
Comenius University

Faculty of Mathematics, Physics and Informatics

Real-time Lighting Effects using
Deferred Shading

2012 Michal Ferko

Comenius University

Faculty of Mathematics, Physics and Informatics

Real-time Lighting Effects using
Deferred Shading

Master Thesis

Study program: 1113 Mathematics
Study field: Computer graphics and geometry
Department: Department of algebra, geometry and didactics of mathemat-
ics
Supervisor: RNDr. Michal Valient
Code: b52bb9ed-b405-438d-be5b-71a6dd0e096c

Bratislava, 2012 Bc. Michal Ferko

73448921

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

PRIHLÁŠKA NA ZÁVEREČNÚ PRÁCU

Meno a priezvisko študenta: Bc. Michal Ferko
Študijný program: počítačová grafika a geometria (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: 9.1.1. matematika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Real-time Lighting Effects using Deferred Shading

Cieľ: Cieľom práce bude vytvoriť systém schopný renderovať 3D scény v reálnom
čase za pomoci metódy Deferred Shading. Tento systém má podporovať plne
dynamické scény a nemá sa spoliehať na žiadne predvýpočty. Metóda Deferred
Shading prináša mnohé výhody čo sa týka generovania osvetlenia, ale prináša aj
niektoré nevýhody, ktoré sa budeme snažiť odstrániť. Súčasťou systému bude
taktiež možnosť generovania tieňov ako aj útlmu ambientnej zložky svetla.

Vedúci: RNDr. Michal Valient
Katedra: FMFI.KAGDM - Katedra algebry, geometrie a didaktiky matematiky

Dátum schválenia: 28.10.2010

podpis študenta

I hereby declare that I wrote this thesis by myself with the help of the
referenced literature.

Bratislava, May 4, 2012 .

Acknowledgement

I would like to thank my supervisor RNDr. Michal Valient for his guid-
ance and very useful suggestions regarding my work on this thesis. We also
thank Marko Darbovic for providing the Sponza and the Sibenik models and
the Stanford 3D scanning repository for providing the Dragon model. Spe-
cial thanks goes to Tomáš Kovačovský, Martin Madaras, Andrej Ferko and
Stanislav Fecko for providing some of the testing hardware.

Abstrakt

V tejto práci popisujeme renderovací systém schopný zobrazovať plne dynam-
ické scény pri interaktívnych hodnotách FPS. Náš systém je založený na kon-
cepte Deferred Shading, ktorý oddeľuje renderovanie geometrie a počítanie
tieňovania do dvoch prechodov. Náš grafický engine beží na hardvéri pod-
porujúcom OpenGL 3 a vďaka Deferred Shading-u umožňuje naraz stovky
svetiel v scéne. Náš systém priamo podporuje HDR osvetlenie a výstupom
sú obrázky spracované tone-mapping technikami s pridaným efektom Bloom.
Na prekonanie problémov vzniknutých použitím metódy Deferred Shading sú
v systéme rôzne riešenia. Anti-aliasing je nahradený celo-obrazovkovým pre-
chodom, ktorý vyhladzuje hrany. Priesvitné objekty sa zobrazujú pomocou
Stencil Routed A-Buffer techniky, ktorá nezávisí od poradia renderovania
objektov. Na ďaľšie zlepšenie zobrazovaných obrázkov poskytuje náš systém
tiene za pomoci Shadow Mapping-u a dvoch rozdielnych Ambient Occlusion
techník, ktoré bežia v reálnom čase. Systém je jednoducho rozšíriteľný a do
budúcnosti plánujeme pridať veľa ďaľších techník.

Kľúčové slová: Real-time Rendering, Deferred Shading, OpenGL, High
Dynamic Range, Tone-mapping, Bloom, Screen-space Ambient Occlusion,
Ambient Occlusion Volumes, Stencil Routed A-Buffer

Abstract

In this thesis, we describe a real-time rendering system capable of displaying
fully-dynamic scenes at interactive frame rates. The system is built on the
concept of Deferred Shading, which separates the rendering of geometry and
evaluation of shading into two rendering passes. Our graphic engine runs
on OpenGL 3 capable hardware and allows hundreds of lights to affect the
scene thanks to Deferred Shading. We provide support for HDR render-
ing and the engine itself outputs tone-mapped images with added Bloom.
To overcome problems introduced by Deferred Shading, we provide several
solutions. Anti-aliasing is replaced by a full-screen post-process and trans-
parent objects are forward-shaded using Stencil Routed A-Buffer - an order-
independent technique. To further improve the realism of displayed images,
the engine features shadows with the help of Shadow Mapping and two dif-
ferent real-time Ambient Occlusion techniques are used. The system is open
to extensions and we plan to incorporate many other techniques in the future.

Keywords: Real-time Rendering, Deferred Shading, OpenGL, High Dy-
namic Range, Tone-mapping, Bloom, Screen-space Ambient Occlusion, Am-
bient Occlusion Volumes, Stencil Routed A-Buffer

Contents

1 Introduction 1

2 Lighting and Shading 5
2.1 OpenGL . 5
2.2 OpenGL Shading Language 6

2.2.1 Example shaders . 9
2.3 Shading . 10

2.3.1 Phong Shading . 12
2.3.2 Blinn-Phong Shading 15

2.4 Forward Shading . 15
2.4.1 Single-pass Lighting 16
2.4.2 Multi-pass Lighting . 18

3 Deferred Shading 20
3.1 The G-Buffer . 21
3.2 The L-Buffer . 24

3.2.1 Rendering light volumes 24
3.3 Anti-Aliasing . 27
3.4 Transparent objects . 28
3.5 Order Independent Transparency 29

3.5.1 Depth Peeling . 30
3.5.2 Stencil Routed A-Buffer 30

4 Lighting Effects with Deferred Shading 33
4.1 High Dynamic Range Lighting 33
4.2 Tone Mapping . 34

4.2.1 Reinhard’s operator 35
4.3 Bloom . 36
4.4 Shadow Mapping . 37

4.4.1 Light types . 39
4.5 Ambient occlusion . 39

4.5.1 Offline generation . 41
4.6 Real-time ambient occlusion 42

4.6.1 Screen-Space methods 42
4.6.2 Geometry-based methods 43
4.6.3 Screen-Space Ambient Occlusion 43
4.6.4 Ambient Occlusion Volumes 48

5 Implementation 52
5.1 Forward Shading . 52

5.1.1 Single-pass Lighting 52
5.1.2 Multi-pass Lighting . 56

5.2 Deferred Shading . 57
5.2.1 Generating the L-Buffer 59

5.3 Tone-mapping . 60
5.3.1 Reinhard’s operator 61

5.4 Bloom . 62
5.5 Shadow Mapping . 63
5.6 Screen-Space Ambient Occlusion 64
5.7 Ambient Occlusion Volumes 64
5.8 Depth Peeling . 66
5.9 Stencil Routed A-Buffer . 66

6 Results 68
6.1 Shading . 69

IX

6.2 HDR and Tone-mapping . 70
6.3 Transparent Objects . 73
6.4 Ambient occlusion . 75
6.5 Overall performance . 77

Conclusion 79

Bibliography 81

List of Abbreviations

OpenGL - Open Graphics Library
GLSL - OpenGL Shading Language
GPU - Graphics processing unit
CPU - Central processing unit
API - Application programming interface
SM - Shadow Mapping
AABB - Axis-aligned bounding box
FOV - Field of view
FPS - Frames per second
SSAO - Screen-Space Ambient Occlusion
AOV - Ambient Occlusion Volumes
SR - Stencil routing

List of Tables

6.1 Test scenes statistics . 69
6.2 Tone-mapping performance comparison 73
6.3 SSAO testing presets . 74
6.4 SSAO testing presets . 76
6.5 AOV testing presets . 76
6.6 SSAO performance comparison 76
6.7 AOV performance comparison 77

List of Figures

2.1 OpenGL Shader Rendering Pipeline 7
2.2 Phong shading model for one light source 13

3.1 G-Buffer data . 22
3.2 Slight modification of the attenuation function 26
3.3 Point inside cone test . 26
3.4 Stencil Routing for 4 samples per pixel 32

4.1 An image with specular reflection without showing bloom
(left) and with bloom enabled (right) 36

4.2 Shadow mapping . 38
4.3 The effect of ambient occlusion 40
4.4 Ambient occlusion algorithm 41
4.5 The process of evaluating SSAO 45
4.6 SSAO Ghosting and Removal by vector randomization 46
4.7 Smoothing of SSAO . 46
4.8 Errors caused by gaussian blurring of the SSAO buffer 47
4.9 The construction of an Ambient Occlusion Volume for a triangle 49
4.10 Visualization of the AOVs . 51

6.1 Shading execution time . 71
6.2 Test scenes . 72
6.3 Tone-mapping quality comparison 73

List of Listings

2.1 A simple vertex shader . 10
2.2 A simple geometry shader . 11
2.3 A simple fragment shader . 12
2.4 Single-pass Forward Shading 16
2.5 Multi-pass Forward Shading 18
2.6 Optimized Multi-pass Lighting 19

3.1 Deferred Shading Pseudo-code 20

5.1 Single-pass Lighting - CPU side 54
5.2 Single-pass Lighting - Vertex shader 54
5.3 Single-pass Lighting - Fragment shader 55
5.4 Multi-pass Lighting - CPU side 57
5.5 G-Buffer generation - Fragment shader 59
5.6 Tone-mapping shader . 61

Chapter 1

Introduction

Computer games try to mimic reality and thus immerse the user into the
virtual environment. If successful, the player is convinced that he is actually
there. That’s where real-time rendering comes into play. The visual appear-
ance has to be as realistic as possible, otherwise the player will be distracted
by the poor quality of the image and the immersion level will be reduced.
Also, the rendering has to be done in real-time, meaning that it produces
30 - 60 frames per second (FPS) depending on how fast the camera/objects
in the scene move (60 FPS or even more for displays with frequency higher
than 60Hz is crucial for first person shooters such as Counter-Strike).

Ever since the graphics hardware offers better computation power than
the CPU, all possible graphics calculations are moved to the GPU. Despite
the increased speed, there are still rendering algorithms such as ray-tracing
which can hardly be real-time due to the computational complexity.

In this thesis, we analyze techniques used in real-time rendering and pro-
pose a system that supports fully dynamic environments without the need to
pre-generate lighting or execute other time-consuming pre-processing opera-
tions. We start with forward shading, which is the typical straightforward
approach to real-time rendering. We then explain modifications and opti-
mizations of this algorithm.

Furthermore, we introduce the concept of deferred shading, which shades

1

only visible fragments and in a more optimal way then the approaches used
with forward shading. Deferred shading is not a new concept, it was intro-
duced in [Deering et al., 1988], even though the article never mentions the
name deferred shading. In the article, the authors propose a system with
two pipeline stages. One rasterizes the geometry and the other shades the
pixels, which is the main idea of deferred shading.

Data stored for shading computations is usually called a G-buffer (or
geometric buffer), since they store geometric information (color, normal, po-
sition/depth, specular exponent, ...). This name was proposed in [Saito and
Takahashi, 1990] and is being used ever since.

Deferred shading became a viable real-time rendering technique with the
introduction of multiple render targets in the year 2004. Multiple render
targets is a hardware-supported feature of DirectX and OpenGL that allows
shaders to render into multiple textures at once. This approach allows the
generation of the G-buffer in a single rendering pass, which was the necessary
speed-up for it to be a real-time technique. After the G-buffer pass, the final
scene rendering is performed as a series of post-processing effects that access
the information stored in the G-buffer.

The multiple render targets feature is currently supported by many video
cards, therefore, deferred shading is a viable rendering option for modern
computer games. More and more games are using deferred shading, especially
games that benefit from the advantages of this type of rendering.

A good example is the real-time strategy Starcraft II c⃝, whose deferred
rendering engine is described in [Filion and McNaughton, 2008]. The game
contains two different modes: the in-game mode in which hundreds of units in
an exterior are rendered, and the story mode, in which only a few characters
and interiors are rendered. The in-game mode benefits from the possibility
of having many lights, where the light from special effects can affect the sur-
roundings. They also describe a method for rendering transparent shadows
in the in-game mode for effects like fire or smoke. The story mode takes
advantage from Screen-Space Ambient Occlusion (SSAO), which simulates

2

ambient occlusion in real-time and increases realism of the scene. Real-time
ambient occlusion techniques will be discussed later.

Another example is the first-person shooter S.T.A.L.K.E.R.. The authors
of [Shishkovtsov, 2005] describe the deferred renderer used in this game.
Their main aim is optimizing the shadow mapping algorithm by determining
what kind of algorithm to use (different for transparent shadows, different
for lights casting a projective image, etc.). They also discuss the optimal G-
buffer layout, while trying to save as much video memory and performance
as possible and yet retain good quality images. An edge-only anti-aliasing
algorithm is described as well, since anti-aliasing with deferred shading is
tricky and has to be simulated with shaders. The document describes only
static ambient occlusion in light maps, whereas the Starcraft II c⃝ engine
provides a fully-dynamic solution.

There are many more games and game engines that take advantage of
deferred shading. The most notable are: CryENGINE (Crysis 2), Killzone 2
and 3, Frostbite Engine and Leadwerks Engine.

The goal of this thesis is to create a system similar to the rendering sys-
tems used in the mentioned games while avoiding any kind of pre-computation
such as light map generation or BSP tree construction. This will allow our
system to display fully-dynamic environments at interactive frame rates while
retaining a realistic look.

In Chapter 2, we explain the basics of shading, local illumination models
and the Blinn-Phong illumination model. We also explain how OpenGL and
The OpenGL Shading Language works, which is necessary to understand the
concept of deferred shading. Furthermore, we describe how forward shading
works and explain modifications of the algorithm that are more optimal. In
Chapter 3, the concept of deferred shading is explained in-depth together
with similar techniques. In Chapter 4, we examine certain post-processing
effects that are easily integrable into a deferred shading pipeline, such as High
Dynamic Range Lighting or Screen-Space Ambient Occlusion. In Chapter 5,
we provide an implementation of the deferred rendering system described

3

in Chapters 3 and 4. The implementation uses C++, OpenGL and The
OpenGL Shading Language (GLSL). Our program is a complex rendering
system using deferred shading, that produces high quality images at plausible
frame rates. In Chapter 6, we show some results and discuss the performance
and quality of the implemented techniques.

4

Chapter 2

Lighting and Shading

For the explanation of the deferred shading concept, it is crucial to have an
understanding of the rendering pipeline used by OpenGL. Since version 3 of
OpenGL, the fixed function pipeline is deprecated and all rendering must be
performed via shaders. Therefore, we explain the rendering pipeline with the
integration of shaders, specifically shaders created in the OpenGL Shading
Language.

