
EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek
(Guest Editors)

Short Presentations

Texture Minification using Quad-trees and Fipmaps

Alexander Bornik and Andrej Ferko

Graz University of Technology, A-8010 Graz, Austria
Comenius University, SK-842 48 Bratislava, Slovakia

Abstract
The paper extends the recently published methods for image reconstruction and texture minification using the
generalized ripmap method, named fipmap, and quad-trees. Fipmap is based on the technique of partitioned
iterated function systems, used in fractal image compression. The quad-tree texture reconstruction algorithm works
well for many standard cases. The special cases can be solved using the fipmap minification. The approach was
applied for textures from architectural image sequences and the results are very promising.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Texture Mapping

1. Motivation and Introduction

Figure 1: Hans Holbein jr. - Ambassadors (1533) from
http://www.artchive.com. What is the long tiny unrealistic
object in the foreground?

One of the leading trends in highly-realistic rendering is
image-based rendering and/or lighting, combining real sam-
ples and modelled environments. In limited navigation appli-
cations like Quicktime-VR, the user is kept away from visual

cue problems, not being allowed to go very close or too far.
Ongoing virtual reality applications, like immersive surgery,
interactive TV, art history distant education, or virtual ar-
chaeology cannot accept this limitation. Real life trains us in
texture minification/magnification. "Human beings are ap-
parently very good at remembering qualities of textures...
computer graphics techniques are influenced by the analyt-
ical strategies of the visual system" concludeR. M. Fried-
hoff and W. Benzon7, p. 112. Another related leading trend
is perceptually-driven image synthesis, see survey byA. Mc-
Namara12.

The motivation for image reconstruction and anti-aliased
texture minification/magnification is given by many prac-
tical requirements. "Artifacts are extremely problematic in
texture mapping and most textures produce visible arti-
facts unless the method is integrated with an anti-aliasing
procedure" arguesA. Watt17, p. 256. Our application uses
the textures from architectural image sequences11, which
are intended for immersive? virtual fly-over or walkthrough
in cyber-cities?. For the implementation of reconstructing
multi-resolution textures from image sequences we have de-
veloped an original method, based on the work ofE. Ofek et.
al.15. Currently, we study the further quality improvements.
The advanced methods for texture manipulation in OpenGL
API can be found, e. g. inT. McReynolds13.

A frequently used idea in texture minification is to pre-
calculate all the required filtering operations by so-called
mipmapping18, and - more recently - ripmapping13. How-
ever, the minification request may occur under conditions

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

when both mipmapping and ripmapping fail. For instance,
when both the distance and the camera orientation are very
unusual, Fig. 2. We propose employing partitioned iterated
function systems (PIFS)5. They can also control the contrast
and brightness of the transformation result. This technique
proved suitable in fractal image compression. Therefore, our
generalization of the mipmap and ripmap approaches we call
fipmap, for the sake of continuity.

The paper is structured as follows. In section 2, we discuss
selected recent methods. Section 3 introduces our approach.
Section 4 demonstrates the results and section 5 offers the
future work and conclusions.

2. Related Work

The standard methods manipulate textures using a rectangu-
lar grid. This way of image sampling may be hostile for the
image content. We deal with special textures - coming from
the architecture of excavations or real buildings and interi-
ors. The nature of them seems to be suitable for rectangular-
shaped manipulations. However, some problems come with
minification.

One possible solution for texture minification is to down-
sample, i. e. create some subset of filtering operations. This
is called mipmapping18. A more recent development of the
idea is ripmapping13, Figure2.

Ripmap is intended to avoid overblurring, one of the
mipmap flaws. "Imagine a pixel cell that covers a large num-
ber of texels in the u direction and only a few in the v direc-
tion. This case commonly occurs when a viewer looks along
a textured surface nearly edge-on"14, p. 113. However, the
minification request may occur under conditions when both
mipmapping and ripmapping fail. We have observed this
phenomenon in the context of architectural outdoor scenes.
The coordinate axis aligned pre-calculation fails when cam-
era orientation - with respect to the textured surface normal
- is not aligned. We will describe this formally in paragraph
3.2.

