
1 Introduction

Multicriteria-optimized
triangulations

I. Kolingerová1,
A. Ferko2

1 Department of Computer Science and Engineering,
University of West Bohemia, Univerzitnı́ 22, Box
314, 306 14 Plzeň, Czech Republic
E-mail: kolinger@kiv.zcu.cz
http://iason.zcu.cz/∼kolinger
2 Department of Computer Graphics and Image
Processing, Comenius University, Mlynska dolina,
Bratislava, Slovak Republic
E-mail: ferko@fmph.uniba.sk
http://www.uniba.sk/∼kpgso

Published online: 2 August 2001
c© Springer-Verlag 2001

Triangulation of a given set of points in
a plane is one of the most commonly solved
problems in computer graphics and compu-
tational geometry. Because they are useful
in many applications, triangulations must
provide well-shaped triangles. Many criteria
have been developed to provide such meshes,
namely weight and angular criteria. Each cri-
terion has its pros and cons, some of them
are difficult to compute, and sometimes even
the polynomial algorithm is not known. By
any of the existing deterministic methods,
it is not possible to compute a triangula-
tion which satisfies more than one criterion
or which contains parts developed accord-
ing to several criteria. We explain how such
a mixture can be generated using genetic op-
timization.

Key words: Computer graphics – Compu-
tational geometry – Minimum weight trian-
gulation – Delaunay triangulation – Genetic
optimization

Correpondence to: I. Kolingerová

A triangulation T(S) of a set of points in the Eu-
clidean plane is a set of edges E such that no two
edges in E intersect in a point not in S and the edges
in E divide the convex hull of S into triangles.
Triangulations are necessary in many areas, e.g.,
computer graphics, computer vision, robotics,
CAGD, etc. Therefore, significant research has been
devoted to this problem and many triangulation
methods developed. To work well in applications, tri-
angle meshes are usually assumed to be locally or
globally optimal under some criterion.

(Globally) optimal triangulation

A triangulation OT(S) is called (globally) optimal
with respect to the given criterion provided that
OT(S) optimizes the given criterion among all pos-
sible triangulations of S. With a few exceptions, the
construction of OT(S) in polynomial time is not
known. In order to find a global optimum, an expo-
nential number of triangulations would need to be
checked; thus, it is necessary either to cope with local
extremes or to use methods leading to a suboptimum.

Locally optimal triangulation [45]

A triangulation L OT(S) is called locally optimal
with respect to a given criterion provided that ev-
ery convex quadrilateral (consisting of two triangles
sharing an interior edge) is optimal with respect to
the given criterion. Local optimality is illustrated in
Fig. 1. Let the local optimality criterion be defined as
the shortest possible edge length. Then in Fig. 1a, the
quadrilateral is locally optimal, while in Fig. 1b it is
not. Locally optimal triangulations are usually con-
structed by the local edge-flip procedure suggested
in [33] – the diagonal of a non-optimal quadrilateral
is flipped, i.e., replaced by the other diagonal. It has
been proved in [33] that the local edge-flip procedure
needs a finite number of steps to converge to a local
optimum, as there is a finite number of triangulations
on the given set of points. This maximal number of
flips equals the mutual distance of two triangulations
O(N2), where N is the total number of points in S.
Expected behaviour is, however, acceptable – about
O(N) steps. The local edge-flip algorithm does not
guarantee convergance to a global extreme; more-
over, it is not possible to detect whether the triangu-
lation is (globally) optimal or not. (However, even
a local extreme may work well for some types of cri-
teria and some input data).

The Visual Computer (2001) 17:380–395
Digital Object Identifier (DOI) 10.1007/s003710100125



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 381

a b

Fig. 1a,b. Local optimality; the quadrilateral in a is lo-
cally optimal with respect to the criterion of shorter edge,
while in b it is not

Let us now return to global criteria and OT(S). There
are two main classes of criteria optimized in trian-
gulations. The first one is connected with the weight
(defined as a sum of lengths) of edges, the second
one with the size of angles. Both classes can be rep-
resented by several triangulators, each having their
pros and cons.
The most important criteria of the first class include
the following:

• Minimization of the triangulation weight, opti-
mized in the so-called minimum weight triangu-
lation, MWT [1, 2, 5, 13, 14, 25, 27, 31, 32, 35, 37,
42, 47]

• Maximization of the minimal triangle height
(minimum Euclidean distance from a vertex to
the opposite edge), optimized in the so-called
maximum height triangulation [6, 40]

• Minimization of the maximum edge length, opti-
mized in the minmax length triangulation [17, 19]

• Minimization of the maximal aspect ratio (the ra-
tio of the length of the longest side of the triangle
to the height of the triangle, where the height of
a triangle is the Euclidean distance of the longest
edge to its opposite vertex) [6]

The second class includes the following criteria:

• Maximization of the minimum angle, optimized
in the so-called Delaunay triangulation, DT [3, 8,
40, 41, 43]

• Minimization of the maximum angle, optimized
in the so-called minmax angle triangulation [16,
18]