2.1 OpenGL
We will be using OpenGL for implementing all the algorithms described in
this thesis. OpenGL stands for the Open Graphics Library, an open stan-
dard for GPU-accelerated rendering of primitives (points, lines, triangles,
...). OpenGL was developed by Sillicon Graphics International (SGI) in
1992. In the past years, OpenGL has evolved quickly and the version at
the time of writing is 4.2. OpenGL contains numerous extensions (some are
GPU-vendor specific, some are OS specific) which allow modifications of the
rendering pipeline.

OpenGL provides a hardware-independent application programming in-
terface (API) that simplifies 2D and 3D rendering. For OpenGL to run
(render to a window), an OpenGL context has to be created for the window

5

we are going to render to. The rendering context is platform-specific, since
OpenGL does not provide a way to create a window in the operating system’s
window manager.

Using the fixed-function pipeline of OpenGL, it is possible to render com-
plex geometry in real-time on almost any graphics hardware. With a smart
view frustum culling algorithm and other optimizations (Vertex Arrays, Ver-
tex Buffer Objects), it is possible to render tens of thousands of triangles
every frame. The newest OpenGL specification, as well as specifications for
older versions and the OpenGL Shading Language can be found on the official
OpenGL web page [OpenGL, 2011].

2.2 OpenGL Shading Language
Some of the OpenGL extensions introduced a way to write user-programs
that will be executed on the GPU when rendering primitives. These programs
are called shaders. First shaders were just assembler instructions for the
GPU, but as time passed, a few high level shading languages emerged. For
DirectX, it is the High Level Shading Language (HLSL), for OpenGL it is the
Cg (C for graphics, developed by NVidia) and OpenGL Shading Language
(GLSL). All three are similar in syntax, but there are certain differences.
We will be using GLSL, which is part of the OpenGL core since version 2.0.
OpenGL version 3 deprecated the fixed-function pipeline and all rendering
should be performed via shaders.

We will only introduce the basic capabilities of shaders. For more com-
plex algorithms and understanding, there are a lot of great books that are
dedicated to shaders, such as the “Orange Book” [Rost, 2005].

There are 3 types of shaders: vertex, geometry and fragment. All of
these shaders are easily understandable with the help of Figure 2.1. The
figure is actually a data-flow diagram, showing how the image is generated
in the frame-buffer from drawing calls like glDrawElements. In OpenGL 4,
the Tesselation Control and Tesselation Evaluation stages were introduced,

6

but these will not be discussed here.

Vertex Buffer
Index Buffer

Geometry Shader

Vertex Shader

Primitive
Assembly

Fragment Shader

Rasterization

Blending
Depth Test

Framebuffer

Figure 2.1: OpenGL Shader Rendering Pipeline

At the beginning, data from vertex buffers (vertex positions, texture co-
ordinates, ...) are sent to the vertex shader (by calling one of the primitive
drawing functions). Input to the vertex shader are therefore, vertex at-
tributes such as vertex colors, positions, etc. But a vertex shader is tied to
a single vertex, meaning that for each vertex, it is executed once. Further-
more, it has no information on the primitive it belongs to or other vertices
in the primitive. A vertex shader transforms the vertex positions from ob-
ject space (these are the exact same values as the application specifies when
calling a function like glDrawElements) into clip space, using the modelview
matrix (sometimes split into the model matrix and the view matrix) and the
projection matrix. Texture coordinates are transformed as well, and there
are many more calculations that can occur in the vertex shader (such as
character skinning, lighting calculations, ...).

The output from vertex shaders is sent to geometry shaders. Output type
of the geometry shader is same as the input type. A geometry shader can
emit new primitives (e. g. duplicating triangles). If a geometry shader is
not present, the data from vertex shaders is sent directly into the fragment
shader. Primitives are handled as they are interconnected, since a geometry

7

shader is always set to operate on a certain kind of primitives (points, lines,
triangles). Therefore, a geometry shader is executed once per primitive. The
geometry shader can also change the type of primitive being rendered and
many more.

After geometry shaders, the primitive assembly combines the transformed
vertices into primitives in the clip space. These are then rasterized, meaning
that they are converted into pixels. For each pixel rasterized, a fragment
shader is executed (this is the reason why fragment shaders are sometimes
called pixel shaders). The output of a fragment shader is the pixel color
that should be displayed and also the depth value for depth testing. It is
also possible to render to an off-screen buffer (OpenGL Framebuffer Object
- FBO) which can have multiple color buffers attached and then the output
of the fragment shader are colors that should be written to each of these
buffers.

Finally, a depth test occurs on each fragment, discarding fragments that
do not pass the test. Once a fragment is ready to be written into the frame-
buffer, it is blended into the image based on blending settings and the new
color is written.

There are special types of variables in GLSL. For each type of shader,
uniform variables are global, read-only variables whose value is set outside the
shader (by the OpenGL application). Uniform variables are specified using
the uniform keyword. There are certain limitations concerning the maximum
number of bytes taken by uniform variables. These variables can be used to
control shader execution without the need to change the shader. Typically,
these can be settings like enabling texturing, lighting or setting light and
material parameters. Every call to glDrawElements or a similar function,
the values set to uniform variables remain unchanged throughout the whole
rendering process and all shaders. This also means that one uniform variable
can be shared between all shader types.

Another type of variables are input variables (specified by the in key-
word). These variables are read-only and differ in meaning in each shader.

8

In geometry shaders, these are arrays of vertex attributes (length is speci-
fied by the type of primitive used - 1 for points, 2 for lines, 3 for triangles).
In vertex shaders, input variables are vertex attributes (but not arrays of
them, since the vertex shader “sees” only one vertex at a time). For frag-
ment shaders, input variables are interpolated values of output variables from
vertex shaders. These can be texture coordinates, colors, etc..

Finally, there are output variables specified by the out keyword. A shader
usually has some output, for instance a fragment shader’s output is the color
of the fragment. For vertex shaders, these are vertex attributes that are
sent to the respective geometry shader. Output of vertex shaders can be
different, but as mentioned before, these are usually colors, coordinates or
normals. These values are then interpolated between vertices of the same
primitive (using bilinear interpolation for triangles) and hence the values
for input variables of the fragment shader are calculated. The output of
fragment shaders is color and/or depth, but multiple output variables can
be defined when using FBO with multiple color attachments (aka. multiple
render targets).

2.2.1 Example shaders

We will now provide one example for each type of shader and describe it’s
functionality.

In Listing 2.1, you can see a vertex shader. It reads the model transforma-
tion matrix values specified by the program from the uniform variable model.
There are two input vertex attributes, position and color. Color is written
to the output variable vColor and the position of the vertex is transformed
into clip space. Notice that gl_Position is a built-in output variable from
the vertex shader that must be written to, otherwise the rasterizer would
have no information on where to render the primitive. We transform vertex
positions and normals from object space into world space with this vertex
shader. Transformation to clip space is left for the geometry shader to do.

In Listing 2.2 is a simple geometry shader, that recieves 3 input param-

9

#version 330 // Use version 3.3 of GLSL
uniform mat4 model; // Application set model matrix
in vec3 aVertex; // Input vertex attribute - position
in vec2 aCoord; // - texture coordinate
in vec3 aNormal; // - surface normal
out vec2 vCoord; // Output variable texture coordinate
out vec3 vNormal; // Output surface normal
void main()
{

vCoord = aCoord; // Direct copy of values
vNormal = model * vec4(aNormal, 0.0); // Object -> World
gl_Position = model * vec4(aVertex, 1.0); // Object -> World

}

Listing 2.1: A simple vertex shader

eters. The first is gl_in, which is a built-in array. This array is used as
the geometry shader input containing vertex positions that were stored into
gl_Position in the respective vertex shaders. The second and third are cus-
tom vertex attribute arrays corresponding to output from the vertex shader.

The shader transforms the data into clip space and sends the data it re-
ceived into the fragment shader. Furthermore, it creates duplicates of trian-
gles and extrudes them in the direction of the surface normal while retaining
the texture coordinate values.

Finally, we have a fragment shader in Listing 2.3. This fragment shader
receives interpolated texture coordinates from the geometry shader through
the variable coord, as well as the specified texture unit from which the texture
should be taken (through the uniform variable diffuseMap). All it does is read
the texture color based on texture coordinates and store it into the output
variable (which is attached either to the frame-buffer or a color attachment
of a FBO).

2.3 Shading
Shading is a set of algorithms that simulate lighting in scenes. These al-
gorithms take only the local (other objects in the scene do not affect the

10

#version 330 // Use version 3.3 of GLSL
layout(triangles) in; // Input primitives are triangles
layout(triangles, max_vertices = 6) out; // Output triangles,

together max. 6 vertices
uniform mat4 viewprojection; // View-Projection matrix
in vec3 vCoord[]; // Input from vertex shader
in vec3 vNormal[]; // Input from vertex shader
out vec2 coord; // Output to fragment shader
void main()
{

// Iterate all vertices of this primitive
for(int i = 0; i < gl_in.length(); i++)
{

coord = vCoord[i]; // Set output coord
vec4 pos = gl_in[i].gl_Position;
gl_Position = viewprojection * pos; // World -> Clip space
EmitVertex(); // Add vertex

}
EndPrimitive(); // Finish 1. triangle
// Iterate all vertices once again
for(int i = 0; i < gl_in.length(); i++)
{

coord = vCoord[i]; // Set output coord
vec4 normal = vec4(vNormal[i], 0.0);// Get normal
vec4 pos = gl_in[i].gl_Position + normal; // Extrude
gl_Position = viewprojection * pos; // World -> Clip space
EmitVertex(); // Add vertex

}

EndPrimitive(); // Finish 2. triangle
}

Listing 2.2: A simple geometry shader

resulting lighting) properties of the object’s surface and compute the amount
and color of lighting reflected into the camera. According to [Akenine-Möller
et al., 2008], shading is the process of evaluating a shading equation to com-
pute the outgoing light from a surface in the direction of the viewing ray (or
into the camera). This approach is often referred to as local illumination, the
opposite of global illumination. Local illumination computes only the direct
illumination of the surface, whereas global illumination computes indirect
illumination as well (light rays reflected from surfaces onto other surfaces,
light rays refracted into a transparent material, ...). Global illumination sim-

11

#version 330

uniform sampler2D diffuseMap; // Represents a 2D diffuse map

in vec2 coord; // Input texture coordinate
out vec4 outColor; // Output fragment color

void main()
{

outColor = texture(diffuseMap, coord); // Read value from
texture at the texture coordinates and set as output color

}

Listing 2.3: A simple fragment shader

ulates the real physical behavior of light and therefore, the produced images
are more photo-realistic than those produced by local illumination.

The problem with global illumination is performance. Despite the huge
advancements in CPU and GPU speed, algorithms that compute global il-
lumination like ray tracing or radiosity cannot be real-time on consumer
hardware. A good example are famous computer-generated movies, that
were rendered weeks on supercomputers. Therefore, software that requires
real-time rendering has to use local illumination instead. There are various
number of extensions to local illumination that increase the realism of the
produced images. These extensions usually do not correspond to physical
behavior of light, but are simplifications of it that simulate lighting effects
accurately enough.

Local illumination has much greater performance. A local lighting model
usually does not have lots of parameters and computing the color of one pixel
can be done with a few vector operations.

2.3.1 Phong Shading

Phong Shading is a simple reflection model. It was introduced by Bui Tuong
Phong in [Phong, 1975]. It is an illumination model that takes into account
material parameters, surface orientation, light parameters, light position and

12

P

L
R

V
α

β
α

Camera

N

Light

Figure 2.2: Phong shading model for one light source. All vectors are nor-
malized for the dot products to directly measure angles.

camera position. The Phong reflection model is widely used in real-time
applications, together with the Blinn-Phong model that is derived from this
one.

The following equation is applied to every pixel to compute it’s color
based on lights affecting this pixel.

Ip = kaia +
∑

m ∈ {0, ··· , n−1}

(kdim,d(Lm ·N) + ksim,s(Rm · V)ke). (2.1)

In this equation, Ip is the output color (or intensity) calculated from light
contribution. ka is the material’s ambient color. ia is the global ambient
term. These terms combined together determine the ambient lighting of the
pixel. Ambient light is defined as the light incoming into the point from all
directions, therefore, this term is constant throughout the whole object (in a
physically correct model, no ambient term is present).

kd is the material’s diffuse color and im,d is the diffuse color of light m.
Diffuse light is defined as the light incoming directly from the light source and
reflected into the camera. However, due to the local nature of the model, even
if there are objects occluding the object being rendered, the color remains
the same (shadowing techniques are needed to take care of this unnatural
behavior). The amount of reflected light depends on surface orientation,
which is determined by the normal N . The direction of incoming light from
light source m is Lm and the dot product cos α = N ·Lm directly corresponds

13

to the amount of light reflected from the surface (of course, N and Lm need
to have unit length). As seen in Figure 2.2, if α = 0 (N and L are parallel),
then N · L = 1 and the diffuse term is maximal. If α = π

2
(N and L

are perpendicular), the diffuse term is all zeros. With a bigger α, less rays
actually hit the surface (since it has a smaller area from the light’s point of
view) and therefore the amount of reflected light is smaller.

ks is the material’s specular color and im,s is the light’s specular color.
The result of the specular term are specular highlights, which are shown
only when the viewer is at a specific position. Figure 2.2 shows that the
term R · V = cos β (again, both vector need to be normalized). Therefore,
if the reflected vector R points directly into the camera, the specular term
is maximal. ke is the material’s specular exponent, that further controls the
specular term. The higher the exponent is, the smaller the highlights and thus
the object appear more shiny (therefore, it is sometimes called ”shininess”,
for instance in the OpenGL lighting model). For a perfectly diffuse material,
the specular color is (0, 0, 0, 0) which removes the specular term completely.

There can be different types of light in the shading equation. The usual
lights are point lights, spot lights and directional lights. A point light is
similar to a light bulb. It emanates light from a point in the scene uniformly
into all directions. A spot light is similar to a flash-light, where the part of
the scene lit by it is reduced to a cone. A directional light corresponds to
sunlight, where the light rays come from an almost infinitely far away point
light source. All the rays share the same direction, hence the name.

For point and spot lights, we also specify an attenuation function as
follows:

att(d) =
1

ac + dal + d2aq
, (2.2)

where d is the distance between the shaded point and the light’s position.
Constants ac, al and aq are the constant, linear and quadratic attenuation
factors for a light. The diffuse and specular terms are multiplied by this term
to account for attenuation.

14

2.3.2 Blinn-Phong Shading

Blinn-Phong shading [Blinn, 1977] is a slight modification of the Phong shad-
ing that is used in the fixed function pipeline of OpenGL and DirectX . The
only difference between Phong and Blinn-Phong shading is the evaluation of
the specular color. First of all, the halfway vector H is a unit vector that is
halfway between the viewer vector V and the light vector Lm. Therefore:

Hm =
Lm + V

|Lm + V |
(2.3)

The term (Rm · V)ke from Equation 2.1 is replaced with (N ·Hm)
ke .

