square method using conditions:
n∑

k=1
k<>i

ωk(xi, yi)[ci,1(xk − xi)
2 + · · ·+ ci,5(yk − yi) + fi − fk]

2 −→ min, (3.1.2.6)

where ωk(x, y) =
(

Rq−dk(x,y)

Rqdk(x,y)

)2

+
and Rq is a radius of in�uence around the point pi[xi, yi].

3.2 Many-segment Transformation Methods
Many-segment methods (mostly known as Finite Element Methods) are primarily based
on a triangulation of the input points of the set P . This triangulation divides the area of
the input picture into triangle regions. In these methods, we need to ensure that whole
transformed picture lies inside the convex hull of the input identi�cation points.

3.2.1 Clough-Tocher Method
To construct C1 continuous cubic Clough-Tocher interpolant, we divide each triangle of
the input triangulation into three minitriangles by connecting its vertices to a point lying
inside the triangle (e.g. the barycenter of the triangle).
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The �nal function f(x) will be C1 continuous surface which consists of cubic Bèzier
triangles over all minitriangles.

Clough-Tocher method uses cubic Bèzier triangles in the form:

X(u, v, w) =b300u
3 + 3b210u

2v + 3b120uv2+

b030v
3 + 3b021v

2w + 3b012vw2+

b003w
3 + 3b102w

2u + 3b201wu2 + 6b111uvw.

(3.2.1.1)

Computation of the Bèzier Ordinates bijk

The Bèzier ordinates of the control net of three adjacent triangle patches can be evaluated
by the next algorithm [1]:

The coordinates [x, y] of the ten Bèzier ordinates within each minitriangle are located
either at the minitriangle vertices, or at the 1/3 or 2/3 length of each edge, or at the
barycenter of the minitriangle.

The values z of these Bèzier ordinates are determined from the next steps:

1. The values z of the Bèzier ordinates (above P1 and P2) denoted by �•� are z values
of the points B1 and B2 from the given triangulation (see �gure 2).

2. The values z of the vertices denoted by �•� which lie on the boundary of the control
net can be computed from condition, that these vertices lie in the tanget plane
given by the point B1 or B2 and by normal at this point (see �gure 2).

3. The values z of vertices denoted by �•� which lie on the lines from the center
of triangle to its vertices are determined by three already computed vertices �•�
because all they lie on the same plane.

4. The values z of three vertices denoted by �N� can be determined from the estimated
crossboundary derivative at the midpoint of each of three edges of the triangle
B1B2B3.

5. The values z of three vertices denoted by �◦� can be computed from condition that
they lie in the plane determined by two already calculated vertices �N� and by one
inner vertex �•� (because two adjacent microtriangles with vertices �N, •, ◦� have
to be coplanar (see �gure 2).

6. The last Bèzier ordinate �¤�, which is placed above the center of the triangle P1P2P3,
lies in the plane determined by three vertices �◦� because the three �center� triangles
must be coplanar.

Once we have computed all coordinates of the ordinates bijk, we can use formula 3.2.1.1
to evaluate points of the Bèzier triangle over the actual minitriangle (we need three such
patches to �cover� the triangle B1B2B3). Analogously, we calculate patches of each other
triangles in the given triangulation and thus we obtain C1 continuous interpolated surface.
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Figure 2: Construction of Bèzier ordinates over the three minitriangles

4 Comparison of the Methods
The �accuracy� of here described methods (in the term of the picture deformation re-
covery) was evaluated basically on the picture with black and white grid and its three
deformations (see �gure 4).

All deformed pictures was recovered by here presented methods. For deformation
recovery in the �rst picture we had used 13, in the second one 37 and in the third 86
pairs of the corresponding points. The number of the points was chosen according to the
type of the particular deformations.

The accuracy of the particular methods was evaluated by the cross-correlation coef-
�cient:

CC =

∣∣∣∣∣∣

∑m
i=1

∑n
j=1 xijyij −mnx̄ȳ√

(
∑m

i=1

∑n
j=1 x2

ij −mnx̄2)(
∑m

i=1

∑n
j=1 y2

ij −mnȳ2)

∣∣∣∣∣∣
where x̄, ȳ are averages:

x̄ =
1

mn

m∑
i=1

n∑
j=1

xij and ȳ =
1

mn

m∑
i=1

n∑
j=1

yij,

where xij denotes pixels of the input picture and yij denotes pixels of the compared
picture.

Figure 3: Comparing of the methods for image deformation recovery
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Figure 4: Original picture and its three deformations (from the left: original, shrinked,
warped, locally deformed picture)

5 Conclusion
In this paper, some transformation methods was explored and their accuracies in the
image deformation recovery was compared. From the graph on �g. 3 we can see that
the thin plate spline method gives the best results, because its accuracy (measured by
cross-correlation coe�cient) has the almost highest values. We can also deduce that the
thin spline method is the most suitable for the picture deformation recovery among all
methods considered here.

References
[1] I. Amidror, Scattered data interpolation methods for electronic imaging systems, Journal of

Electronic Imaging, 2 (2002), pp. 157�176.

[2] D. Fogel and L. Tinney, Image registration using multiquadric functions, the �nite ele-
ment method, bivariate mapping polynomials and thin plate spline, tech. rep., National Center
for Geographic Information and Analysis, 1996.

[3] R. Franke and G. Nielson, Smooth interpolation of large sets of scattered data, Interna-
tional Journal for Numerical Methods in Engineering, 15 (1980), pp. 1691�1704.

[4] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, A K
Peters, Wellesley, MA, 1993, pp. 388�421.

[5] P. Mrazek, Nonlinear Di�usion for Image Filtering and Monotonicity Enhancement, PhD
thesis, Faculty of Electrical Engineering, Czech Technical University, 2001.

[6] C. Tomasi and R. Manduchi, Bilateral �ltering for gray and color images, in Proceedings
of the 1998 IEEE International Conference on Computer Vision, 1998.

Róbert Bohdal (RNDr.) is a graduate student of geometry and topology at the Faculty
of Mathematics, Physics and Informatics of the Comenius University, Bratislava. Lecturer in
Bratislava at the Department of Algebra, Geometry and Didactics of Mathematics of the Faculty
of Mathematics, Physics and Informatics of the Comenius University. His supervisor is doc.
RNDr. Milo² Boºek, CSc.

8