• Minimization of the minimal angle, optimized
in the Delaunay triangulation of the farthest
point [20]

• Minimization of the maximum eccentricity (the
infimum over all distances between c1 and the
vertices of the triangle, where c1 is the centre of

the triangle’s circumcircle), optimized in the min-
max eccentricity triangulation [6, 7]

• Maximization of the sum of the angles [39]

With general data sets, the triangulations satisfying
these criteria can provide different results (although
there are data sets where some of them coincide). By
geometrically based, deterministic methods, it is not
possible to compute a triangle mesh which is a com-
promise between extremes, providing small weight
as well as good angles. In addition, it is not possi-
ble to generate a mesh angularly optimized in some
of points and weight optimized in the rest. Such tri-
angulations can be generated only with the use of
nondeterministic optimization methods, e.g., simu-
lated annealing or genetic programming, as these
techniques allow the weighted sum or multiplication
of several criteria to be optimized.
In this paper it will be shown how genetic optimiza-
tion (GO) can be used to construct a triangulation
which fulfils more than one criterion. Moreover, we
introduce a method which balances the influences of
the criteria with the help of weights, according to the
user’s needs, and which combines different criteria
in different parts of the plane.
The rest of the paper is structured as follows: Sect. 2
briefly explains GO. Section 3 shows how GO can be
used in the space of triangulations. Section 4 briefly
recapitulates MWT and DT as the main representa-
tives of the two classes of triangulation criteria and
presents formulations of criteria suitable for the ge-
netic approach. Section 5 contains examples and dis-
cussion of results. Section 6 concludes the paper.

2 Principles of GO

A detailed explanation of this topic has already been
given, for example, in [24, 26, 38]. GO is a combi-
nation of direct and heuristic searches, usually in
discrete space. A set of potential solutions is pre-
pared. Members of this set are evaluated according
to their value in an extremized function, and the bet-
ter of them have a higher probability to be chosen for
modification by a binary operation. Also a unary op-
eration is used to modify the set members. From such
a modified and enlarged set of potential solutions,
those with higher evaluation have higher probability
to be chosen for the next iteration.
The process cycles for many iterations, and the set of
potential solutions converges to an extreme. Conver-
gence is not guaranteed, as the method is probabilis-



382 I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations

Genetic optimization

Input: the given problem

Output: a suboptimal solution

Symbols: t � time

P (t) � a population in time t (tth generation)

1. begin

2. Initialize a population P (0);
3. Evaluate P (0); t := 0;
5. while not termination_condition do

6. begin

7. t := t+ 1;
8. Select a new population P (t) from P (t− 1);
9. Alter P (t);
10. Evaluate P (t)
11. end;

12. Return the best �tting individual as a solution

13. end

Algorithm 1

2a 2b 2c

Algorithm 1. Genetic optimization
Fig. 2a–c. Dataset from [40]: {(0.0, 0.0), (1.4, 4.5), (3.8, 4.9),
(7.15, 3.1), (8.0, 0.0)}. Sequence of local flips does not guar-
antee convergence to global extreme: a An initial triangula-
tion. b Local extreme achieved after one flip; no more local
flips are possible. c Global extreme (not achieved by previous
flip sequence). Any initial triangulation of this data set which
contains the shortest inner edge is incapable of converging to
a global optimum

tic. The lower bound for the quality of the extreme
solution can be ensured if some sub-optimal poten-
tial solution is included into the initial set and if the
best solution found during all the iterations is kept as
a candidate for the ‘final answer’.
The method uses biological terminology: the set is
called ‘a population’; one potential solution is ‘an in-
dividual’; the binary operation is ‘a crossover’; and
unary is ‘a mutation’.
The general scheme of genetic optimization is out-
lined in Algorithm 1.
GO provides an efficient tool for finding the global
extreme in a huge state space where an exhaustive
search would not be possible. Like simulated anneal-
ing, it can, however, converge to a local extreme. In
comparison with simulated annealing its greatest dis-
advantage is that many potential solutions are com-
puted in each iteration – it substantially increases
time and memory requirements. As already men-
tioned, GO is mostly used for discrete optimization.
Typical problems are the knapsack problem or the
travelling salesman problem.

3 GO of triangulations

The probabilistic approach has been successfully
tried in [45], where simulated annealing was used
to optimize lexicographical versions of various crite-
ria. (The lexicographical version of some criterion is
a lexicographically sorted vector of values of the cri-

terion for all edges, vertices or triangles.) The MWT
approximation has been solved by simulated anneal-
ing in [4] and by genetic programming in [11, 29, 30,
44, 46].
The reasons for trying GO on globally optimal trian-
gulations are obvious:

• Globally optimal triangulations, such as mini-
mum weight triangulation, are suspected of being
NP-complete (but it has not been proved yet).

• The state space of triangulations is large, and di-
rect search is infeasible.

• The quick and simple edge-flip algorithm gen-
erally does not lead to a global optimum. See
the example given in Fig. 2 [40]. The choice of
a more complex flip operator does not change this
property.