Blinn-Phong shading produces results that are closer to the physical be-
havior of many materials, and is therefore a better approximation than Phong
shading. Due to this fact, we use the Blinn-Phong shading in our engine.

2.4 Forward Shading
With the introduction of vertex, fragment and geometry shaders, a wide
variety of effects became possible to render. One of the mostly used is per-
pixel shading of rendered objects. A fragment shader is input the position and
color of light (through uniform variables) and using a simple lighting equation
(e. g. Blinn-Phong shading), the color of the fragment is computed. If there
were hundreds of lights, the fragment shader would have to go through every
light and compute the light contribution. That would result in a shader
that performs thousands of operations and it would take too long to execute,
making the rendering so slow that the 30 - 60 FPS limit could not be reached.

Deferred shading partially solves this problem, but we will describe for-
ward shading first as a method that precedes deferred shading. Forward
shading suffers from the number of lights limitation described.

Forward shading is the process of rendering all primitives without inter-
mediate steps. This means that the output image is generated on the fly
and fragments are shaded right ahead. There are a few possibilities of how
forward shading can be done, we will discuss the most used in this section.

15

Forward shading is what the pipeline in Figure 2.1 was designed for. Without
programmable graphics hardware, there was no choice but to render using
forward shading.

2.4.1 Single-pass Lighting

In the single-pass lighting method, which was the first forward shading tech-
nique used, the final image is synthesized in one pass. The image generated is
the final image shown in the framebuffer. Without shaders, the fixed-function
pipeline would shade the fragments, but only using per-vertex lighting cal-
culations.

With the introduction of shaders, the application programmer is given a
possibility to perform lighting calculations per-pixel. The single-pass method
will then contain a vertex shader that does nothing special, except prepare
the variables for lighting computation for the fragment shader. The frag-
ment shader that iterates through a light list (stored in uniform variables)
and accumulates lighting affecting the fragment. A pseudo-code is shown in
Listing 2.4. This approach has O(m · n) complexity, where m is the number
of objects and n is the number of lights.

The function shade uses a shading equation to calculate the color of the
fragment, while accessing material properties from uniform variables and tex-
tures. Objects usually have a diffuse texture assigned to them that represents
the diffuse term (and mostly the ambient term as well) in each point. Addi-
tionally, an object can have a specular color map, a specular roughness map,
a normal map etc. that are used to determine material properties at every
surface point.

for (each object) // Application
--

for (each light) // Shader
shade(point, light) // Shader

Listing 2.4: Single-pass Forward Shading

16

There are several things that cause this approach to do unnecessary com-
putation. First of all, we render all objects and shade every single fragment
as it comes. But if newer fragments overwrite the old ones, we wasted time
with calculating the color of the old fragments. For a rendered image, the
depth complexity is the average number of overlapping objects per pixel. This
number is also the number of fragment shader executions (pixel color calcu-
lations) per pixel. The lowest possible depth complexity is 1, where for each
pixel, the fragment shader is executed exactly once. This is one of the ad-
vantages of deferred shading and will be discussed later. For scenes, where
depth complexity reaches much higher values than 1, we waste a lot of GPU
cycles on shading occluded fragments.

A simple fix of the depth complexity issue is to render all geometry twice
and take advantage of the early depth test. It is a special optimization that
can occur if a fragment shader does not modify the depth value (write to the
built-in gl_FragDepth variable) that was automatically computed. The GPU
can then perform the depth test before executing the fragment shader, and
if the test fails, the fragment shader is not executed at all.

In the first pass, only the depth values are stored and no shading occurs
(writing to the color buffer will be disabled). If the conditions are satisfied,
the depth test stage is moved before the execution of the fragment shader
(see Figure 2.1). The second pass is rendered as we would normally render,
with the exception that the depth function is set to equal, allowing the hard-
ware to discard all fragments except the one that will be shown in the final
image. Since we have generated depth values in the first pass, the second
pass discards all invisible fragments and therefore reduces depth complexity
to 1. But we render the scene twice.

Another wasted computation occurs during the light calculation. We
iterate over all lights for each pixel, even those lights that do not contribute
to the pixel’s color (the lights are too far away from the object). Another
problem that occurs is the memory and instruction limit for shaders. All the
light data has to be stored in uniform variables, and if there were hundreds

17

of lights, the memory limit would be exceeded and the shader could not be
used. The same thing would happen with the instruction limit, hundreds of
lights means hundreds of dot products, vector multiplications etc. Multi-pass
lighting takes care of these problems.

2.4.2 Multi-pass Lighting

As the name suggests, this approach uses multiple passes to render the final
output. For each light, one pass occurs, during which the scene is rendered as
if there was only the one light. This takes care of the memory and instruction
limits in shaders, since the shader only calculates the light contribution for
one light. The output is then additively blended together for the final result.
A very simple pseudo-code is shown in Listing 2.5. The rendering complexity
remains O(m ·n) as it was with single-pass lighting. A new performance issue
pops out: each object is rendered n times, n being the total number of lights.
This increases batch count in comparison to single-pass lighting. Batching is
a problem that occurs when rendering thousands of objects. For each object,
one glDrawElements call is performed (one such call is referred to as a batch).
The call has to be sent to the GPU, which takes an insignificant amount
of time, but when there are thousands of batches, the performance drops.
There is a section on optimizing these in [Watt and Policarpo, 2005], such
as grouping objects with the same material together or merging chunks of
geometry into larger chunks.

for (each light) // Application
for (each object) // Application

--
shade(point, light) // Shader

Listing 2.5: Multi-pass Forward Shading

A few simple optimizations will increase the performance rapidly. Each
object has to be rendered only once for each light that affects it. Also, lights
whose light volume (the volume in which the light affects objects) is outside

18

the viewing frustum should not be taken into account. The same counts for
objects. This results in a optimized multi-pass approach, as shown in Listing
2.6.

for (each visible light L) // Application
for (each visible object affected L) // Application

--
shade(point, L) // Shader

Listing 2.6: Optimized Multi-pass Lighting

19

Chapter 3

Deferred Shading

Single pass lighting cannot handle lots of lights effectively and the multi-
pass approach might need to render one object many times. Rendering one
object multiple times increases batch count and can limit performance. De-
ferred shading is a rendering method that removes certain limitations of the
single-pass and multi-pass approaches, but introduces new problems. We will
describe the main idea of deferred shading and analyze how to overcome the
problems that emerge.

// Geometry pass
for (each object) // Application
--

store material properties into G-Buffer // Shader

// Lighting pass
for (each light) // Application

render(light shape) // Application
--

shade(point, light, G-Buffer) // Shader

Listing 3.1: Deferred Shading Pseudo-code

Deferred shading was introduced in [Deering et al., 1988]. The main
idea is to split rendering into two rendering passes. The first one, called the
geometry pass, renders the whole scene while storing material properties into
several textures. These textures are called the geometry buffer (G-buffer).

20

The second pass (lighting pass) performs a series of post-processing effects
on the G-buffer and displays the shaded result. These post-processing effects
actually perform the lighting and shading. The main point is to apply lighting
only where it is needed. This is done by rendering the light volume and every
pixel that is rendered accesses the necessary data from the G-buffer, computes
the final pixel color and additively blends into the final image. A simplified
deferred shading pipeline is shown in Listing 3.1.

3.1 The G-Buffer
The G-buffer is an important intermediate step. Since the graphics hardware
supports multiple render targets, the G-buffer can be generated in one pass.
The layout of the G-buffer is an important part of the renderer optimization.
For applying lighting, we require certain information that has to be stored in
a G-buffer. Albedo (or diffuse color) of the pixel has to be stored. If we also
want to have per-pixel specular color/exponent, the specular color/exponent
needs to be stored as well. For these colors, 3 bytes per pixel (24bpp) is
enough. We might need more storage when handling High Dynamic Range
textures, but HDR will be discussed later. Our G-Buffer images are shown
in Figure 3.1.

An important part of the Blinn-Phong shading equation are surface nor-
mals. Without normals, we cannot compute lighting properly. For correct
operation of the lighting equation, the pixel position has to be stored as well.
The ideal would be to store normals and positions into two 3-channel 32-bit
float texture. This would result in a very memory-consuming G-buffer. For
instance a 1024x768 G-buffer with 24bpp color, and float precision of normals
and positions would take 3 + 12 + 12 = 27 bytes per pixel, which makes
the whole G-buffer over 20MB large. In Full HD resolution it is over 50MB,
which takes a lot of space and does not leave enough memory left for other
textures on older graphic cards. For such a large G-buffer, the video memory
is not the only part that suffers. The fill-rate will also be encumbered by

21

Figure 3.1: G-Buffer data - Albedo, Depth and Normal

performing too many operations per-pixel.
Using half-precision (16-bit float) for normals is unacceptable, it produces

unwanted artifacts due to the low precision. To improve the precision, we

22

can use 16-bit fixed point numbers instead. OpenGL directly provides such
a type for textures. OpenGL image formats that end with _SNORM repre-
sent signed normalized integer values. These values are fixed-point in range
[−1, 1], but are represented by a signed integer. The signed integer is in range
[−INTmax, INTmax] (just like classic integer values) and when accessed by a
shader, it is divided by INTmax and results in a floating-point value.

With the help of these fixed-point numbers, we can represent the normal
(whose coordinates are within range [−1, 1] thanks to their unit length) with
three fixed-point values. These values are uniformly distributed in the [−1, 1]

interval and all bits are fully utilized, therefore the precision of stored normals
is much higher than we would achieve with floating-point numbers.

Furthermore, we can only use two channels instead of three by storing
only the x and y coordinates of the normal. The authors of [Kircher and
Lawrance, 2009] describe a transformation that allows to reconstruct the z

coordinate from the other two coordinates. We store the x and y coordinates
of the following normal:

n̄′ =
n̄+ (0, 0, 1)

|n̄+ (0, 0, 1)|
. (3.1)

We store n̄′
x and n̄′

y for further processing. When we need the original
normal again, the inverse mapping is:

z =
√
1− |(n̄′

x, n̄
′
y)|2 (3.2)

n̄ = (2z · n̄′
x, 2z · n̄′

y, 2z
2 − 1) (3.3)

This transformation cannot correctly transform the vector (0, 0,−1), but
that is not a problem since this is a vector facing directly away from the
viewer (in view space, which we use when storing the normal). Such a vector
is therefore always on back-face and will never be rendered.

With this approach, we saved 8 bytes per pixel in comparison to the three
32-bit float normals, at the cost of a few more instructions in the shader. The
precision is fully retained.

Thanks to the depth buffer, the other large texture storing pixel positions
becomes unnecessary. During the G-buffer generation, we have to use a

23

depth buffer, and thankfully, the depth value can be used to reconstruct
pixel position. We take pixel coordinates (x, y) ∈ [0, 1]2 and depth z ∈ [0, 1]

and transform these back into clip space by mapping the target range into
[−1, 1]3. We then apply the inverse of the projection matrix used when
generating the G-Buffer. The result is the point’s view-space position, which
is then used as the position.

3.2 The L-Buffer
If we intend to perform only lighting calculation using additive blending,
we can render directly into the window’s framebuffer. However, there are
still many post-processing effects that can be applied after the lighting, and
therefore it is useful to store the illuminated scene into a texture. This
texture is called the L-Buffer or the lighting buffer. This intermediate step
becomes necessary when using High Dynamic Range Lighting, which will be
further discussed in Section 4.1.

Not taking into account how we will use the output, the L-Buffer gener-
ation is crucial. We have to decide which pixels are lit by a certain light and
shade them accordingly.

3.2.1 Rendering light volumes

Determining which pixels are affected by which light can be extracted from
rendering the light volumes using the same view-projection matrix as was
used during G-Buffer generation. During this rendering, the fragment shader
determines if the pixel being rendered actually is inside the light volume and
should be lit by the light. This calculation depends on the shape of the light
volume.

For point lights (represented by a sphere), the fragment shader has to
reconstruct the pixel’s 3D position and check if this position lies inside the
sphere. This is simply a check if the distance between two points is lower
than the radius.

24

If we are bounding a point light with a sphere, we expect that this light’s
contribution outside this sphere should be 0. Otherwise, we get a feeling of
cutoff lighting which is desired when using spot lights, but not when using
point lights. However, if the result of the attenuation function in Equation
2.2 should be zero means that the distance must be +∞. Since light has
quadratic attenuation in the form

att(d) =
1

1 + d2
, (3.4)

and a more straightforward and artist-friendly way to define light attenuation
is to define the light’s radius and let the attenuation factor be derived from
the radius.

This brings the need to design an attenuation function that resembles the
quadratic attenuation, but has att(r) = 0, where r is the light’s radius.

Let us derive such a function by starting from Equation 3.4. We want the
function to have values very similar to the standard quadratic attenuation,
but instead of retaining a small non-zero value at distance d = r, the function
should reach zero.

We use the following attenuation function:

att(d) =
1−

(
d
r

)20
1 + d2

. (3.5)

We subtract an expression that is close to zero for d << r but reaches 1 for
d = r. This ensures an attenuation factor closely resembling the original,
but smoothly attenuating to zero at the sphere’s boundary. The difference
between the old attenuation function and our new attenuation function is
shown in Figure 3.2.

For spot lights (represented by a cone), we have the spot direction and
spot angle (or cutoff angle). The test that occurs for pixels belonging to a
cone is very simple. We take the vector between the shaded point and the
cone position (the tip of the cone) and the spot direction vector. If the angle
of these two vectors is less than or equal to the cutoff angle, the point is inside
the spot light’s volume. This can be seen in Figure 3.3. During runtime, we
test if β ≤ α, where cos β = Pdir · Sdir if |Pdir| = |Sdir| = 1

25

Figure 3.2: Our modification of the attenuation function. Showing cut-off
lighting on the sphere boundary (left) and a simple fix causing smooth tran-
sitions with our new attenuation function (right).

S

Sdir

P

α
α

β

Pdir

Figure 3.3: Testing if point P is inside the cone (or spot light volume) defined
by cone tip S, cutoff angle α and direction Sdir.

For a directional light (just like sunlight), every single pixel has to be
lit. This is thus performed by rendering a fullscreen quad and shading every
pixel accordingly. However, this additional step increases fillrate (since all
the pixels have to be rendered twice). Therefore, the authors of [Filion and
McNaughton, 2008] proposed to render directional lights with a traditional
forward rendering pass (possibly generating the results during the G-Buffer
pass).

Due to this limitation, deferred shading does not handle many directional
lights well. On the contrary, many point lights and many spot lights are

26

handled much more efficiently than in forward shading.
Rendering light shapes as simple geometric objects is straightforward and

we do not need very precise cones and spheres, a few hundred vertices is
enough. We want to tightly encapsulate the light volumes to avoid overdraw
in this step. However, too densely tessellated meshes waste performance by
executing the vertex shader too many times.