The common feature of mipmap, ripmap, and quad-tree
oriented image manipulation is the use of a rectangular or
square grid. This can be image hostile. Some recent re-
search efforts take into account the image content with seg-
mentation, edge extraction, or data dependent triangulation4.
The image analogies8 approach offers another prospective
alternative for minification - to create filters by example.
However, we have no high-resolution images for all pos-
sible camera parameters. Another texture filtering methods
include summed area table and Paul Heckbert’s elliptical
weighted average (EWA) for anisotropic texture filtering.

Our fipmap idea is to employ the partitioned iterated func-
tion systems (PIFS), described in work byY. Fisher et al.5,
p. 11. They extend the affine transformations by taking the
third dimension, grey level, into account. In particular, the

(a) mipmap

(b) ripmap

Figure 2: Mipmapping and ripmapping. Note that the
ripmap structure diagonal is formed by mipmaps

control of contrast and brightness of the transformation is en-
abled. This technique proved suitable in fractal image com-
pression. Strictly speaking, a complete fractal image com-
pression, in addition, employs masks and uses the transform
for a completely different goal.

Using PIFS extended affine transform for texture minifi-
cation this way has not been utilized. We describe the PIFS
transform formally in the next section as a part of the fipmap
algorithm. Briefly, we shear and shade ripmap sub-textures
for extreme angles. Fipmap utilization is reasonable for big-

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

Figure 3: Extreme camera orientation in urban environment

ger non-uniform shearing, separately in both x and y. The
meaning of the word bigger, will be again formalized below.

3. Our Approach

In the following, we are going to introduce texture recon-
struction from multiple views and fipmap texture minifica-
tion.

3.1. Texture Reconstruction from Multiple Views

Our texture reconstruction method is based on the work of
Ofek et. al.15 using projective texture mapping. For an ar-
bitrary scene represented by polygons we calculate texture
images for planar regions using multiple images acquired
using a digital CCD camera as the images source. These im-
ages have to be registered in terms of computer vision, which
is done using the method ofZ. Zhang19.

Using this registration information we set up a matrix that
performs the transformation from a point in texture space
(texture coordinates) to image coordinates in the original im-
ages.

We set up a quad-tree data structures covering each ge-
ometry part to be textured by a single polygon and fill this
structure with pixel information from the original images.
This is done in a recursive way covering resolution differ-
ences of texture regions that occur due to the transforma-
tion. Starting with the corner points of the whole texture
region corresponding to the root node in the quad tree the
size of the projection is compared with the size of a pixel in
the input image. Further subdivisions are performed until the
size matches. Radiometric information is stored in the corre-
sponding node of the quad-tree in a list taking into account
information from multiple images.

In contrast toOfek et. al.15 we perform object order vis-
ibility tests throughout the recursion steps to ensure that no

Figure 4: Reconstruction of image acquisition: a matrix
transforming from the texture coordinate system to input im-
age coordinates; M, A, R, T are corresponding matrices

color information from modelled occluding objects enters
the quad tree data structure.

Once all images contributed their radiometric information
to the quad tree structure it contains information at differ-
ent resolution levels, which has to be merged in order to re-
trieve mip-map like texture images. We do so weighting the
color information portions stored in the quad-tree preferring
high resolution information over coarse information. The ac-
tual combination is performed in two steps: First values are
propagated up the tree adding them to their parent’s values
recursively. The leaves store the difference to their parents
only. In the second step this sparse Laplacian-like represen-
tation is converted once more adding the parent’s value to
the children recursively. After that each level of the quad
tree contains texture images influenced by both high- and
low resolution texture information.