Key points leading to the success or failure of the ge-
netic approach are proper design and parameters of
GO, such as the representation of individuals, simple
and efficient operators, an adequate number and size
of generations and an efficient fitness function. In
the following text, we will present details of a newly
proposed genetic solution and a comparison with ex-
isting ones [11, 44, 46].

Data representation

One individual is one triangulation represented as
a list of edges and a list of triangles for the given data
set.



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 383

An initial population

Generally, any triangulation can serve as an initial
triangulation. However, the set of initial triangula-
tions should have some diversity in order to prop-
erly represent the space searched. For this purpose,
the algorithm of incremental insertion seems a good
choice, because with different random orders of in-
serted points, different triangulations may be gener-
ated. This algorithm works as follows (see Fig. 3).
First, a triangulation of the convex hull of points
is constructed (Fig. 3a,b). Then inner points are in-
serted one at a time, and the triangulation is updated
with each insertion (Fig. 3c,d). The update is usu-
ally combined with a local edge flip to avoid long,
thin triangles. For the sake of GO, edge flips are not
absolutely necessary, but are recommended for three
reasons:

• When an inner point is inserted, the triangle in
which the point lies has to be located. Long, thin
triangles increase the probability of a wrong an-
swer due to floating-point inaccuracy.

• Although the GO approach is very general, it is
highly improbable that its practical application
would require a criterion leading to long, thin tri-
angles. Why not start with triangulations which
are closer to the probable result, then? There is
a danger of premature convergence to local opti-
mum; however, according to our experience, bet-
ter results are obtained with a better-fitting initial
population.

• In genetic theory, the diversity of the initial gen-
eration is pointed out. However, according to our
experiments, it pays to limit the space searched
if possible, e.g., to incorporate some necessary
condition for edges or triangles of the searched
OT(S), if such a condition is available; this de-
creases the number of possible triangulations and
so decreases the size of the space searched, which
speeds up the convergence of the GO. One exam-
ple can be found in [30], where better results in
the approximation of MWT were achieved when
the search space was limited to locally minimal
edges and triangulations.

Size of a generation

There is a trade-off between the size of a generation,
pop_size, and the computation time. The number of
generations times pop_size gives the total number of

a b

c d

Fig. 3a–d. An example of an initial triangulation con-
structed incrementally (no edge flips considered): a The
given set of points. b An initial triangulation of the con-
vex hull of S. c After the first inner point insertion. d All
inner points inserted

triangulations that has to be computed; the higher
this number, the longer the computation time to be
expected. As shown later, size 100 looks to be a com-
promise between the two factors.

Termination condition

The best termination condition would be to stop
when the required global optimum is achieved. As
this value (or, at least, its good estimate) is only
rarely available, such a termination condition is use-
less. The simplest termination condition is to stop
after some given number of generations. As no gen-
eral rule for the correct number of generations ex-
ists, usually some initial experiments are necessary
to choose the value. We mostly used 100 or 200 gen-
erations in our implementation.
As well as this simple termination condition, we
used the condition based on the rate of improve-
ment of the best solution found during all the iter-
ations. If the best solution has not been improved
substantially during some given number of genera-
tions, the iteration is stopped (e.g., if within 0.75×
total_number_of_generations there is a less than 1%
improvement in evaluation of the best individual).



384 I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations

Fitness function

Each triangulation has to be evaluated to judge its fit-
ness according to the given criterion. A better-fitting
triangulation has a higher probability to be selected
for the next generation. Therefore, a well-designed
fitness function is a very important factor in GO con-
vergence.
In the triangulation problem, the design of the fitness
function is not so demanding, because triangulation
criteria are mathematically clearly defined. Two ver-
sions of the fitness function can be used:

eval1(T(S)) =
m∑

i=1

wi fi,

eval2(T(S)) =
m∏

i=1

fi,

where T(S) is a triangulation; m is the total num-
ber of triangulation criteria; wi , i = 1, 2 . . . , m, are
weight coefficients, wi ∈ 〈0; 1〉,∑wi = 1; and fi ,
i = 1, 2 . . . , m are functions for particular criteria.
eval1 is in fact a linear interpolation in the convex
polyhedron, where each vertex represents some cri-
terion. eval2 does not enable particular criteria to
be weight influenced; however, it can be very use-
ful if the function values of fi are mutually very
different (several orders of magnitude). For exam-
ple, let f1 have angular values f1 ∈ 〈0; 2π〉, while
f2 has length values f2 ∈ 〈0; ∞). Thus f1 is upper
bounded, while f2 not. This may bring problems: If
such a pair is combined in eval1, it may be insensitive
to f1, because its values are bounded and probably
much lower than the f2 values. Proper mathematical
formulations of geometric properties for fi are pre-
sented in Sect. 4.