In spite of the many advantages of deferred shading, there are certain
limitations. Due to these limitations, deferred shading is not always the way
to go. One limitation has already been mentioned: multiple directional lights
are not handled well, resulting in lower performance than forward shading.

3.3 Anti-Aliasing
A serious issue arises from using deferred shading. Most graphic cards sup-
port hardware anti-aliasing only when rendering to the window’s framebuffer.
This is not the case of deferred shading, where the scene is rendered into a
texture. Therefore, anti-aliasing has to be simulated.

There are a few options, the first one of them is super-sampled anti-
aliasing (SSAA). We render the G-Buffer and L-Buffer at a higher resolution
than the actual window and downscale it when finally rendering into the
window. This approach is unacceptable, because it requires a 4 times larger
G-Buffer and L-Buffer to perform 2x2 anti-aliasing (for a 800x600 image, a
1600x1200 image is rendered and each of the final pixels contains the averaged
value from 4 pixels).

Multisample anti-aliasing (MSAA) is the traditional hardware supported
anti-aliasing which executes the fragment shader only once per pixel but
the depth and stencil values are super-sampled. Due to this fact, it clearly
outperforms SSAA, but still has serious impact on performance.

More viable approaches perform post-processing of the output image. We
take the final tone-mapped image as a texture, execute a full-screen rendering
pass that accesses the texture and the fragment shader analyzes the texture

27

and outputs smoothed edges. Such an edge-blurring filter can take into
account G-Buffer data as well, such as normals or depths.

Once the edges are determined, the color of the output pixel is computed
as a weighted average of neighboring pixels. Thanks to the edge-detection
step, only edge pixels are blurred, saving as much performance as possible
while improving edge quality.

These approaches can blur sharp edges in textures as well, not only on
triangle edges.

The fast approximate anti-aliasing (FXAA) [Lottes, 2009] is a widely used
edge-detecting and blurring anti-aliasing method. It only uses the color buffer
and performs edge-detection in several steps that quickly discards non-edge
pixels. The author also provides an easily-integrable shader that performs
several different versions of FXAA on the input texture.

Morphological anti-aliasing (MLAA) [Reshetov, 2009] analyzes aliasing
patterns in the image between neighboring pixels and retrieves positions of
L-shaped, U-shaped and S-shaped aliasing patterns. These are afterwards
blurred based on the actual shape.

3.4 Transparent objects
Probably the worst problem to overcome in deferred shading is the render-
ing of transparent objects. The G-Buffer only holds information about the
nearest pixel and therefore does not contain any information about pixels
behind the closest objects. For these objects to render correctly (using alpha
blending), all the triangles need to be sorted in back-to-front order, making
the more distant objects render sooner. This is due to the nature of the alpha
blending operation:

colorfinal = (1− αsrc)colorsrc + αsrccolordst, (3.6)

which is order-dependent. The colordst is the current color stored in the
framebuffer, colorsrc is the color of the currently rendered primitive that is

28

to be blended into the framebuffer. And finally, αsrc is the corresponding
alpha value for colorsrc. Replacing alpha blending with a different blending
operation, where the order of operands does not affect the result, we could
avoid the need to sort. However, such blending operations do not correspond
to real behavior of light coming through transparent objects and thus produce
non-realistic results.

Most deferred shading pipelines revert to forward shading and perform the
traditional back-to-front polygon sorting and back-to-front rendering. This
approach can be CPU-intensive when the transparent objects are dynamic
and the triangles need to be sorted every frame.

To sort triangles back-to-front, we first collect all triangles from the scene
that are transparent. We put these triangles into a BSP tree. Every frame,
the BSP tree is traversed based on the camera position and triangles are
rendered back-to-front.

The generation of a BSP tree is CPU-intensive, especially when there
are thousands of triangles to process. If we have static transparent objects,
the BSP tree can be generated just once and then traversed each frame. If
we had dynamic transparent objects, the BSP tree would require rebuilding
every time the objects move. Most of the CPU time would be spent on BSP
tree generation and it could result in a CPU bottleneck. This is the main
reason why this approach is not being used as much.

3.5 Order Independent Transparency
The problem of rendering transparent objects without having to sort triangles
is referred to as Order Independent Transparency.

To avoid the CPU-intensive BSP tree approach, a lot of order-independent
techniques were developed. There are per-pixel linked lists with the help of
OpenGL 4 or DirectX 11, where we actually create one linked-list per pixel
containing depth values and colors [Thibieroz and Gruen, 2010]. In the final
pass, all samples in a pixel are sorted based on stored depth and blended

29

together back-to-front. The required OpenGL 4/DirectX 11 features are
atomic read/write operations in shaders which enables us to capture multiple
samples per pixel during one rendering call.

3.5.1 Depth Peeling

An older algorithm is called Depth Peeling [Mammen, 1989] [Everitt, 2001].
The main idea is to render the scene multiple times, “peeling” away one layer
of surfaces at a time. In the first pass, the rendered image corresponds to the
closest points to the camera for every pixel. In the second pass, the image
corresponds to the second closest points and so on. Finally, these layers
are blended together back-to-front. This approach does not require new
hardware and only uses OpenGL 2 features. The problem with this method
is, that transparent objects have to be rendered n times for n transparency
layers.

A modified technique called Dual Depth Peeling [Bavoil and Myers, 2008]
decreases the required number of rendering passes from n to n

2
by peeling

away the closest and the farthest points in one pass.

3.5.2 Stencil Routed A-Buffer

There is a much more effective way of rendering transparent objects on
OpenGL 3 capable hardware than Depth Peeling called Stencil Routed A-
Buffer [Myers and Bavoil, 2007]. With the help of OpenGL framebuffer
objects that can be used to render to multisample textures and a multisam-
ple stencil buffer, we can capture up to 32 layers of transparent geometry in
one rendering pass. This is equivalent to the per-pixel linked list approach,
but uses a multisample texture to store the samples, not one separate texture
for every layer.

This algorithm’s main idea is to use stencil routing which allows us to
store output of a fragment shader into a sample whose stencil value differs
from all other samples and thus allowing us to capture different fragment

30

values into different samples. After one pass of geometry, we have unsorted
values for every pixel stored in different samples and a consecutive sorting
and blending pass displays the correct transparent result.

At first, we initialize the alpha buffer (A-Buffer) by clearing color and
depth values identically for all samples, but the stencil buffer has to be cleared
with different values for each sample. By setting the sample mask, we limit
rendering only into the k-th sample (this functionality is provided by the
OpenGL sample mask feature). Afterwards, we set the stencil operation to
always replace with the reference value set to k+2. We then need to perform
rendering of a full-screen quad, since the sample masking is ignored by the
glClear function and would rewrite values in all samples.

We repeat this step for every sample and after this initialization step
(after drawing N full-screen quads), we have in each pixel N samples with
stencil values set to k + 2 for the k-th sample.

During the A-Buffer generation step, we set the stencil operation to de-
crease whenever a fragment is being rendered - this will affect stencil values
in all samples. The stencil function is set to “equal” with a reference value of
2. This setup allows the following: when a fragment is being rendered, the
stencil reference value 2 is matched only with the first sample (other samples
have values 3, 4, ...). The computed fragment color and depth are therefore
stored only in the first sample, and the stencil operation decreases values in
all samples. This causes the second sample to have a value of 2 and the next
fragment will be stored into the second sample. This process is shown in
Figure 3.4. The 4 samples for a pixel after initialization step ready to write
to the sample with stencil value S = 2 (top-left). When the first fragment
is stored all stencil values are decreased by one, color C = (R,G,B,A) and
depth D of the first fragment are written into the first sample (top-right) and
after next two steps (bottom-left, bottom-right) we have three valid samples
that can be sorted afterwards. The sort simply takes the depth values and
orders them from the largest number (farthest point) to the smallest number
(closest point).

31

S

C

D 1.0

2

1.0

3

1.0

4

1.0

5

0.5

1

1.0

2

1.0

3

1.0

4

0.9

1

1.0

2

1.0

3

0.5

0

0.3

1

1.0

2

0.5

0

0.9

0

Figure 3.4: Stencil Routing for 4 samples per pixel

During the A-Buffer rendering step, we can directly access pixel samples
one by one in the fragment shader. Once we have all color and depth values
stored in an array, we sort the color values based on their corresponding
depth. We take the sorted colors and perform back-to-front blending by
iterating over all sorted values and evaluating the blending equation in the
fragment shader.

There are several extensions that can be integrated into this solution.
We always have the depth difference (and therefore distance) between two
transparent samples and these distance values may be used for advanced
lighting evaluation such as Beer’s law, refraction, or other.

32

Chapter 4

Lighting Effects with Deferred
Shading

Deferred Shading allows for a various number of effects. All these effects
could be applied to a forward rendering engine as well, but the deferred
approach has its advantages, especially those concerning light calculation.

4.1 High Dynamic Range Lighting
Current displays can only display a limited luminance range (usually RGB
in range [0, 1]), however in real life, luminance has a much wider range, from
very high values (bright sun) to almost no luminance at all (stars during
night). The human visual system allows us to perceive both of these extreme
luminance values thanks to our eyes’ light adaptation, a process that adjusts
our visual system to various levels of light or darkness. High Dynamic Range
Rendering (HDR-R) is a series of algorithms that take into account the wide
luminance range and try to simulate light adaptation. This allows for more
realistic display of virtual scenes.

33

4.2 Tone Mapping
Tone mapping is a method of mapping luminance values of a HDR image (in
range [0, α), where α >> 1) to the displayable Low Dynamic Range (LDR)
- [0, 1].

Since we want to operate directly on luminance values, the RGB color
space is not suitable due to the fact that the luminance value has to be
calculated from all three components. For instance the Y component of
the XYZ color space directly corresponds to luminance and luminance is
unaffected by the XZ components. When applying tone mapping to a High
Dynamic Range RGB image, it is customary to convert the image into the
XYZ color space, perform tone mapping (by altering only the Y component)
and then convert back to RGB.

There are many different tone mapping operators, divided into two cate-
gories:

• global - these operators take a single luminance transformation and
apply it to every single pixel. This means that if two pixels have the
same luminance value, their new luminance will be the same.

• local - these operators depend on the local properties of the image,
applying a different luminance transformation in every pixel. As a
result, two pixels with the same luminance value can be transformed
into two different values.

We will now introduce two global operators that will be used in our
deferred rendering engine. Probably the simplest global (apart from clamping
luminance values) tone-mapping operator uses a direct compression of the
[0,∞) interval into [0, 1] using the following equation:

Ltonemapped =
Linput

Linput + 1
. (4.1)

This transformation compresses higher luminance values more than lower
luminance values and ensures that the output will be LDR. However, it
desaturates colors and the output images have a grayish look.

34

4.2.1 Reinhard’s operator

Reinhard’s tone mapping operator [Reinhard et al., 2002] is a popular tone-
mapping operator that analyzes how light or dark the target image is and
tries to modify luminance values to retain information in dark as well as
light parts of the image. We use only the global part of Reinhard’s operator,
the original paper also describes consecutive local steps that further improve
image quality.

The key value of an image is a quantity determining whether the image is
subjectively light or dark. The higher the key value, the brighter the input
image is. A typical approximation of the key value used by many other
similar methods is the log-average luminance of the image. It is computed
as follows:

lumlog = exp
(

1

N

∑
x,y

log (δ + Lw(x, y))

)
, (4.2)

where N is the total number of pixels in our input image, Lw(x, y) is the
luminance of the input image at pixel (x, y), and δ is a small offset value to
avoid evaluating a zero logarithm.

Once we have the log-average luminance representing the scene’s key, we
want to map average values to the target key value, using the following:

L(x, y) =
a

lumlog

Lw(x, y). (4.3)

a is a user-defined value controlling the targeted key value after processing.
Values in range [0, 1] are acceptable, and as we can see, lower values result
in a darker image.

This gives us intermediate values that we further process by compressing
high luminance values using the simplest tone-mapping from Equation 4.1.

The original paper suggest modifying this simple equation to provide
better quality and avoid desaturation by introducing the value Lwhite, which
is the smallest luminance value that will be mapped to a pure white color.

35

The final tone-mapped luminance is then computed as:

Ld(x, y) =
L(x, y)

(
1 + L(x,y)

L2
white

)
1 + L(x, y)

, (4.4)

which reverts into Equation 4.1 when Lwhite = ∞. Lwhite is usually set to
the highest luminance value found in the image.

The authors further suggest to apply automatic local adjustments, how-
ever we do not use this part in our system.

4.3 Bloom
When looking at a dark object that is partially occluding a bright light source
such as the sun, the light rays appear to “bend” at the object’s edge and a
fringe is visible (the brighter the light, the larger the fringe effect). This is
caused by visual systems that include a lens, such as the human eye or a
camera. This effect is called bloom, a very popular effect used in almost all
new 3D computer games. It goes hand in hand with HDR, since only very
bright lights produce such an effect. This effect can be observed in real life
when looking directly into the sun through tree-tops or similar objects. A
bloom fringe caused by a specular reflection is shown in Figure 4.1.

Figure 4.1: An image with specular reflection without showing bloom (left)
and with bloom enabled (right)

36

Simulating bloom is straightforward and relatively easy to implement.
Firstly, a luminance threshold is set and pixels that have a higher luminance
value will produce a bloom effect. The threshold value is subtracted from
each pixel’s luminance. The next step is to perform an adaptive blur filter
on these pixels, while taking into account the fact that brighter pixels get
blurred with a wider kernel (resulting in a bigger bloom effect). Finally, the
output is additively blended into the scene.

We use a separable gaussian filter which requires only m + n texture
reads to blur a pixel with a m × n kernel. Performance can suffer if the
bloom effect is supposed to be hundreds of pixels in size. To avoid such
problems, we create mipmaps before calculating the actual bloom effect and
then compose the final image from different sized textures. If we were to blur
the highest resolution mipmap, using a smaller kernel on one of the mipmaps
with lower resolution can reduce the computational time significantly. The
mipmaps are created using simple downscaling and bilinear interpolation,
which makes the faster approach less precise. However, since the bloom
effect is additively blended into the scene, the difference in visual quality is
usually not noticable.

4.4 Shadow Mapping
Shadows are a crucial part of the scene lighting. They provide depth in-
formation, as well as helping us estimate the size of objects. For shadow
generation, two viable real-time techniques are used: Shadow Volumes and
Shadow Mapping.