Figure 5: Input images for two views, and quad tree level
before information fusion

In real world outdoor scenes like city models or arche-
ological scenes images might contain non-modelled occlu-

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

Figure 6: Reconstructed texture: weighting preserves high
resolution information; painting by A. Duerer (1471-1528)

sion. Such occlusion is caused by objects that have no geo-
metrical representation in the scene graph which texture re-
construction uses. For example trees, traffic signs, or power
lines could be such occluding objects.

Our algorithm deals with this problem by employing a
median filter on the color values corresponding to a region
in the quad-tree. Occluding objects, especially small ones
only occur in the minority of the input images. Selection of
texture values close to this middle value (median) of these
values avoids these artifacts.

Figure 7: Median filter: the median of multiple color values
of each quadtree entry is calculated; only values close to the
median are considered for texture calculation

In addition, the median filter removes specular highlights
that might be visible on highly reflective surfaces in the in-
put images. Therefore our textures can be used together with
artificial light sources in the rendering stage.

Effective use of the median filter techniques demands a
sufficiently large number of input images for each texture
region. In general about 5 values fulfill the criterion.

3.2. Fipmap Texture Minification

The minification is sometimes referred to as texture
compression17, p. 257. When a viewer looks along a tex-
tured surface nearly edge-on, the angle between the camera

direction and the textured surface normal grows and the co-
sine approaches zero. In this case we have to deal with more
specific texture transforms. Notice, that both mipmap and
ripmap scale the texture only in the x and y directions, leav-
ing the rest of the transformation to the final phase of texture
mapping. The affine transforms in the plane include: scaling,
translation, rotation, and shearing.

Our idea is to employ the partitioned iterated function sys-
tem (PIFS)5, p. 11. It extends the affine transformations by
adding the third dimension z, grey level, into account. In
particular, the control of contrast s and brightness o of the
transformation is enabled. This helps when the so-called at-
mospheric perspective appears. In computer graphics, this
is simplified by the light source attenuation term and depth
cueing in the local illumination models6. Obviously, this ap-
proach cannot manage all three perspective principles: dis-
tant objects are smaller, their colors are more matte, and their
contours are softer. Looking through the window at a very
distant object on a sunny day can be properly solved using
fipmap to control contrast and brightness. Usually, mipmap
images are derived using averaging down the original image.
The process creates an image pyramid by isotropic scaling,
a = d in (1). Again, the PIFS transform gives more and en-
ables for anisotropy.

We describe PIFS extension of affine transformation for-
mally: a b 0

c d 0
0 0 s

∗
 x

y
z

+

 e
f
o

 =

 x̄
ȳ
z̄

 (1)

Isolating the spatial part of the transformation reduces
the dimension and gives the standard affine transform in
the plane. The following important algebraic and geomet-
ric properties hold. The main 2/2 minor of the above ma-
trix can be always written in polar coordinates using sine
and cosine functions. Any rotation in two dimensions is a
combination of scaling and shearing (true for all angles hav-
ing a finite tangent)16. We do not use (the expensive) rota-
tion at all. The planar affine transform, which approximately
transforms one set to another is given by a triplet of function
values. In fractal compression, so-called archetypes can de-
termine the appropriate transforms(see Y. Fisher, p. 79n)5.
In the fipmap method we use the PIFS transform type not
iteratively. We compute, for given texture, the appropriate
fipmap transform from camera parameters. When we have
decided to use fipmap (only in the case of a small view-
ing angle and/or large observer distance when bigger non-
isotropic shearing is needed) we compute the transformation
and apply it. Otherwise, we use the standard method (quad-
tree, mipmap, ripmap).