Selection of a new generation

Let one generation have pop_size members (tri-
angulations). The interval 〈0; 1〉 of probabilities
for triangulations to be chosen then corresponds
to pop_size members. Each triangulation Ti , i =
1, 2, . . . , pop_size can be evaluated within the inter-
val

∑i−1
j=1 eval j

∑pop_size
j=1 eval j

to

∑i
j=1 eval j

∑pop_size
j=1 eval j

Mutation procedure

Input: P (t) � the population of triangulations,
pm � probability of mutation

Output: P (t) � the mutated population

Symbols: nE � number of inner edges in one triangulation
pop_size � number of triangulations in one generation

1. begin

2. for e := 1 to nE*pop_size do {for each edge e in P (t)}
3. begin

4. Generate a random value r ∈ 〈0; 1〉;
5. if r < pm then Flip the edge e if possible
7. end

8. Return P (t)
9. end

Algorithm 2. Mutation

If a random number r ∈ 〈0; 1〉 is generated, it lies
in one of these intervals. The corresponding trian-
gulation is then selected into a new generation. As
we keep the size of the generations constant, in each
iteration pop_size random numbers are generated.
This technique picks pop_size triangulations; some
of them are selected more than once, others not at all;
and the higher the evaluation, the higher the proba-
bility to be selected.

Mutation operator

Mutation was traditionally understood as a small,
atomic change performed by bit inversion if indi-
viduals were represented by binary numbers. With
regard to our representation by lists of edges and tri-
angles, mutation is done by an edge flip. The flip is
also a kind of atomic operation in triangulation. The
probability of mutation is given by a fixed value, pm.
(In genetic literature, pm = 0.01 is most often; how-
ever, we have better experience with a lower value,
such as 0.001. More details are given in Sect. 5.) See
Algorithm 2.

Crossover operator

Crossover combines two individuals into two new
ones. The main idea is to enable exchange of genetic
information. The natural analogy for triangulation is
to combine two triangle meshes into two new ones.
To develop an efficient operator for this is difficult
because the result might not be a valid triangulation.
The invalid triangulation is, e.g., a nonplanar graph,
and therefore corrections are necessary.



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 385

Parents are selected on a probabilistic basis as fol-
lows: for a particular triangulation, a random num-
ber is generated. If the number is lower than a fixed
value, pc (the probability of crossover), the trian-
gulation is selected for crossover with another in-
dividual. According to the genetic publications and
our experience, pc = 0.25 is proper; more details are
given in Sect. 5.
In classical binary representation, crossover is per-
formed by a mutual exchange of parts of two bi-
nary numbers. Several alternatives to triangulation
crossover have been tried in our implementation. The
best one seems to be the so-called DeWall opera-
tor (named after the DeWall algorithm for Delau-
nay triangulation by the divide and conquer approach
in [12] which inspired the operator) as it preserves all
of the already formed groups of geometrically proxi-
mate edges and thus improves convergence.
Let us describe the workings of this operation in
a more simplified form – as if the triangulation were
created only by a set of edges. Let there be two planar
triangulations, TF (the ‘father’) and TM (the ‘moth-
er’), and a randomly generated line L intersecting the
convex hull of the triangulation (see Fig. 4a,b). The
line divides the edges in a triangulation into three
groups: those intersected by the line (T 0), those on
the left side of the line (T −) and those on the right
side of the line (T +). Shuffling of genetic informa-
tion is ensured by combining information from the
parents – their edges. The probabilistic nature of the
operator is created by the random generation of the
line. There are other possible ways to generate such
a line, e.g., two points inside the minmax box of the
given point set can be generated.
As the line L has the same position in both triangula-
tions, the sets T −

F of TF and T +
M of TM are separated

by the line and cannot intersect. (The same is true
for T +

F and T −
M , but we will describe only one of the

two possible combinations.) Therefore, T −
F and T +

M
can be combined into one set of edges without any
intersection tests. Together, they are not a complete
triangulation and have to be combined with edges
from T 0

F , T 0
M. The T 0

F edges have to be tested for inter-
section with the T +

M edges already present in a ‘child’
triangulation. The same occurs for the T 0

M and T −
F

edges.
After insertion of several T 0

M and T 0
F edges, the re-

sulting subgraphs still may not form a complete
triangulation. This problem can be solved in two
ways: (a) other possible edges are generated (“full
crossover”) and (b) the operation is halted (“reduced

a b

c d

Fig. 4a–d. a,b “Father” and “mother” triangulations in-
tersected by the random line L ; c,d “children” of this
crossover

crossover”). We tried both approaches; therefore, we
can compare their pros and cons.
For full crossover it is necessary either to use some
sophisticated algorithm to “sew up” the gaps or to
have a set of candidate edges where proper missing
edges are searched. We used the latter approach: a set
of all possible edges was generated in pre-processing
and was used when necessary.
Reduced crossover has an inherent inefficiency, as
part of the crossover is never finished; on the other
hand, expensive intersection tests of candidate edges
against edges already accepted in triangulation are
avoided.
Results were slightly better for full crossover than for
reduced crossover for the same number of iterations
and the same population size. However, computation
time for full crossover was much higher (see Fig. 5).
When the time saved by reduced crossover was used
for a higher number of generations, the results spoke
for reduced crossover (see Fig. 6). It can be seen that
reduced crossover utilizes its time better.
In our experiments, reduced crossover failed to fin-
ish in at most 10%–15% of the total number of
crossovers. This wasted time is more than returned