Shadow Volumes [Crow, 1977] detects the silhouette of objects as seen
from the light and then expands these edges away from the light. By doing so,
mesh representations of the shadows are created. With the help of a stencil
buffer, the shadows can then be added into the scene. The determination of
silhouette edges is required to run every time a light or object moves, making
it a CPU intensive approach for a highly dynamic scene. Shadow Volumes

37

will not be discussed further due to the CPU-bound operations.
Shadow Mapping [Williams, 1978], on the other hand, fully utilizes the

GPU. From the light’s point of view, a depth map (usually called the shadow
map) is rendered and the depth information is then used to determine lit and
unlit surfaces when rendering from the camera’s point of view. It requires
one additional rendering pass per light, but only the depth values need to
be stored during this pass. When performing shading, the position in the
shadow map (corresponding to the current point in world coordinates) is
calculated and compared to distance from the light. If equal, the point is lit,
otherwise the point is in shadow because there was an object in front of it
when the shadow map was rendered. A scene with shadow mapping is shown
in Figure 4.2.

Figure 4.2: A shadow map from the light’s point of view (left) and the
shadowed scene (right).

In a single-pass forward rendering approach, all the shadow maps need to
be stored in GPU memory at once since the shading evaluation accesses them
all in one shader. However, in a multi-pass and a deferred approach, where
lights are processed separately, only the shadow map required for the current
light needs to reside in the GPU memory at that moment. This allows for a
simple yet powerful memory optimization, where one depth texture can be
reused multiple times for different shadow maps, overwriting the contents of
the buffer every time we need the next shadow map.

38

The quality of results depends highly on the resolution of the shadow
map as well as filtering techniques used when accessing the shadow map. A
necessary optimization to reduce aliasing due to low resolution is to ensure
that shadow maps are rendered only for parts of the scene that will be vis-
ible in the final image. There are several improvements of standard shadow
mapping which address these problems.

4.4.1 Light types

Depending on light types (directional, point, spot), different projections and
methods are used to generate shadow maps. For a directional light, an or-
thographic projection is used to generate the shadow map. For a spot light, a
perspective projection is used while matching the spot cutoff angle to ensure
correct results.

Point lights are trickier, since we want to generate omni-directional shad-
ows. Multiple shadow maps are required per light. Usually, a shadow cube
map (cube map composed of 6 shadow maps) is created for a point light
by rendering into 6 different shadow maps and then the fragment shader
accesses the correct shadow map based on light direction.

However, rendering the scene 6 times for one light is not optimal. Using
two hemispherical projections instead reduces the number of scene renderings
required to generate an omni-directional shadow map to 2 per point light,
which is much more desired. This approach called Dual Paraboloid Shadow
Mapping is described in [Brabec et al., 2002].

4.5 Ambient occlusion
Ambient occlusion is a technique that estimates the shadowing from ambient
light in the scene. It provides much better depth information than simple
shading, and the overall image quality is much higher, as can be seen in Figure
4.3. Ambient occlusion and shadows are both necessary for realistic display of
scenes. Since ambient light illuminates surfaces uniformly from all directions,

39

the ambient occlusion term does not depend on the light’s direction or light
sources in the scene. This means that for a static scene (and dynamic lights),
the ambient term can be pre-computed. For a dynamic scene, however,
ambient occlusion has to be re-calculated every time an object moves.

Figure 4.3: The effect of ambient occlusion. A scene without displaying
ambient occlusion (left) and a scene with ambient occlusion displayed (right).

The computation takes into account nearby objects, therefore it is con-
sidered a global illumination technique. However, it can be approximated in
real-time, as we show later.

Analytical ambient occlusion is computed by integrating the visibility
function over a hemisphere centered at the surface point P and oriented by
the surface normal n̂ at P . The corresponding equation is:

AP =
1

π

∫
Ω

VP,ω̂(n̂ · ω̂) dω. (4.5)

Ambient occlusion determines for a surface point how nearby objects
block the incoming ambient light. Instead of integrating the visibility func-
tion, numerous rays are sent out into the scene from P in a hemisphere Ω

oriented by the surface normal at this point. If a ray does not hit any object
in the scene, it means that ambient light is reaching this point along this ray.
The ambient occlusion factor is then equal to the percentage of rays that did
not hit any surface. This process is shown in Figure 4.4.

40

We will be using a slightly modified version which includes distance check-
ing. This is referred to as ambient obscurance, where we compute how many
of the rays sent from the surface point do not hit a surface within a certain
distance. Instead of rays “escaping” the scene, it is enough if the rays travel
far enough without hitting a surface.

Figure 4.4: Computing ambient occlusion as an approximation by casting
rays from the green point and checking which rays do not hit any surfaces.

The computed value is in range [0, 1] and the ambient term (in the Blinn-
Phong shading equation) is simply multiplied by the value when performing
shading. The visual difference is seen in Figure 4.3.

4.5.1 Offline generation

Pre-computing the ambient occlusion term for static scenes is usually per-
formed by using ray tracing. For every surface point, rays are cast into
all directions based on the hemisphere and the nearest hit is stored. This
distance information from every ray is then used to calculate the ambient
occlusion term, where closer objects contribute more to the occlusion factor.
If none of the rays intersect any object, there is nothing blocking the ambient
light and the term remains 1 for a bright ambient light.

41

These results are usually computed for points uniformly distributed on the
surface. The values computed are then stored into textures and can be used
in a real-time application. This is similar to computing global illumination
of static scenes and then storing these into light maps, but we do not store
results of shading, only one of the input parameters for shading.

4.6 Real-time ambient occlusion
There are lots of techniques that produce real-time ambient occlusion, usually
divided into two categories.

4.6.1 Screen-Space methods

These methods use the depth buffer and other screen-space data to estimate
scene geometry and thus compute occlusion. One of the first methods was
Screen-Space Ambient Occlusion [Mittring, 2007], from which most of these
methods originated. We use a slightly modified version of this method that
incorporates surface normals.

Amongst these techniques are those derived from the original SSAO either
by changing the space in which computations occur or by using different
sampling approaches or falloff functions.

There is the Horizon-Split (or Horizon-Based) Ambient Occlusion (HBAO)
[Dimitrov et al., 2008] [Bavoil et al., 2008] which performs steps in tangent
space and estimates the actual horizon as seen on the hemisphere from the
evaluated point.

The Screen-Space Directional Occlusion (SSDO) [Ritschel et al., 2009]
extends the original SSAO and as a result can evaluate one indirect diffuse
bounce of light, allowing color leaking of nearby objects onto other objects.

The Alchemy SSAO implementation [McGuire et al., 2011] is derived from
HBAO. Based on a different derivation of the ambient obscurance term, it
allows for a more efficient and less noisy evaluation of occlusion.

42

Due to low sampling rate and the fact that the depth buffer contains no
information about occluded geometry, all these methods produce significant
noise and incorrect occlusion due to lack of information.

However, these methods have stable performance since every frame the
number of evaluated samples and pixels remains the same.

4.6.2 Geometry-based methods

Contrary the previous methods, geometry-based methods rely heavily on
the currently displayed scene. In [Bunnell, 2005], the authors generate disks
from polygonal geometry and compute ambient occlusion between these disks
(which is simpler than for general meshes).

The Ambient Occlusion Fields [Kontkanen and Laine, 2005] method pro-
vides a similar approach, where fields encapsulating the possibly occluding
regions for meshes are generated and then evaluated during runtime. How-
ever, this method does not handle situations with deformable objects, since
the fields are pre-computed.

An extension of Ambient Occlusion Fields allowing for fully dynamic
occlusion is Ambient Occlusion Volumes [McGuire, 2010]. This method is
part of our system and will be described later.

4.6.3 Screen-Space Ambient Occlusion

Screen-Space Ambient Occlusion (SSAO) was introduced by Crytek in [Mit-
tring, 2007]. This approach utilizes the depth buffer of the scene (this is our
G-Buffer depth) and based on depth values approximates scene geometry.
This approximation is then used to evaluate the occlusion factor.

The main idea is to read the depth value of the current pixel, reconstruct
it’s 3D position, add several offset vectors to this position and reconstruct
the screen-space coordinates of these points (as well as their depths). Finally,
based on depth values stored in the depth map for these surrounding points,
the occlusion factor is computed.

43

There are many different implementations that carry the label SSAO, and
most of them differ quite significantly from each other. The term SSAO has
been used in this context as an occlusion estimation algorithm that uses the
depth buffer and screen-space to do so.

Certain implementations use only the depth buffer, comparing and com-
bining depth values around the pixel. Other implementations use the depth
buffer to actually reconstruct 3D points around the current pixel and derive
occlusion based on the position of those points.

A nice improvement when using deferred shading is to take into account
the normals as well (taken from the G-Buffer normal texture), thus improving
the occlusion calculation. When we try to estimate occlusion at a point, the
point’s normal tells us how the sampling hemisphere around the point should
be oriented. Thanks to that, we do not need to sample points in a sphere
around the point (and probably taking into account points that would never
have contributed to the occlusion), but we can take a hemisphere and thus
sample points at twice the density while performing the same amount of
operations.

It is relatively easy to implement in a fragment shader:

1. Read the pixel’s depth value from the depth buffer.

2. Reconstruct the 3D position of this point.

3. Construct a fixed number of points around this point in 3D, reconstruct
their screen-space position by projecting onto the viewing plane. We
get a position in the depth map as well as a new depth value for this
point.

4. For every point, if the depth value is higher than the value stored in
the scene’s depth map, increase occlusion factor based on distance from
the center point.

When the depth value is higher than the value stored in the depth map
means that there is an object in front of the point and we assume that this

44

point belongs to the object and thus occludes P . This process is shown in
Figure 4.5.

n

P

C

Figure 4.5: The process of evaluating SSAO

We use a falloff function based on distance of the occluding point, since
objects that are closer contribute more to the occlusion than distant objects.
Our function looks like:

f(d) =
1

1 + d2
, (4.6)

where the input d is the object’s distance.
This approach produces significant ghosting in the occlusion buffer as

seen in Figure 4.6 on the right image. Firstly because it is a very rough
approximation of actual ambient occlusion and secondly because we need to
keep the amount of sampled pixels to a minimum, otherwise it will take too
long to compute. This ghosting can be avoided by randomizing offset vectors
per pixel. We replace ghosting artifacts with high-frequency noise (Figure
4.6 left) but we will remove this noise with a blurring pass.

45

Figure 4.6: SSAO without randomized offset vectors produces ghosting ar-
tifacts (right). If we randomly rotate offset vectors in every pixel, we get a
noisy result instead which will then get blurred (left).

Finally, the most important noise reduction is smoothing with a separable
blur. Smoothing can reduce the noise to a minimum (Figure 4.7), but we
have to be aware that smoothing can produce blurry artifacts between two
objects. Imagine an object with ambient occlusion and a few pixel away from
this object is an object that is actually hundreds of meters away. A simple
gaussian blur would cause the occlusion of the close object to “leak” into the
distant object. This is shown in Figure 4.8.

Figure 4.7: Smoothing of the SSAO buffer with a gaussian blur (left) and a
cross-bilateral blur (right).

46

Figure 4.8: Errors caused by gaussian blurring of the SSAO buffer (left) and
correction of the occlusion leaking by using a cross-bilateral filter (right).

Therefore, we use a cross-bilateral blur [Tomasi and Manduchi, 1998].
The depth buffer is used to analyze depth discontinuities when blurring the
image and adjusts gaussian weights based on depth difference between the
center pixel and other pixels. We multiply all gaussian weights with this
expression:

w(current) =
1

δ + |dcenter − dcurrent|
, (4.7)

where dcenter is the depth of the center sample, dcurrent is the current sample’s
depth and δ > 0 is a small constant to avoid division by zero.

While computing all sample weights, we sum them together to re-normalize
the values so that the final sum of all pixel weights is 1.

We perform a horizontal and a vertical blurring pass as we normally would
with a separable gaussian blur.

When the camera moves, pixel neighborhoods change and it can result
in unwanted jittery artifacts when moving the camera. For static images the
cross-bilateral blur usually reduces the noise to an acceptable level but such
a movement issue can still persist if we use a small blur kernel or not enough
samples per pixel.

Despite the need to solve the noise problem, SSAO is a widely used ef-
fect which has quite good performance, but sometimes produces unrealistic
artifacts (even after noise reduction).

47

The ideal number of samples should be as many as possible. However,
we need to execute non-trivial operations including a texture read in the
fragment shader for each sample. For low quality but high performance, we
use 8 samples per pixel. For average quality, we use 16 and for high quality
32. Higher values are usually not practical due to performance issues.

Performing a full-screen SSAO with 32 samples per pixel is a challenge
for newer hardware as well, and since the occlusion buffer will be blurred
anyway, most implementations used buffers of size w

2
× h

2
or even w

4
× h

4
,

where w is the output image width and h is the output image height.

4.6.4 Ambient Occlusion Volumes

A different approach to real-time ambient occlusion is called Ambient Oc-
clusion Volumes (AOV) [McGuire, 2010]. The main idea is to construct an
ambient occlusion volume for every triangle and by rendering the triangle’s
ambient occlusion volume, we can cover objects that are potentially occluded
by the triangle and evaluate occlusion contribution from this triangle.

Firstly, an ambient occlusion volume is similar to a shadow volume from
the shadow volumes algorithm [Crow, 1977], but for ambient light. It is a
triangular prism that is extruded from the triangle. This triangular prism is
constructed by calculating outward facing normals e1, e2, e3 of triangle edges
- these vectors lie in the plane of the triangle. Afterwards, we normalize
these vectors and multiply them by a constant δ which determines how far
the occlusion will reach.

For every vertex of the triangle, the outward facing normals (correspond-
ing to edges that contain the vertex) of length δ are added to the vertex
position. This operation produces three new vertices V1, V2, V3 which will be
the base of the occlusion volume. The other three vertices V4, V5, V6 are then
constructed by adding the triangle normal (rescaled to length δ) to each of
the three vertices. This process is depicted in Figure 4.9.

By manipulating the AOV size δ, we can easily control how far from the
triangle the occlusion is generated. When the camera is inside an AOV, it

48

V1

T

V2

V3

V4

V5

V6

e1 e2

e3

n

Figure 4.9: The construction of an Ambient Occlusion Volume for a triangle

has to be replaced with a fullscreen quadrilateral since all visible pixels are
potentially occluded.

Due to that, setting the AOV size to a large value can cause most of the
volumes to become fullscreen quadrilaterals and this can end up in rendering
a fullscreen quadrilateral for every triangle in the scene. This would of course
take up a lot of performance, therefore the AOV size should not be too large
(and also not too small, because the effects will become much less noticeable).