We introduce a color strategy for better perception of ge-
ometry. Let W be the origin of a local coordinate system
located in the center of the textured polygon. Let axes B and
R are aligned with the images of texture coordinates M-1(u)

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

Figure 8: Color visualisation of one octant

and M-1(v) and G be the textured polygon normal. Let cam-
era C be in the first octant (R+, G+, B+). The notation is in-
spired by the RGB cube convention with exchanged roles of
white and black colors. The origin is White, the axes mean
the color primaries Red, Green, and Blue. Camera C may
have a Color. Given the triangle RGB we can easily find the
intersection of CW line with the RGB triangle. The length of
CW measures the camera distance and can be used for set-
ting the values for brightness and contrast. The black dot is
very distant and the gray one illustrates the decreased light
intensity. The cosine of angle given by camera orientation
and WG (normal) directions expresses the following camera
cases. If the camera orientation is close to normal (green)
then the mipmap works well. If the "color" of camera ap-
proaches slightly the B and R along the sides of the RGB tri-
angle then ripmap applies. Finally, the lower part of the trian-
gle calls for fipmap, especially the R and B corners. Express-
ing the camera "color" in two independent barycentric coor-
dinates with respect to R and G gives the estimate for propor-
tion of anisotropy. Reddish and bluish camera "color" indi-
cates shortening of distances and bluish v (red), respectively,
in the textured plane. Computationally, we can replace the
barycentric camera "color" computation by cosines of cam-
era orientation and WB resp. WG. If the camera "color" has
very small amount of green then we can project the camera
position to the RB plane. Denote this point by P. If the cam-
era "color" is too red (or too blue) we can employ ripmap.
The particular tuning of greenish, reddish, and bluish is done
by evaluating the dotproducts (cosines, barycentric coordi-
nates) and by thresholding. The fipmap transformation is
completed by setting eitherb or c equal to the tangent of
the angle given by WP and one of the axes R+ or B+. The
detailed discussion is given with results. Note, that the exact

3D computation has to take into account the camera orienta-
tion different from CW.

The fipmap method proceeds as follows:

1. Fipmap decision:

a. Compute camera distance and three angles of camera
orientation with R, G, B axes.

b. If camera direction is greenish then use mipmap and
return.

c. Set the contrast and brightness coefficientss, o (e =
f = 0).

d. Computea, b, c, d (a = d = 1).

2. Texture minification:

a. Transform the texture.
b. Perspective texture mapping.

Three comments:

1. There were the extreme view orientations consciously
used by renaissance painters for obtaining special visual
effects. Anamorphosis is a special case of perspective, de-
scribed but not used by Leonardo da Vinci. The famous
anamorph in Ambassadors by Hans Holbein jr. (1497-
1543) we use in fipmap experiment below.

2. It is subject to finer discussion when fipmap should take
part. The obvious solution is to leave the decision to the
user. On the other hand, as the fipmap generally gives the
multidimensional family of sub-textures, the method may
be very memory intensive if we wish to create the fipmap
database analogously to mipmap and ripmap precompu-
tation phase.

3. We have tested the results with multiple comparisons,
including comparison with real photos, as our VRML
model captures actual buildings.

4. Results

Here we show the selected results. More material on the
original quad-tree algorithm can be found in1.

4.1. Results from the Original Algorithm - Artificial
Scene

We used our algorithm with an artificial scene created using
3D modelling.

It contains an L-shaped box, a red cube representing a
modelled occluding object and a blue cylinder. The blue
cylinder was removed from the scene for texture reconstruc-
tion and therefore is a non-modelled occluder. The texture
reconstructed for the checkerboard surface by our texture re-
construction algorithm is shown below.

The reconstructed texture does not show artifacts from
any of the occluders prominent in some of the input images.

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

(a) (b)

Figure 9: Fipmap for Holbeint’s anamorphosis: a) Hol-
beint’s anamorphed skull in Ambassadors, a painting for two
observers: the skull is visible from one third of the right mar-
gin; b) skull "original", with fipmap coefficients a=6, b=1,
c=-0.45, and d=1

4.2. Results from the Original Algorithm - Outdoor
Scene

Texture reconstruction for the real world scenes is the main
purpose of our algorithm. We show the results of our method
for a building of the Graz University of Technology, which
can be seen in Figure12 including some of the images used
for reconstruction.