386 I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations

Crossover procedure

Input: two triangulations, TF and TM (parents),

the set of all possible edges cE
Output: two triangulations, TC1 and TC2 (children)

1. begin

2. Generate a random line L;

3. Divide edges of TF into T−
F
, T+
F
, T 0
F
; (see Fig. 4)

4. Divide edges of TM into T−
M
, T+
M
, T 0
M
;

5. Accept T−
F

and T+
M

into the child TC1;
6. if TC1 is not complete then

Insert such edges from T 0
F
which do not intersect T+

M
edges;

7. if TC1 is not complete then

Insert the edges from T 0
M

which do not intersect T−
F

edges;

8. if TC1 is not complete then

Insert the edges from cE which do not intersect edges in TC1;
9. Swap TF and TM and repeat steps 5− 8 once more for TC2;
10. Return TC1, TC2
11. end

Algorithm 3

5 6

Fig. 5. Computation time for reduced and
full crossover (100 generations per 50 trian-
gulations, pc = 0.25, pm = 0.001)
Fig. 6. Rate of the best evaluation obtained
by reduced and full crossover within the
same computational time (the time which
full crossover needed to compute 100 gen-
erations per 50 triangulations): f = 100×
er/ef −100 (%), where er is the evaluation
obtained by reduced crossover and ef the
evaluation obtained by full crossover (pc =
0.25, pm = 0.001)
Algorithm 3. Crossover

by the substantial speed-up (recall Fig. 5). Therefore,
we decided to choose reduced crossover.
The full version of the crossover operator is given in
more detail in Algorithm 3. For reduced crossover,
the input parameter cE and step 8 of the algorithm
are left out. If the triangulation is also represented by
a list of triangles, which is usually the case, the trian-
gles have to be operated together with edges to keep
data structures consistent. This is not shown in Algo-
rithm 3 for better readability.
This concludes the explanation of the GO for tri-
angulation purposes. In regard to the complexity of
the proposed solution, we see that the initial tri-
angulations can be computed in an expected time
of O(N log N) and a worst time of O(N2) (this is
implied by the incremental construction). Mutation
needs a time equal to O(N) to visit all the edges
of the triangulation. Crossover has a time equal to

O(N2) in the worst case in our implementation; how-
ever, this is a very pessimistic estimate. This com-
plexity dominates and, therefore, the overall com-
plexity is O(N2). However, with some more sophis-
ticated data structure this time can be reduced to
O(N log N) in the worst case and O(N) in the ex-
pected case. We did not proceed in this direction as
our concern was to test the usability of the genetic
approach and not to achieve the best possible imple-
mentation in particular problems.
As is well known, in the asymptotic complexity,
the constant terms are neglected. In the genetic ap-
proach, these omissions should be pointed out, be-
cause the time demands of the genetic approach are
due to a large number of computed triangulations
not due to the computation of one triangulation. If
50 generations per 50 members are computed, the
neglected multiplication constant is 2500; in such



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 387

a case, genetic computation could be nearly 2500
times slower than ‘deterministic’ triangulation.
Let us briefly present the genetic approach as it is
used in the literature available to the authors and
to show pros and cons of already existing solu-
tions. In [46] a triangulation was represented as a list
of edges. Both crossover and mutation were per-
formed as edge flips. The probability of mutation
was 0.05. The population size was 35−75. The
initial population was prepared as randomly gener-
ated triangulations. There were two types of testing
data: randomly generated points and points sitting
on an arc of a circle (N = 10−200), which are
known to be bad for greedy triangulation (GT) and
are used for comparison [36]. Parallel implementa-
tion on a four-processor hypercube architecture has
also been attempted. In general, the sequential ge-
netically optimized triangulation outperformed the
GT on point sets of size 130 or less. Parallel GO
performed well also for larger datasets (110 points
and more) and was the best for 70% of tested data
sets. For the second type of data, GO was better
than GT in all cases but one. However, these re-
sults were influenced by the fact that the data type
is unfavourable for comparison with GT; it is not
a completely fair way of testing. No time measure-
ments are provided.
In [44] triangulation is represented by a lower trian-
gular matrix in which the element mij is equal to 1 if
the edge ij is present in the triangulation and 0 oth-
erwise. If two matrices M1, M2 are exclusive-ored,
the resulting matrix M has 1s on positions corre-
sponding to the edges which are only in one triangu-
lation, but not in the other triangulation. Crossover
is performed by choosing a random mij = 1 in M
corresponding to an edge in one triangulation (and
not present in the other) and then finding the min-
imum polygon, such that it contains the vertices of
the random edge and resides in both triangulations.
Then edges inside this polygon are exchanged be-
tween the two triangulations. Mutation is done by
edge flip. The terminal condition is the given number
of generations or when all the members of the current
generation have nearly the same value.
Results are presented on sets of points in [34] and
in two other examples (maximal N = 40). Popula-
tion size is recommended to be 30−60, but no re-
lation to N is presented. Values for pc and pm are
taken to be 0.5−0.6 and 0.001 − 0.1, respectively.
The disadvantage of this solution is memory require-
ments. Crossover is quite complicated but based on