By generating AOVs for the whole scene, we get a layer of AOVs on top
of every mesh. Each of these AOV “remembers” it’s originating triangle and
it’s area. When rendering these volumes, we get position (x, y, z) and normal
(nx, ny, nz) from the G-Buffer and calculate occlusion by calculating the form-
factor between the point (x, y, z) with normal (nx, ny, nz) and the AOV’s
originating triangle. The calculated form-factor is then attenuated by a falloff
function (which determines how the occlusion looses it’s effect with increasing
distance from the triangle). All occlusion from neighboring triangles is then
subtractively blended into the accessibility buffer, which holds information
about how each pixel is accessible by ambient light (initially 1 for every

49

pixel). Finally, the ambient term is modulated by the accessibility buffer
when performing shading.

This approach does not produce such noisy results as SSAO. Since the
computation is not performed in screen-space, the jittery artifacts are not
present at all. Also the noise caused by sparse sampling is not generated,
since we do not sample anything. This also means that there is no need
to perform a blurring step. AOV avoids all the quality problems that were
introduced by SSAO but may take longer to compute since it relies on scene
complexity. Despite the fact that SSAO performs better in certain situations,
AOV is still a real-time technique and thanks to lower noise is more viable
for the future than SSAO.

Reducing the accessibility buffer to a smaller resolution can save com-
putational time but introduces blurry artifacts. These can be avoided by
performing a cross-bilateral upsampling while accessing the full-screen depth
buffer to detect edges. Rendering at full resolution always results in slower
execution than SSAO. Apart from hard edges, the ambient occlusion term is
usually smooth, therefore this does not reduce the quality of AO much.

A visualization of the AOVs and the resulting image is shown in Figure
4.10.

50

Figure 4.10: Visualization of the AOVs. Wireframe AOVs of size 0.3 over-
layed in the scene (top-left), AOVs of size 1.0 (top-right), accessibility buffer
for radius 1.0 (bottom-left) and the shaded scene (bottom-right).

51

Chapter 5

Implementation

We will now describe our implementation. The implementation was written
in C++ using OpenGL version 3.3 (however, most algorithms can actually
perform on older versions of OpenGL).

5.1 Forward Shading
Firstly, we will describe the forward shading approach. When compared to
the deferred shading approach, it is much simpler, since forward shading is
the way that OpenGL was originally designed to accelerate. This approach
is compatible with much older hardware and OpenGL versions, since it only
requires the usage of GLSL shaders (which are part of OpenGL core since
version 2.0 and can be accessed through extensions on certain hardware not
supporting OpenGL 2).

5.1.1 Single-pass Lighting

We already described how the single-pass lighting works. The scene is ren-
dered once with our lighting shader, which has information about all the
lights at once and shades each pixel during one run of the fragment shader.
A simple pseudo-code is shown in Listing 5.1. The shader object consists of a
vertex shader and a fragment shader. In the vertex shader, vertices, normals

52

and texture coordinates are transformed. Depending on what suits us the
best, we can perform lighting computation in world space, or in view space.
Either way, in the fragment shader, we require the actual position of the
point currently being rendered (in the correct coordinate space), it’s normal,
and material properties.

The light information and material properties are stored in uniform vari-
ables. The material properties are as described by the Phong (Blinn-Phong)
shading model: ambient and diffuse color (usually being the same), specular
color and specular exponent (or shininess). When the objects have a surface
texture, the color read from this texture usually replaces the diffuse and am-
bient material terms. However, by multiplying the texture color with stored
diffuse and ambient color, we can provide tint for objects, giving them for
instance a reddish look. For each light, we store similar information: light
type, ambient color, diffuse color, position(, direction, intensity). Depending
on the light type, we only need some of the information. For a directional
light, the light’s position is not necessary and it actually becomes a direc-
tion. For a point light, we require only the light’s position as the light is
omni-directional. For a spot light, both the position and direction (together
with the spot cutoff angle) are used to compute final lighting.

The shaders for single-pass lighting are showed in Listings 5.2 and 5.3.
Note that in the vertex shader, we use uniform matrices to transform ver-
tices in multiple composed versions. This is a simple optimization of the
shader execution, where matrices Model (Object space -> World space),
View (World space -> View/Camera/Eye space) and Projection (View space
-> Clip space) are composed once on the CPU and then sent to the GPU.
Otherwise, we would have to replace modelviewprojection with projection

* view * model, which wastes GPU cycles on multiplying the same matrices
thousands of times every frame. We prepare all needed data for the fragment
shader to compute lighting in world space - light positions and directions are
sent in world space and actual position is computed in world space as well.

Notice in the fragment shader that we have lots of information for every

53

shader.Use();

for (each light)
shader.AddLightInformation(light);

for (each object)
shader.SetMaterialInformation(object.material);
render(object);

Listing 5.1: Single-pass Lighting - CPU side

struct Matrix
{

mat4 model, view, projection;
mat4 modelview, viewprojection;
mat4 modelviewprojection;

};
uniform Matrix matrix;

in vec3 attrVertex;
in vec3 attrNormal;
in vec2 attrCoord;

out vec3 position;
out vec3 normal;
out vec2 coord;

void main()
{

coord = attrCoord;
normal = vec3(matrix.model * vec4(attrNormal, 0.0));
position = vec3(matrix.model * vec4(attrVertex, 1.0));
gl_Position = matrix.viewprojection * vec4(position, 1.0);

}

Listing 5.2: Single-pass Lighting - Vertex shader

light. Therefore, due to hardware limitations on number of bytes available
for storage of uniform variables, only a fixed number of lights are possible to
render. And this fixed number is usually very low.

Other limitations that we might run into using this approach is a limit for
number of operations in a shader. If we had hundreds of lights, the fragment
shader would need to execute thousands of operations, surely exceeding this
limit.

54

struct Material
{

vec3 diffuse;
vec3 ambient;
vec3 specular;
float shininess;

};
uniform Material material;

struct Light
{

int type;
vec3 position;
vec3 direction;
vec3 diffuse;
vec3 ambient;
vec3 specular;
float spotExponent;
float spotCosCutoff;

};

#define MAX_LIGHTS 8
uniform int activeLights;
uniform Light lights[MAX_LIGHTS];

in vec3 position;
in vec3 normal;
in vec2 coord;

out vec4 outColor;

void main()
{

normal = normalize(normal);
outColor = vec4(0, 0, 0, 0);
for (int i = 0; i < activeLights; i++)

outColor += shade(lights[i], material, position,
normal, coord);

}

Listing 5.3: Single-pass Lighting - Fragment shader

The shade function simply fills the Blinn-Phong equation with the right
data as supplied, and the final lighting is computed based on the light type.
Thanks to the additive nature of lighting, we can sum contribution from all
lights and return the color.

55

5.1.2 Multi-pass Lighting

We can see in the previous approach the numerous limitations as well as
wasting GPU cycles when one pixel might be only affected by one light, but
we have to evaluate them all the in fragment shader.

Multi-pass lighting works in a slightly different manner, but the resulting
image is the same. The scene is rendered once for each light and the result
is then additively blended together.

This allows for certain optimizations. First of all, the depth values gen-
erated in every single pass will be the same, so we do not need to generate
the depth buffer every time. We can (during the first pass) render to the
depth buffer as usual (first clear it with 1.0, then set the depth buffer func-
tion to „less than or equal” and enable writing to the depth buffer). In the
consecutive passes, we disable depth writing (since we would only be writing
the same values over and over) and set the depth function to „equal”. This
is the early depth optimization mentioned earlier, slightly modified to suit
multi-pass lighting.

We can still optimize a little more, since not all lights affect all objects. If
we bound every object and every light’s volume with bounding volumes and
then test for intersection, we can reduce the number of drawing calls. The
code will look like the one in Listing 5.4.

We use additive blending thanks to the additive nature of light, and since
this type of blending is not order-dependent, it does not matter in which
order the objects are rendered.

The vertex and fragment shaders are the same as in single-pass lighting,
except that the fragment shader has information only about one light at a
time, and the summation of light contribution is executed with the help of
blending.

56

// Early depth for all objects
glDisable(GL_BLEND);
glColorMask(0, 0, 0, 0);
glDepthMask(1);
glDepthFunc(GL_LEQUAL);
simpleShader.Use();
for (each object)

render(object);

// Multi-pass lighting
glColorMask(1, 1, 1, 1);
glDepthMask(0);
glDepthFunc(GL_EQUAL);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
shader.Use();
for (each light)

for (each object)
if (intersect(light volume, object volume))
{

shader.SetLightParameters(light);
shader.SetMaterialParameters(object.material);
render(object);

}

Listing 5.4: Multi-pass Lighting - CPU side

5.2 Deferred Shading
Deferred shading works in a similar manner than multi-pass lighting but
avoids the need to render objects multiple times. Instead, the light volumes
are rendered when generating lighting.

Firstly, we create a framebuffer object (FBO) for the G-Buffer and attach
multiple textures, which define the layout of our G-Buffer. In the current
implementation, we store this information:

1. Albedo or texture color - 24-bit RGB texture - 8 bits for each channel

2. Depth - 24 or 32-bit floating point texture

3. Normal - 2 x 16-bits fixed point (as described in Section 3.1)

4. Specular color - 24-bit RGB texture

57

5. Specular roughness - 8-bits

6. Pixel type - 8-bits

The hardware supports 4-channel textures, and even if we requested a 3-
channel 8-bit texture, we might end up with a 4-channel texture. Therefore,
we pack the data into several 4-channel textures.

Albedo and pixel type are in a single texture, the two 16-bit normal
components could be packed into a 4-channel 8-bit texture, but it requires
additional overhead when unpacking. The pixel type is currently used only
to determine which pixels belong to the sky and should not be affected by
shading.

The last texture contains specular color in three channels and specu-
lar roughness in the last channel. Several implementations revert to only
monochromatic specular color and use the two free channels for other data.
The Killzone 2 implementation [Valient, 2007] uses these free channels to
store screen space motion vectors and then computes a motion blur.

For performance purposes, we attach the L-Buffer accumulation texture
as well to forward shade the directional light(s). However, if we use SSAO
or AOV, this step cannot be executed since these techniques require the
G-Buffer and the lighting phase requires the accessibility buffers.

Together, it makes 15 - 16 bytes per pixel depending on the depth preci-
sion. For a 1024x768 G-Buffer, that takes only about 12MB of GPU memory.
For a Full HD 1920x1080 G-Buffer, it takes almost 32MB.

Rendering into the G-Buffer requires only simple shaders. The vertex
shader does only the usual - transform vertices, normals and texture coor-
dinates. The fragment shader stores material data into output buffers, as
shown in Listing 5.5, and iterates over all directional lights (we currently use
only one) to shade them accordingly.

58

uniform sampler2D diffuseMap;
uniform sampler2D normalMap;
uniform sampler2D specularRoughnessMap;
uniform sampler2D specularColorMap;

uniform int objectType;

in vec2 texCoord;
in mat3 tbnMatrix;

out vec4 albedoAndPixelType;
out vec4 packedNormal;
out vec4 specular;
out vec4 lighting;

void main()
{

albedoAndPixelType.rgb = texture(diffuseMap, texCoord).xyz;
albedoAndPixelType.a = objectType;
specular.rgb = texture(specularColorMap, texCoord).rgb;
specular.a = texture(specularRoughnessMap, texCoord).r;

vec3 normal = texture(normalMap, texCoord).xyz;
normal = normalize(tbnMatrix * normal);
packedNormal = packNormal(normal);

}

Listing 5.5: G-Buffer generation - Fragment shader

5.2.1 Generating the L-Buffer

Furthermore, we require a lighting buffer (L-Buffer). If we were to perform no
post-processing on the L-Buffer result and avoid HDR rendering, the L-Buffer
is not necessary and we can render directly into the window’s framebuffer.

However, we want to utilize the L-Buffer data as a texture to allow reading
from it, therefore we create a FBO for it as well. We attach two textures:
RGB color - 16bpp, 16-32bpp depth. We use 16-bit color to allow direct
HDR rendering support. This requires an additional tone-mapping step to
display the result.

L-Buffer generation is performed by rendering light volumes assigned to
different light types, using the same projection as was used to generate the

59

G-Buffer. In the fragment shader, every pixel reads data stored in the G-
Buffer to generate the final color of the current point lit by the current light.
The results are additively blended into the L-Buffer.

For different light types, different light shapes are rendered. When ren-
dering directional lights, the light volume is a full-screen quadrilateral. This
means that every single pixel from the G-Buffer is processed. Therefore, ren-
dering directional lights usually adds additional overhead when using deferred
shading, and several implementations revert to forward shading. Ideally, the
pixels could be forward shaded when rendering the G-Buffer by attaching
another texture and storing shaded values into this texture.

When rendering the sphere, we need to enable front-face culling to avoid
problems when the camera is inside the sphere. For every pixel, the actual
3D position (in view space) is reconstructed from the G-Buffer depth and the
distance from the light’s position is evaluated. If the distance is larger than
the actual light radius, the point is outside of the light’s volume and should
not be lit at all.

Spot lights are represented by cones. The tip of the cone is centered at
the light’s position, but we also need information about the spot direction
and the cutoff angle. From these informations, we can again perform a test
if a point is inside the light volume and apply shading based on the result.

The actual test is quite simple. We have the angle αcutoff defining the
cone and we have the direction of the cone d⃗ = (dx, dy, dz). If we take the
point to be tested and construct a vector p⃗ from the cone vertex V to the
point. We just measure the angle between d⃗ and p⃗ and compare it to the
cutoff angle. The situation is shown in Figure 3.3.

5.3 Tone-mapping
Lights can have intensity higher than 1. Such a light would probably cause
certain values in the L-Buffer to exceed 1 (that’s why we used a 16-bit RGB
L-Buffer). However, we need to map these values into the displayable range

60

[0, 1]. That’s where tone-mapping comes into play.
Usually, we need an additional pass to perform tone-mapping. We cannot

do it during the L-Buffer phase mainly because when rendering the light
shapes, we actually have no idea what to expect where. One point could be
affected by hundreds of lights with huge intensity, and we can only process
only one light at a time. This problem is not present in the single-pass
forward shading approach, but the same approach as we will describe now is
used for multi-pass lighting as well.

Tone-mapping has to occur when the L-Buffer is generated. We apply
tone-mapping by rendering a fullscreen quad which then reads values from
the L-Buffer.

The actual tone-mapping is executed in a fragment shader as shown in
Listing 5.6.

uniform sampler2D lBuffer;
uniform float logAverageLuminance;
uniform float lWhite;

in vec2 pixelCoord;
out vec4 outColor;

void main()
{

vec4 inColor = texture(lBuffer, pixelCoord);

outColor = ApplyReinhard(inColor);
}

Listing 5.6: Tone-mapping shader

The simplest tone-mapping from Equation 4.1 is very easy to implement
but does not produce high-quality results since colors are usually desaturated.

5.3.1 Reinhard’s operator

However, Reinhard’s operator requires two values that are the result of image
analysis on the L-Buffer. The log-average luminance is affected by all pixels
in the image and the Lwhite should be set to the highest luminance value

61

found in the image. Transferring the L-Buffer image into CPU memory and
iterating over all pixels is not a very CPU-friendly solution and the need
to transfer data back from the GPU every frame is unacceptable due to
performance issues.