As can be seen above in the Figure12 the dozen of input
images used contain occlusion by cars, traffic signs, trees
and other objects. Nevertheless the output does not contain
major occlusion artifacts or reflection artifacts in the regions
supported by a sufficiently large number of input images.
Artifacts are mainly caused by the cars close to the facade,
so they are occluders in all of the images.

Figure14 shows the successful removal of an occluding
tree using our method. The remaining seams are due to dif-
fering illumination level of the input images. The color tone
of the occluding tree (brown) was completely removed.

4.3. Results from the Original Algorithm - Indoor Scene

Indoor scenes can be far more complex compared to outdoor
scenes in the context of the lighting situation. Global light in-
teraction occurs at a higher level, so these scenes pose more
challenging input data for texture reconstruction.

Again our algorithm is able to avoid occlusion artifacts.
It can remove occluder texture information, namely infor-
mation of the red box (modelled) and the non- modelled fig

Figure 10: Artificial scene: artificial scene used for texture
reconstruction, arrows show camera orientations of the in-
put images, four input images can be seen on the right

tree on the black cupboard. However low frequency inten-
sity changes may be noticed on the yellow pin board. These
are caused by global illumination phenomena and can’t be
detected/removed by our algorithm.

4.4. Fipmap Results

For the fipmap work illustration, we have selected the well-
known test image for LPPM measurements16, p. 11. We
show only the results of the first phase of the algorithm.
The test image for measurements of line pairs per milime-
ter (LPPM) contains several affine copies of the same im-
age content: the black square and the sets of parallel lines
resp. filled rectangles. This is repeated with different orien-
tations and scaling factors. The axially aligned composition
is created. We recommend to observe transforming the black
squares or the decimal digits. In figures16 and17 there are
pairs of images showing the increasing texture minification
which can be observed on the transformed black squares.
They are modified into the parallelograms with increasing

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

Figure 11: Reconstructed texture for artificial scene, re-
moved the non-modeled occluder

Figure 12: Real world outdoor scene: Geometrical model
used for texture reconstruction and two of the input images

maximum angle. This angle along with the scaling of the
square side displays the texture minification. In other words,
we can visually compare the image quality in Figure3 where
the single texels produce the perceptually wrong texturing
with the smooth fipmap appearance in figures16, 17, 18,
19. Thus, we can immediately see that the texturing using
fipmap higher quality of the imagery. Our experiments show

The affine coefficients modify the texture shearing intu-
itively enough. The texture orientation causes no problems.
The higher differences of values cause the following appear-
ance. Notice the similarity of set up with the Figure3.

The correspondence with camera position and the supe-
riority over axially aligned approach is obvious. The disad-

Figure 13: Scene rendered using textures reconstructed us-
ing our method with artificial lighting

Figure 14: Occlusion removal: the occluding tree was suc-
cessfully removed by our algorithm

vantage is the large multidimensional database. In the above
experiments we did not assume the gray levels modification.
In Figure19, there one can observe another kind of aliases -
with the set of longer parallel line segments.

5. Conclusions and Future Work

In our previous work, we implemented the texture extraction
from multiple image sequences followingOfek et al.15 and
provided a new better method11. We did not consider view-
dependent texture mapping and to view scenes we needed a
special application. Recently developed methods gave us the
inspiration for the current research.

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

Figure 15: Indoor office scene rendered using textures cal-
culated by our method, input images are shown together with
camera positions

Figure 16: Schematic illustration of one octant and compe-
tence of methods.

We have introduced a new algorithm for texture minifi-
cation. The fipmap minification is computationally intensive
and the highest precision improvements might be impercep-
tible. The study of the feasibility and perceptual quality trade
off is in progress.