an interesting concept. However, results are not too
persuasive.
In [11] an interesting, so-called weighted coding
of triangulations is offered. It associates an integer
weight with each point in the given data set. Point
weight is added to the length of all the edges in which
that point participates. However, fitness of the trian-
gulation has to be computed from non-modified edge
lengths. This coding is used in the greedy heuristic
– edges are sorted in increasing order according to
their modified lengths, and in each step, the shortest
edge is inserted into the triangulation if it does not
intersect any other already accepted edge. Mutation
is perfomed by assignment a new random value to
a point. One hundred generations per 10N individu-
als were used.
The algorithm was tested on seven problems of up
to 50 points. Each data set was run 10 times. It was
always better than greedy triangulation in the three
smaller data sets, and it gave the same answer in the
larger data sets in 4 − 7 cases out of 10. It needed
more than 5 h for the 50-point data set, compared
with the fraction of a second needed for greedy trian-
gulation.
This concludes the explanation of the genetic ap-
proach for triangulation. In the next section, attention
will be given to the proper mathematical formulation
of triangulation criteria.

4 Criteria for the triangulation
optimization

Of the triangulation criteria presented earlier, two are
used most often: minimum weight and maxmin an-
gle. These two triangulations form in some sense the
two poles to the problem: DT is the leading represen-
tative of angle criteria triangulations, and MWT is the
most difficult case of the weight criteria.
The criterion of minimum weight leading to the
minimum weight triangulation is, due to its global-
ity, very difficult. The problem of MWT construc-
tion is neither known to be solvable in polynomial
time nor proved to be NP-hard. It is one of the
few problems in [23] whose complexity is still un-
known. Existing methods either work only for some
special cases, e.g., [2, 37], or find only a subgraph
of the MWT [1, 5, 13, 27, 28]. Substantial research
has also been devoted to the development of heuris-
tics [4, 25, 32, 42].



388 I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations

Table 1. Weight criteria

Name Description Formula Type of extreme

Min weight fMW fMW = ∑
si ∗ li, i = 1, 2, . . . , nE Min

Min edge length fMINE fMINE = min(li), i = 1, 2, . . . , nE Max
Max edge length fMAXE fMAXE = max(li), i = 1, 2, . . . , nE Min

Table 2. Symbols

Symbol Description

nE Number of edges in T(S)
nTris Number of triangles in T(S)
li Euclidean length of an edge i
si Weight coefficient for the edge i
α

j
i jth angle of a triangle i

rcci Radius of a circumcircle for a triangle i

The global and local maxmin angle criteria have
been proved to be satisfied by the Delaunay triangu-
lation (DT). This is the only a local extreme which
guarantees that a global extreme will be found as
well. Unlike an MWT , many algorithms exist to com-
pute DT; some of them can be found, for example,
in [3, 8, 9, 12, 21, 22, 40, 41, 43]. The optimal worst-
case time complexity is O(N log N); using some
accelerating data structures, the expected time can
be reduced to O(N). These two triangulations pro-
vide the fundamentals for the formulation of criteria
which can be expected to bring good and interest-
ing results. Several variants of weight criteria are
given in Table 1. Symbols are explained in Table 2.
Weight coefficients si in fMW are used if it is more
important for some edges to be shorter than oth-
ers and they should be stressed in the sum. Table
3 shows the angle criteria. Apart from these formu-
lae, we also used some clearly unsuitable criteria

Table 3. Angle criteria

Name Description Formula Type of extreme

Maxmin angle fMAMIA fMAMIA = min(α
j
i ), j = 1, 2, 3, i = 1, 2, . . . , nTris Max

Minmax angle fMIMAA fMIMAA = max(α
j
i ), j = 1, 2, 3, i = 1, 2, . . . , nTris Min

Maxmin angle sum fMAMIS fMAMIS = ∑
mini(α

j
i ), j = 1, 2, 3, i = 1, 2, . . . , nTris Max

Minmax angle sum fMIMAS fMIMAS = ∑
maxi(α

j
i ), j = 1, 2, 3, i = 1, 2, . . . , nTris Min

Maxmin rad fMAMIR fMAMIR = min(rcci), i = 1, 2, . . . , nTris Max
Minmax rad fMIMAR fMIMAR = max(rcci), i = 1, 2, . . . , nTris Min
Min sum of rad fMSR fMSR = ∑

rcci , i = 1, 2, . . . , nTris Min

to demonstrate the versatility of the GO. They are
not included in the tables in order not to be mixed
with the ‘reasonable’ formulae. Therefore, they will
be denoted only by abbreviation, e.g., max weight,
etc. Experiences and results are given in the next
section.