We use a GPU-accelerated computation of both values. The simpler of
both computations is getting the Lwhite value. We perform several down-
scaling passes similar to mipmap creation, but we compute the resulting
luminance as the maximum of a fixed neighborhood (instead of the mean
used when creating mipmaps). Once we reach a 1x1 result, we have the
Lwhite value and we can either store it into an uniform value or directly read
it from the created texture.

The log-average luminance works very similar. But during the first down-
scaling, we first convert luminance values Lw into log(δ+Lw(x, y)) and then
sum all these values together. This way, we perform piece-wise results of the
sum in Equation 4.2. The other down-scaling passes only sum values in a
fixed neighborhood. Again, the resulting 1x1 texture at the end of the down-
scaling is used to retrieve log-average luminance of the image in constant
time.

The tone-mapping shader simply fills these values into the equations and
outputs the result.

5.4 Bloom
Bloom is usually coupled with HDR. We want to apply a blur filter to high
luminance values and simulate a nice effect. A straightforward approach
first darkens the tone-mapped image and then blurs based on intensity - the
higher the intensity, the wider the blur kernel. This would mean that a point
that is extremely bright should be blurred with a kernel of hundreds of pixels,
and even with a separable gaussian blur, it would take too much time and
would not be stable.

A faster way to generate bloom is to generate mipmaps of the darkened

62

image, since mipmaps can be interpreted as blurred versions of the original
image. Multiple mipmap stages are then summed together in the fragment
shader and blended into the scene. This is again a full-screen pass.

5.5 Shadow Mapping
Shadow Mapping can be easily integrated into single-pass, multi-pass and
deferred shading. It introduces an additional rendering pass from every light’s
point of view. For the final light computations, only a few shader instructions
are added to determine lit and shadowed pixels.

For the shadow map, we create an FBO of arbitrary size (the higher the
resolution, the lower the aliasing) with up to 32-bit depth and without a
color texture, which is unused.

When the shadow map is ready, we can access it in a fragment shader
when generating the L-Buffer. Since we store view-space normals and use the
depth values to reconstruct view-space position, all the calculations occur in
view-space. However, the shadow map was rendered from a different point
of view. We construct a matrix transforming from the light’s clip space (in
which the shadow map is) to the camera’s view space.

This matrix is constructed as B ·PL ·VL ·V −1
C , where B is the bias matrix

which transforms clip space coordinates from range [−1, 1]3 to range [0, 1]3,
PL is the light’s projection matrix, VL is the light’s view matrix and VC is
the camera’s view matrix.

By multiplying a 3D vector representing a point in view-space with this
matrix, we transform it into world space (V −1

C), then into the light’s view-
space (VL) and finally into the light’s clip space (PL). This clip space is
then mapped by matrix B into range [0, 1]3 and the x, y coordinates are
the position to query in the shadow map while the z coordinate is used for
shadow map comparison.

63

5.6 Screen-Space Ambient Occlusion
Integrating Screen-Space Ambient Occlusion into the pipeline is relatively
simple. All that is required is to access (during the lighting phase) the
accessibility buffer, which determines how accessible points are for ambient
light. The accessibility buffer is output from the SSAO pass, and then the
ambient lighting term for each pixel is multiplied by the value corresponding
to that pixel.

SSAO is just a full-screen pass that in every fragment accesses the G-
Buffer depth and G-Buffer normal. Since the accessibility buffer needs to be
generated when we render light shapes, we perform it before the L-Buffer
pass. Based on the desired number of samples per pixel, we generate random
vectors on the CPU and then send these through uniform variables into the
fragment shader.

5.7 Ambient Occlusion Volumes
The integration of Ambient Occlusion Volumes is exactly the same as in
SSAO. Output of the AOV is a one-channel texture containing the accessibil-
ity information. However, the generation of AOV is a bit more complicated.

First of all, we create a FBO for rendering the occlusion volumes. The
depth buffer needs to be the same as the G-Buffer depth (to avoid contribu-
tion from occluded AOVs), therefore we should incorporate a shared depth
buffer. However, the AOV algorithm requires access to G-Buffer depth dur-
ing fragment shader execution and we need to disable writing into the depth
buffer. Otherwise, we might be rewriting values that are currently being read
by the shader, which will probably result in undefined behavior or runtime
errors. The color buffer requires only one 8-bit channel which is enough for
our accessibility buffer.

In this method, the geometry shader is used as well. If we wanted to
generate occlusion only on static objects, the geometry shader would not be
required since all it does is recalculate the occlusion volume for every single

64

triangle. In a static scene, this can be done once on the CPU and then the
occlusion volumes will be just sent to the GPU to render.

However, in the fully dynamic approach, the occlusion volumes change
every time objects move. If we excluded from the scene changes features like
skinned characters (or other non-rigid objects) that modify the vertex posi-
tions in the vertex shader in a different manner than a simple transformation
matrix, the occlusion volumes can be generated during pre-processing and
the only thing that changes when animating are the transformation matrices
for the occlusion volumes.

When using GPU skinning, morphing, etc., the geometry shader generates
the occlusion volumes every frame. This does not mean that much of a
performance issue, since the occlusion volume for a triangle is simple to
generate in the geometry shader and only performs simple vector additions
and multiplications. Generating it during pre-processing does not reduce the
number of primitives that need to be drawn, nor does it change the number
of pixels that need to be shaded. It only removes the need for the geometry
shader.

The AOV pass rendering occlusion volumes requires access to G-Buffer
depth and G-Buffer normal. Additive blending is used to accumulate occlu-
sion contribution from different AOVs. Depth writing is disabled since we
want to render intersecting occlusion volumes.

The vertex shader is a simple pass-through shader that stores the world-
space coordinates of the vertex into gl_Position. The geometry shader takes
as input a single triangle and outputs the corresponding occlusion volume as
triangle strips. It simply computes the area and normal of the triangle (using
the cross product) and extrudes the triangle in the direction of the normal by
a specified amount - this is the maximum distance for a triangle to contribute
to occlusion of a different triangle. Sides of the created triangular prism need
to be extruded as well using normals corresponding to the triangle’s edges
and lying in the plane defined by the triangle.

If the camera is within one of the occlusion volumes, we need to replace the

65

occlusion volume with a full-screen quad because all pixels can be potentially
occluded by this occlusion volume. This is also done in the geometry shader.

The fragment shader receives non-interpolated edge normals, triangle nor-
mal and triangle area from the geometry shader. Based on pixel coordinates
and depth, it reconstructs the 3D position in view space and applies a form-
factor computation to determine how occluded the current pixel is by the
triangle corresponding to the rendered AOV.

5.8 Depth Peeling
Depth peeling executes N full-screen passes over transparent geometry, cap-
turing the closest surfaces in the first pass, the second closest surfaces in the
second pass etc. This is performed with a simple algorithm. First, we render
the transparent objects as usual, we receive information about the closest
points. Then, we use the depth information stored in this pass to discard
fragments in the shader that would belong to the first layer of transparent
objects. We always use the last generated texture to discard fragments whose
depth is less than or equal to the value stored in the last texture.

The reconstructed layers are sorted front-to-back, so we only need to
composite them in reversed order.

5.9 Stencil Routed A-Buffer
Stencil Routed A-Buffer allows to capture multiple layers of transparent ge-
ometry in one pass. It requires OpenGL 3.3 features allowing rendering into
a multisample FBO. During initialization, we create a FBO with N samples
per pixel and attached color, depth and stencil. This FBO will be our alpha
buffer (A-Buffer).

The associated shaders are simple. The fragment shader used when ren-
dering into the multisample FBO only performs forward shading on several
lights and stores the resulting RGBA color. The fragment shader used when

66

displaying the stored values reads all samples of a pixel by accessing directly
the values stored in the samples. RGBA color and depth are recovered and
the recovered depth is used for sorting.

67

Chapter 6

Results

We tested our system on several scenes, the testing machine had a Windows 7
Ultimate 32-bit, Intel Core 2 Duo E6550 2.33 GHz CPU, a NVIDIA GeForce
560Ti (1GB RAM) graphic card and 4GB of RAM. Our application is single-
threaded at the moment, it was utilizing one core of the CPU. However, most
of the computation should occur on the GPU and CPU speed should not be
one of the main factors affecting resulting performance.

We tested the overall performance of algorithms described in this the-
sis and how enabling/disabling these effects has a hit on performance. We
computed the average execution time of parts of our pipeline in millisec-
onds. These times were recorded during a guided walk-through with a camera
through the scenes.

Table 6.1 shows several statistics about our test scenes. The total number
of point lights in the scene, the average number of lights that affected a pixel
during our guided walk-through, how many separate objects there are in the
scene and finally how many triangles the scene contains. The test scene are
shown in Figure 6.2.

The number of separate objects directly corresponds to the number of
geometry batches, and the number of point lights corresponds to the number
of batches used when rendering into the L-Buffer.

68

Scene Lights LPP Objects Triangles
House 7 0.86 82 11 563
Dragon 2 1.32 2 201 075
Sponza 25 3.45 385 285 583

Sibenik

1 0.14

15 75 165
10 1.2
100 8.28
1000 10.32

Table 6.1: General statistics about our test scenes. How many lights there
were, the average number of lights per pixel (LPP), how many objects there
were, and the total amount of triangles.

6.1 Shading
In the first part of our tests, we compared forward shading, multi-pass shad-
ing and deferred shading as described in Chapters 2 and 3. The results are
highly dependent on how many lights were in the scene. For the tests we
used a large amount of point lights. For small amounts of lights, or lights
that take up big portions of the screen, the forward shading approach is the
fastest one. As the number of lights increases (or the size of affected portions
of the screen decreases), deferred shading performance increases up to the
point where it outperforms both older techniques.

Multi-pass lighting works well for large amounts of lights and after the
early-depth pass only when there are a few lights affecting an object. How-
ever, if we re-render complex objects hundreds of times, the performance
drops rapidly. The optimized version of multi-pass lighting should perform
without problems if there are only several lights affecting each object. But
the worst case is that there will be m × n object renders, where m is the
number of objects and n the number of lights. Our test nearly reached the
worst case, almost all objects needed to be rendered for each light, resulting
in terrible performance of the multi-pass algorithm.

69

Results of various tests are shown in Figure 6.1. Showing the Sibenik
scene with different amount of lights and different resolutions. The corre-
sponding number of lights that affect one pixel (LPP) can be seen in Table
6.1.

These results do not include a tone-mapping step and the L-Buffer is
actually the window’s framebuffer. These results also do not differ at all in
terms of quality. The generated images for all three methods are identical
because we evaluate the same shading equations for the same pixels, only in
different order or avoiding evaluation where the result would be zero anyway.

The graphs for different resolutions are shown in Figure 6.1. Please note
that there are missing values for forward shading with 1000 lights and res-
olution 1920x1080. Executing so many operations in a shader exceeds the
2 second execution limit and the driver crashes. Pushing more lights into a
forward renderer is therefore not actually possible.

We also had to do several tradeoffs to fit the light information into the
shader. We omitted several settings for lights to fit at least light positions
and intensities into uniform variables. Therefore, the forward shading with
100 and 1000 lights does not allow full control of the light’s properties.

Also, if we want to incorporate other techniques after forward or multi-
pass shading, we need to render into an FBO and store normals if we will be
utilizing them as well. This adds additional overhead, but it is not part of
this evaluation.

6.2 HDR and Tone-mapping
How much overhead HDR rendering and tone-mapping adds is interesting as
well. There is no direct support for forward shading or multi-pass shading,
so we render the output of these methods into an FBO and then execute
a tone-mapping step. We perform the same steps for all shading methods
and the input is the same as well, therefore there will not be any difference
in performance of this step. However, additional overhead is added to all

70

Figure 6.1: Graphs showing performance for different shading techniques and
different amounts of lights.

shading methods due to the additional step that requires a texture to be
generated and then the tonemapped data is displayed.

The only exception is forward shading when using a simple transform

71

Figure 6.2: The scenes we used for testing. From left to right, top to bottom:
House, Dragon, Sponza, Sibenik

that does not depend on the whole image but is pre-determined before tone-
mapping. Such a tone-mapping step does not incur noticeable overhead for
clamping or the simple luminance transformation in Equation 4.1.

We tested two tone-mapping operators. The simplest one from Equation
4.1 does not require any image analysis of the input image and outperforms
Reinhard’s operator by this step. The fragment shader evaluating the out-
put LDR image also performs only a very small amount of operations when
compared to the other two.

The execution time of these operators do not depend on the contents of
the input image, only on it’s size. We performed the tests on three static
images from the same point of view in our scene, each of the images has a
different resolution.

72

Method 800x600 1280x720 1920x1080
Simplest 0.16ms 0.21ms 0.34ms
Reinhard et al. 0.46ms 0.57ms 0.88ms

Table 6.2: Comparing performance of tone-mapping operators in several res-
olutions. The main difference in execution is the actual calculation of log-
average luminance.

The visual quality of output images is different, reaching much higher
realism and better looks for the Reinhard’s operator. A comparison is shown
in Figure 6.3.

Figure 6.3: Showing different results produced by tone-mapping operators.
Simplest tone-mapping (left) has desaturated colors and lower overall con-
trast, but Reinhard’s operator (right) keeps a nice contrast and saturated
colors.

6.3 Transparent Objects
The Depth Peeling approach takes quite long when there are complex scenes,
since the scene is rendered N times. We set the Depth Peeling and Stencil
Routed A-Buffer to correspond with the number of layers and compared

73

performance of the produced results. Both techniques capture the same data
(unless an overflow occurs), therefore the resulting images look the same.

The Stencil Routed A-Buffer performs quite fast, however it requires a
sorting step. In depth peeling, the layers already are sorted, thanks to the
way we generate them. If there were a maximum number of samples in each
pixel - such as a complex object very near to the camera - we would need to
perform sorting for every single pixel and this results in performance spikes.

Also, the step that clears the color and depth buffers while setting the
stencil sample values to ascending order takes up some of the performance.
Especially due to the fact that we need to render N fullscreen quads for N

layers. However, during this rendering we use the simplest possible shader
and disable writing into the color and depth buffer to allow for faster ren-
dering. There is currently no other way to generate the stencil values.

The test were done on the House scene, the walkthrough had a depth
complexity of 0.67. Results are shown in Table 6.3.

Layers 800x600 1280x720 1920x1080
Depth peeling
4 19.28ms 25.2ms 29.47ms
8 30.31ms 59.35ms 74.66ms
Stencil Routed A-Buffer
4 17.28ms 23.2ms 27.13ms
8 26.45ms 43.67ms 52.51ms

Table 6.3: SSAO testing presets

On not very complex geometry, the increased performance is not that
different, but if we used more layers, the difference would be much more
noticeable (much like in multi-pass shading).