To quote the concluding statement fromFried-
hoff, p. 1317: "The process of evaluating a texture is
rooted in the feverish activities of preconscious visual anal-
ysis... one kind of texture can appear realistic while another,
closely related by algorithm, seems unrealistic". Our future
work will address texture preprocessing of arbitrary meshes,
projection onto non-planar surfaces, eventually on implicit

Figure 17: Practical fipmap use requires to process a few
camera directions. Six alternatives are shown in figures 15,
16, and 17.

surfaces?, parallel-processing support, hardware accelera-
tion and view planning - both for cyber cities9 and virtual
archaeology installations3. If the movement trajectory is
known in advance the fipmap database is not necessary to
precompute. In this case the transformation coefficients can
be computed directly and eventually interactively tuned for
obtaining the high quality perceptual realism.

This method is better, too. We have illustrated this in five
concluding figures using extremely well structured and well
known image. Fipmap produces no artifacts and even can
control the grey level.

5.1. Preprocessing of Arbitrary Meshes

Geometry data calculated from images or even geometry
data modelled using a CAD-tool may contain many coplanar
surfaces not represented by a single indexed faceset. On the
other hand there might be non-planar surfaces represented
by a single faceset. Our current texture reconstruction frame-
work requires each texture entity to be represented by a sin-
gle indexed faceset, which up till now has to be done manu-
ally in a pre-processing step.

Auto-detection of co-planar surfaces in arbitrary geome-
try data and modification of that data in an adequate way
could be developed. This would greatly enhance the usabil-
ity of the method for other than hand-made models.

5.2. Projection onto Non-Planar Surfaces

Currently texture calculation using our method is limited to
planar surfaces.Ofek et al.15 has already suggested texture

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

(a) (b)

(c) (d)

Figure 18: Fipmap: Coefficients (a,b,c,d) equal to
(1,0,0.5,1), (1,0,−0.5,1, (1,0,1,1) and (1,0,−1,1) re-
spectively

calculation based quad-trees build over cylindric surface.
One might also consider other primitives like basic shapes,
spheres or even implicit surfaces like free form surfaces.

5.3. Parallel-Processing Support

If textures for a whole scene have to be calculated it would
be useful to be able to do it in parallel. This is possible,
because the quad-tree data structures used for each surface
are independent. Currently, parallel calculation can in prin-
ciple be done by storing the input data in directories shared
among multiple computers and assigning tasks to each ma-
chine individually and manually. Future implementations
could include methods for dynamic work- and load distribu-
tion among a number of machines connected by some sort of
network. This would supersede the necessity to assign a task
to a machine manually and would maximize the utilization
of the available resources.

5.4. Hardware accelerated visibility

Recent graphics adapters allow high resolution rendering,
some even off screen rendering. Such hardware could be
used for rendering the whole scene textures are calculated
using a single color for each single texture entity. Afterwards
visibility tests can be performed by lookups in these pre-
calculated images instead of object order visibility tests.

(a) (b)

(c) (d)

Figure 19: Fipmap: Coefficients (a,b,c,d) equal to
(1,0,2,1), (1,0,−2,1), (1,0.5,0,1), and (1,−0.5,0,1) re-
spectively

5.5. View-Planning

Our approach delivers information about the number of im-
ages that contribute to different texture regions. Currently we
don’t take advantage of this information. This information
could be used for calculation of additional viewpoints that,
added to the input data, could eliminate regions covered by
too few images. An even more sophisticated version could
automatically calculate viewpoints that result in a, prefer-
ably equal, user specified number of images contributing to
each node of the quad-trees.

Such extensions could be very useful when reconstructing
textures for large urban models with high geometrical com-
plexity where an optimal viewpoint distribution can’t other-
wise be estimated.

6. Acknowledgements

This work has in part been funded by the European Union
under contract No. IST-1999-20273. We wish to thank Dipl.
Ing. Markus Grabner, Dr. Konrad Karner, Dipl. Ing. Rainer
Kalliany, and Prof. Horst Bischof for fruitful discussions.