5 Results and discussion

Genetic optimization, interpolation and Delaunay
triangulation were implemented in Delphi 3 under
Windows NT and ran on PC PII 200 MHz/128 MB
and 233 MHz/96 MB.
Of all the criteria in Table 1, we picked only fMW
for further research as, usually, there is not enough
sensitivity for fMINE and fMAXE to measure dif-
ferences between triangulations, as many meshes
have the same value. The function fMW diversifies
much better. Experience with angle criteria was very
much alike to Table 1: fMAMIA, fMIMAA, fMAMIR
and fMIMAR are not sensitive enough to distinguish
small differences between triangulations. Summa-
tion criteria fMAMIS, fMIMAS and fMSR were more
successful. Of these three, the least persuasive re-
sults were obtained with fMSR, as can be seen in the
figures below.
Figures 7–20 show typical results from use of the de-
scribed method. The input point configurations are



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 389

7 8 9

10 11 12

Fig. 7. eval = fMW, fMW = 10.01, fMAMIS = 402.64◦ , fMIMAS = 4647.79◦ , fMAMIA = 0.64◦, fMIMAA = 175.71◦ , fMAMIR =
0.015, fMIMAR = 1.012, fMINE = 0.005, fMAXE = 0.540

Fig. 8. Delaunay triangulation, fMW = 11.06, fMAMIS = 403.23, fMIMAS = 4450.13◦ , fMAMIA = 0.99◦, fMIMAA = 166.94◦,
fMAMIR = 0.015, fMIMAR = 0.420, fMINE = 0.005, fMAXE = 0.540

Fig. 9. eval = maxweight, fMW = 13.56, fMAMIS = 337.19◦ , fMIMAS = 4425.97◦ , fMAMIA = 0.14◦, fMIMAA = 172.35◦,
fMAMIR = 0.095, fMIMAR = 1.273, fMINE = 0.005, fMAXE = 0.534

Fig. 10. eval = fMAMIS, fMW = 10.35, fMAMIS = 407.05◦, fMIMAS = 4553.98◦ , fMAMIA = 0.64◦, fMIMAA = 175.71◦,
fMAMIR = 0.015, fMIMAR = 1.012, fMINE = 0.005, fMAXE = 0.540

Fig. 11. eval = fMIMAS, fMW = 12.87, fMAMIS = 352.24◦, fMIMAS = 4274.24◦ , fMAMIA = 0.69◦, fMIMAA = 153.48◦,
fMAMIR = 0.015, fMIMAR = 0.421, fMINE = 0.005, fMAXE = 0.534

Fig. 12. eval = fMSR, fMW = 11.08, fMAMIS = 400.81◦, fMIMAS = 4450.31◦ , fMAMIA = 0.86◦, fMIMAA = 166.94◦,
fMAMIR = 0.015, fMIMAR = 0.482, fMINE = 0.00524, fMAXE = 0.534

slightly artificial but demonstrate the strength and
versatility of the genetic approach.
Triangulations for Figs. 7–17 are computed for a data
set S with 20 points, optimized with respect to fMW,
fMAMIS, fMIMAS and fMSR. Both sum and multipli-
cation types of the evaluation function were used. In
the presented example, values of angles and weights
are of similar order; therefore, no problems with sen-
sitivity to too low values was detected. The data set

was kept small for easy comparison of the resulting
meshes.
In Fig. 7, the min weight criterion was used. Most of
the triangles have a reasonable shape, with the excep-
tion of the third quadrant. However, due to the dis-
tribution of points on the negative coordinate axes,
better results may not be obtained. Compare this with
Fig. 8, which presents a Delaunay triangulation. DT
has more “equalized” triangles – less very small, nar-



390 I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations

13 14 15

16 17 18

Fig. 13. eval = 0.6 × fMW + 0.4 × fMAMIS, fMW = 10.17, fMAMIS = 404.11◦ , fMIMAS = 4588.45◦ , fMAMIA = 0.36◦,
fMIMAA = 177.69◦ , fMAMIR = 0.015, fMIMAR = 1.817, fMINE = 0.005, fMAXE = 0.540

Fig. 14. eval = 0.5× fMW +0.5× fMSR, fMW = 10.74, fMAMIS = 391.94◦ , fMIMAS = 4524.80◦ , fMAMIA = 0.99◦, fMIMAA =
169.74◦ , fMAMIR = 0.015, fMIMAR = 0.493, fMINE = 0.005, fMAXE = 0.540

Fig. 15. eval = 0.33× maxweight +0.33× maxmaxanglesum +0.33× minminanglesum, fMW = 12.35, fMAMIS = 298.17◦ ,
fMIMAS = 5118.40◦ , fMAMIA = 0.13◦, fMIMAA = 179.63◦ , fMAMIR = 0.094, fMIMAR = 20.093, fMINE = 0.014, fMAXE =
0.538