74

6.4 Ambient occlusion
Results for the two used ambient occlusion techniques - SSAO and AOV -
should be very varying. SSAO is a screen-space method and therefore it is
dependent mostly on the screen resolution and number of samples used. The
occlusion radius also affects performance, since the smaller the radius, the
closer the resulting samples will be to the center pixel and that allows the
GPU to optimize texture fetches. The texture fetches close to each other
are affected by the input image as well, since closer objects result in a larger
hemisphere projection in screen-space.

On the other hand, AOV depends on the number of triangles in the scene,
the occlusion radius, but on the camera position as well. If the camera is
inside several occlusion volumes, a full-screen quad has to be rendered for
each of these occlusion volumes and can result in hundreds of full-screen
passes. If we keep the occlusion radius relatively small and the camera will
not be inside of any of the volumes, the overdraw will not be as significant.

The AOV fragment shader performs form-factor computations and other
necessary steps which is lots of steps as well. We use reduced sizes of the
AOV buffer to save performance, just like with SSAO. The vertex and geom-
etry shader stages are mainly affected by the complexity of the scene, while
the fragment shader stage is affected by overdraw as well as AOV buffer
resolution.

We used several settings for SSAO, their parameters are shown in Table
6.4.

The SSAO and AOV settings were set to produce results very close to
each other. The AOV occlusion radius is set to 1, the AOV falloff factor
is set to 1 and we only vary the resolution of the AOV buffer. For higher
radii, the overdraw can be very significant. The different presets are shown
in Table 6.5.

We tested all AO presets on a single scene with a guided walk-through
on different resolutions. The results are shown in Tables 6.6 and 6.7.

While AOV does not produce any noise (at full resolution) and allows for

75

Preset Occlusion Buffer Samples Radius Blur width
SSAO1 w

4
× h

4
8 1 10

SSAO2 w
4
× h

4
16 1 15

SSAO3 w
2
× h

2
16 1 20

SSAO4 w
2
× h

2
32 1 20

SSAO5 w × h 32 1 30

Table 6.4: SSAO testing presets

Preset Occlusion Buffer
AOV1 w × h

AOV2 w
2
× h

2

AOV3 w
4
× h

4

Table 6.5: AOV testing presets

Preset 800x600 1280x720 1920x1080
SSAO1 5.95ms 1.01ms 6.13ms 1.22ms 12.92ms 1.38ms
SSAO2 8.75ms 1.78ms 15ms 2.8ms 16.19ms 1.85ms
SSAO3 8.83ms 1.74ms 9.61ms 2.24ms 11.78ms 4.75ms
SSAO4 11.5ms 7.9ms 8.67ms 3.46ms 16.6ms 9.55ms
SSAO5 12.06ms 9.48ms 17.96ms 13.88ms 41.75ms 32.75ms

Table 6.6: Comparing performance of SSAO in several resolutions and
method presets. The results are shown as two values, the first one is the
whole SSAO generation and the second one is only the generation of the
SSAO buffer without blurring.

much more visually appealing results, the additional overhead and unstable
execution time show that it is viable only for real-time display of scenes with
small amounts of triangles. At lower resolutions, we sacrifice the precision to
ensure fast execution.

76

Scene Preset 800x600 1280x720 1920x1080

Sibenik
AOV1 62.4ms 101ms 198.2ms
AOV2 40.5ms 64ms 142.2ms
AOV3 26.9ms 43ms 113.8ms

Sponza
AOV1 192.4ms 253.5ms 348.2ms
AOV2 174.9ms 212.8ms 300.1ms
AOV3 121.4ms 141ms 231.7ms

Boxes
AOV1 5.8ms 9.54ms 14.7ms
AOV2 3.2ms 6.7ms 10.6ms
AOV3 1.92ms 4.6ms 7.8ms

House
AOV1 32.1ms 49ms 65.4ms
AOV2 20.4ms 37.8ms 47.2ms
AOV3 10.1ms 28.3ms 38ms

Table 6.7: Comparing performance of AOV in several resolutions and scenes.

The SSAO performance is very stable and in general faster than AOV. As
we can see, AOV still strongly relies on the scene complexity, however this
can change after view frustum optimizations. Setting the AOV radius to a
plausible level is also crucial, otherwise there can be extreme spikes, ranging
from 10ms to almost 800ms when inside tens of AOVs.

As we can see, full-sized AO buffers are overkill and since the occlusion is
usually very smooth (except for edges), the full-screen accessibility buffer are
unusable in real-time applications. A good performance/quality trade-off is
to use w

2
× h

2
buffers with upsampling (and filtering in SSAO).

6.5 Overall performance
When putting all these techniques together, we get a complex system that
executes several full-screen passes. Our goal was for the whole system to run
at interactive frame rates, ideally at 60 FPS which is the standard refresh

77

rate of LCD displays.
For a larger scene with hundreds of thousands of triangles split into several

hundred objects, and 20 lights with complex transparent objects, we mea-
sured approximately 16 FPS. We used the SSAO3 preset at 1280x720, with
Stencil Routed A-Buffer at 8 samples per pixel, together with Reinhard’s
tone-mapping operator. The scene contained one shadow-casting directional
light with a 2048x2048 shadow map as well as 25 point lights. From our tests,
this setup seemed to provide high-quality shading while retaining plausible
frame rates.

The target frame rate has not been reached, but the system will gain on
power with increasing hardware capabilities and it requires a large amount
of optimizing, especially in view frustum culling and occlusion culling, which
will strongly improve the bottlenecks of our application.

78

Conclusion

In this thesis, we have presented a real-time renderer displaying realistic im-
ages at interactive frame rates on OpenGL 3 capable hardware. Our system
does not rely on any kind of pre-computation and can display fully-dynamic
scenes with animated lights and objects.

The core of our system is a Deferred Shading pipeline. Deferred Shading
allows for hundreds of lights to affect the scene while saving performance by
not evaluating pixels that will not be affected by a light.

Once the scene is shaded, we perform a tone-mapping step to map high
luminance values into the displayable range. We use several different tone-
mapping operators and our system can easily be extended with other opera-
tors as well.

To enhance visual quality and improve depth perception in the scene, we
allow lights to cast shadows. Shadow are evaluated using Shadow Mapping,
a fully GPU accelerated technique to render shadows. Shadow Mapping is
integrated easily into a Deferred Shading pipeline and the deferred approach
to Shadow Mapping even reduces memory overhead when using multiple
shadow-casting lights as opposed to Forward Shading.

Deferred Shading does not directly support rendering of transparent ob-
jects, but we provide an alternative called Stencil Routed A-Buffer. It allows
for up to 32 layers of transparent geometry to be acquired in one scene ren-
dering pass.

Our system is currently not optimized and does not reach the necessary
60 FPS in most cases. However, we have shown that even for lots of dynamic

79

lights and lots of dynamic transparent objects, we can still achieve plausi-
ble frame rates. We expect to get 60 FPS after optimizing and on better
hardware even for very complex scenes.

80

Bibliography

[Akenine-Möller et al., 2008] Akenine-Möller, T., Haines, E., and Hoffman, N. (2008).
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA.

[Bavoil and Myers, 2008] Bavoil, L. and Myers, K. (2008). Order independent trans-
parency with dual depth peeling. Technical report, NVIDIA Developer SDK 10.

[Bavoil et al., 2008] Bavoil, L., Sainz, M., and Dimitrov, R. (2008). Image-space horizon-
based ambient occlusion. In ACM SIGGRAPH 2008 talks, SIGGRAPH ’08, pages
22:1–22:1, New York, NY, USA. ACM.

[Blinn, 1977] Blinn, J. F. (1977). Models of light reflection for computer synthesized pic-
tures. In Proceedings of the 4th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’77, pages 192–198, New York, NY, USA. ACM.

[Brabec et al., 2002] Brabec, S., Annen, T., and peter Seidel, H. (2002). Shadow mapping
for hemispherical and omnidirectional light sources. In In Proc. of Computer Graphics
International, pages 397–408.

[Bunnell, 2005] Bunnell, M. (2005). Dynamic ambient occlusion and indirect lighting.
In Pharr, M., editor, GPUGems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, pages 223–233. Addison-Wesley.

[Crow, 1977] Crow, F. C. (1977). Shadow algorithms for computer graphics. In Proceed-
ings of the 4th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’77, pages 242–248, New York, NY, USA. ACM.

[Deering et al., 1988] Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N.
(1988). The triangle processor and normal vector shader: a VLSI system for high
performance graphics. SIGGRAPH Comput. Graph., 22:21–30.

[Dimitrov et al., 2008] Dimitrov, R., Bavoil, L., and Sainz, M. (2008). Horizon-split am-
bient occlusion. In Proceedings of the 2008 symposium on Interactive 3D graphics and
games, I3D ’08, pages 5:1–5:1, New York, NY, USA. ACM.

81

[Everitt, 2001] Everitt, C. (2001). Interactive order-independent transparency. Technical
report, NVIDIA Corporation. Available at http://www.nvidia.com/.

[Filion and McNaughton, 2008] Filion, D. and McNaughton, R. (2008). Effects & tech-
niques. In ACM SIGGRAPH 2008 classes, SIGGRAPH ’08, pages 133–164, New York,
NY, USA. ACM.

[Kircher and Lawrance, 2009] Kircher, S. and Lawrance, A. (2009). Inferred lighting: fast
dynamic lighting and shadows for opaque and translucent objects. In Proceedings of the
2009 ACM SIGGRAPH Symposium on Video Games, Sandbox ’09, pages 39–45, New
York, NY, USA. ACM.

[Kontkanen and Laine, 2005] Kontkanen, J. and Laine, S. (2005). Ambient occlusion
fields. In Proceedings of ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics
and Games, pages 41–48. ACM Press.

[Lottes, 2009] Lottes, T. (2009). Fxaa. Technical report, NVIDIA Developer SDK 11.

[Mammen, 1989] Mammen, A. (1989). Transparency and antialiasing algorithms imple-
mented with the virtual pixel maps technique. IEEE Comput. Graph. Appl., 9:43–55.

[McGuire, 2010] McGuire, M. (2010). Ambient occlusion volumes. In Proceedings of
the Conference on High Performance Graphics, HPG ’10, pages 47–56, Aire-la-Ville,
Switzerland, Switzerland. Eurographics Association.

[McGuire et al., 2011] McGuire, M., Osman, B., Bukowski, M., and Hennessy, P. (2011).
The alchemy screen-space ambient obscurance algorithm. In Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics, HPG ’11, pages 25–32, New
York, NY, USA. ACM.

[Mittring, 2007] Mittring, M. (2007). Finding next gen: Cryengine 2. In ACM SIG-
GRAPH 2007 courses, SIGGRAPH ’07, pages 97–121, New York, NY, USA. ACM.

[Myers and Bavoil, 2007] Myers, K. and Bavoil, L. (2007). Stencil routed a-buffer. In
ACM SIGGRAPH 2007 sketches, SIGGRAPH ’07, New York, NY, USA. ACM.

[OpenGL, 2011] OpenGL (2011). http://www.opengl.org/.

[Phong, 1975] Phong, B. T. (1975). Illumination for computer generated pictures. Com-
mun. ACM, 18:311–317.

[Reinhard et al., 2002] Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. (2002).
Photographic tone reproduction for digital images. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’02, pages
267–276, New York, NY, USA. ACM.

82

http://www.opengl.org/

[Reshetov, 2009] Reshetov, A. (2009). Morphological antialiasing. In Proceedings of the
Conference on High Performance Graphics 2009, HPG ’09, pages 109–116, New York,
NY, USA. ACM.

[Ritschel et al., 2009] Ritschel, T., Grosch, T., and Seidel, H.-P. (2009). Approximating
dynamic global illumination in image space. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games, I3D ’09, pages 75–82, New York, NY, USA. ACM.

[Rost, 2005] Rost, R. J. (2005). OpenGL(R) Shading Language (2nd Edition). Addison-
Wesley Professional.

[Saito and Takahashi, 1990] Saito, T. and Takahashi, T. (1990). Comprehensible render-
ing of 3-D shapes. In Proceedings of the 17th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’90, pages 197–206, New York, NY, USA. ACM.

[Shishkovtsov, 2005] Shishkovtsov, O. (2005). Deferred shading in S.T.A.L.K.E.R. In
Pharr, M. and Radima, F., editors, GPU Gems 2, chapter 9, pages 143–166. Addison-
Wesley Professional.

[Thibieroz and Gruen, 2010] Thibieroz, N. and Gruen, H. (2010). OIT and indirect illu-
mination using DX11 linked lists. In GDC San Francisco 2010.

[Tomasi and Manduchi, 1998] Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for
gray and color images. In Proceedings of the Sixth International Conference on Computer
Vision, ICCV ’98, pages 839–, Washington, DC, USA. IEEE Computer Society.

[Valient, 2007] Valient, M. (2007). Deferred rendering in killzone 2. On-
line, accessed Feb. 20th, 2012. Develop Conference, http://www.guerrilla-
games.com/publications/dr kz2 rsx dev07.pdf.

[Watt and Policarpo, 2005] Watt, A. and Policarpo, F. (2005). Advanced Game Develop-
ment with Programmable Graphics Hardware. A. K. Peters, Ltd., Natick, MA, USA.

[Williams, 1978] Williams, L. (1978). Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph., 12:270–274.

83

	Slovak Abstract
	Abstract
	Introduction
	Lighting and Shading
	OpenGL
	OpenGL Shading Language
	Example shaders

	Shading
	Phong Shading
	Blinn-Phong Shading

	Forward Shading
	Single-pass Lighting
	Multi-pass Lighting

	Deferred Shading
	The G-Buffer
	The L-Buffer
	Rendering light volumes

	Anti-Aliasing
	Transparent objects
	Order Independent Transparency
	Depth Peeling
	Stencil Routed A-Buffer

	Lighting Effects with Deferred Shading
	High Dynamic Range Lighting
	Tone Mapping
	Reinhard's operator

	Bloom
	Shadow Mapping
	Light types

	Ambient occlusion
	Offline generation

	Real-time ambient occlusion
	Screen-Space methods
	Geometry-based methods
	Screen-Space Ambient Occlusion
	Ambient Occlusion Volumes

	Implementation
	Forward Shading
	Single-pass Lighting
	Multi-pass Lighting

	Deferred Shading
	Generating the L-Buffer

	Tone-mapping
	Reinhard's operator

	Bloom
	Shadow Mapping
	Screen-Space Ambient Occlusion
	Ambient Occlusion Volumes
	Depth Peeling
	Stencil Routed A-Buffer

	Results
	Shading
	HDR and Tone-mapping
	Transparent Objects
	Ambient occlusion
	Overall performance

	Conclusion
	Bibliography