References

1. A. Bornik. Textures from architectural image se-
quences. Master’s thesis, Graz University of Technol-
ogy, May 2001. 6

c© The Eurographics Association 2002.

Bornik and Ferko / Texture Minification

(a) (b)

(c) (d)

Figure 20: Fipmap: Coefficients (a,b,c,d) equal to
(1,1,0,1), (1,−1,0,1), (1,2,0,1), and(1,−2,0,1) respec-
tively

Figure 21: Fipmap: Nearly edge-on view,(a,b,c,d) equal
to (1,−2,0.5,3)

2. A. Cole. Eyewitness Art - Perspective. Dorling Kinder-
sley, 1992. 5

3. J. Cosmas, J. Itagaki, D. Green, E. Grabczewski, L. Van
Gool, A. Zalesny, D. Vanrintel, F. Leberl, M. Grab-
ner, K. Schindler, K. Karner, M. Gervautz, S. Hynst,
M. Waelkens, M. Pollefeys, R. DeGeest, R. Sablatnig,
and M. Kampel. 3d murale: A multimedia system for
archaeology. InProceedings of the International Sym-
posium on Virtual Reality, Archaeology and Cultural
Heritage 2001, November 2001.8

4. N. Dyn, D. Levin, and S. Rippa. Data dependent trian-
gulations for piecewise linear interpolation.IMA Jour-
nal of Numerical Analysis, 10:137–139, 1990.2

5. Y. Fisher.Fractal Image Compression. Springer, 1995.
2, 4

6. J. Foley, A. van Dam, S. Feiner, and J. Hughes.Com-
puter Graphics, Principles and Practice. Addison Wes-
ley, second edition, 1990.4

7. R. M. Friedhoff and W. Benzon.The second computer
revolution: Visualization. Harry N. Abrams, 1989.1,
8

8. A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and
D. H. Salesin. Image analogies. InSIGGRAPH 2001
Conference Proceedings. ACM SIGGRAPH, 2001.2

9. K. Karner, J. Bauer, A. Klaus, F. Leberl, and M. Grab-
ner. Virtual habitat: Models of the urban outdoors. In
E. Baltsavias, editor,Proceedings of the Third Interna-
tional Workshop on Automatic Extraction of Man-Made
Objects from Aerial and Space Images, pages 393–40.
A.A. Balkema Publishers, 2001.8

10. S. Kent.Eyewitness Art - Composition. Dorling Kinder-
sley, 1995. 5

11. H. Mayer, A. Bornik, J. Bauer, K. Karner, and F. Leberl.
Multiresolution texture for photorealistic rendering. In
T. L. Kunii, editor, Proceedings of Spring Conference
on Computer Graphics 2001, pages 174–183. Come-
nius University Bratislava, 2001.1, 8

12. A. McNamara. Visual perception in realistic image
synthesis.Computer Graphic Forum, 20(4):201–210,
2001. 1

13. T. McReynolds. Programming with opengl, advanced
techniques, 1998.1, 2

14. T. Möller and E. Haines.Real-Time Rendering. A. K.
Peters, 1999.2

15. E. Ofek. Multiresolution textures from image se-
quences.IEEE Computer Graphics and Applications,
17(2):18–29, 1997.1, 3, 8, 9

16. D. Salomon.Computer Graphics and Geometric Mod-
eling. Springer, 1999.4, 7

17. Alan Watt. Three-Dimensional Computer Graphics.
Addison-Wesley, third edition, 2000.1, 4

18. L. Williams. Pyramidal parametrics.Computer Graph-
ics, 17(3):1–11, 1983.1, 2

19. Z. Zhang. Flexible camera calibration by viewing
a plane from unknown orientations. InProceedings
of the International Conference on Computer Vision
(ICCV’99), pages 666–673, 1999.3

c© The Eurographics Association 2002.