Fig. 16. eval = 0.33 × fMW + 0.33 × fMIMAS + 0.33 × fMAMIS, fMW = 10.10, fMAMIS = 407.40◦ , fMIMAS = 4617.19◦ ,
fMAMIA = 0.36◦, fMIMAA = 177.69◦, fMAMIR = 0.015, fMIMAR = 1.817, fMINE = 0.005, fMAXE = 0.540

Fig. 17. eval = fMW × fMIMAS × fMAMIS, fMW = 10.08, fMAMIS = 405.79◦, fMIMAS = 4596.47◦ , fMAMIA = 0.64◦,
fMIMAA = 175.71◦ , fMAMIR = 0.015, fMIMAR = 1.012, fMINE = 0.005, fMAXE = 0.534

Fig. 18. eval = fMW, fMW = 30.59, fMAMIS = 480.73◦ , fMIMAS = 5938.50◦ , fMAMIA = 4.614◦ , fMIMAA = 170.771◦ ,
fMAMIR = 0.539, fMIMAR = 1.000, fMINE = 0.321, fMAXE = 1.442

row triangles is balanced by a deterioration in some
other triangle shapes (mainly in the first and sec-
ond quadrant) and by a visible increase in the trian-
gulation weight. This observation is verified by the
numerical values of criteria. For comparison, Fig. 9
shows a mesh obtained by maximizing triangulation
weight. It is slightly ridiculous, as we optimized by
using a criterion leading to “bad” shapes of triangles;

however, it shows the strength of GO and the broad
possibilities for its application. Figure 10 is a result
of maxmin angle sum, Fig. 11 a result of minmax an-
gle sum and Fig. 12 a result of min sum of rad. The
second of these is the worst – it has the worst weight
and a low min angle sum, while max angle sum is
not bad. Of the other two, Fig. 10 looks to be the
better.



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 391

Let us continue showing the effects of mixed cri-
teria (Figs. 13–17). Figure 13 is 0.6 × fMW + 0.4 ×
fMAMIS. Figure 14 is 0.5 × fMW + 0.5 × fMSR. Fig-
ure 15 is 0.33×maxweight+0.33×maxmax
anglesum+ 0.33 × minminanglesum. Figure 16 is
0.33 × fMW + 0.33 × fMIMAS + 0.33 × fMAMIS. Fig-
ure 17 was obtained using fMW × fMIMAS × fMAMIS.
Compare Figs. 15 and 16 – Fig. 15 was again opti-
mized “to be as bad as possible”. Notice the long,
narrow triangles around the y-axis. Both Figs. 16
and 17 show triangles with a relatively good shape.
Optimization in Fig. 16 would be problematic if val-
ues of angle and weight parts of the function were
of very different order; however, this is not the case
here.
Figure 18 shows 39 points regularly distributed on
a circle; one point is near the centre, triangulated
with the min weight criterion. Figure 19 shows the
same data set, but the min weight criterion was
slightly modified: edges with angles to the +x-axis
within the range 〈30◦, 50◦〉 were favoured. (This was
performed using an extra condition: if the slope of
an edge is greater than or equal to 30◦ and equal to
or less than 50◦, then multiply the length of the edge
by 0.1 – recall si in the definition of fMW in Table 1.)
Figure 20 demonstrates that a criterion can be differ-
ent in different parts of the data. Here, the right part
is optimized on fMW and the left part on max weight.
From these figures it can be seen that a difficulty in
predicting the exact result and the success of a par-
ticular criterion are disadvantages of GO. However,
this unpredictability is weaker if more criteria are
combined. On the other hand, the generality of GO
is attractive – the influences of different criteria may
be combined and can be used either on the whole
data set or on a subset; anisotropy can be included
by utilizing some preferred direction. Therefore,
GO seems to have high potential and flexibility in
triangulation.
From this exposition of possibilities, let us proceed
to more detailed results showing the behaviour of
GO. The following group of results shows proper-
ties of the genetic operators described in Sect. 3.
The maximized criterion is as follows: eval = 0.33×
fMW + 0.33 × fMIMAS + 0.33 × fMAMIS. All results
were obtained as an average for five data sets: two
with a uniform point distribution, two with a Gaus-
sian point distribution and one with an “eccentric”
distribution of the type shown in Fig. 18. There were
no substantial differences among results for various
types of data; therefore, only averages are presented.

19

20

21

Fig. 19. eval = fMW, edges with angles to the +x-axis
within 〈30◦, 50◦〉 favoured. fMW = 38.92, fMAMIS =
372.12◦, fMIMAS = 5654.61◦ , fMAMIA = 4.614◦, fMIMAA
= 170.772◦ , fMAMIR = 0.511, fMIMAR = 1.710, fMINE
= 0.321, fMAXE = 1.921
Fig. 20. The left part optimized on max weight, the right
part on min weight
Fig. 21. Computation time for 100 generations, each with
50 triangulations, pc = 0, 0.1, 0.25, 0.5; pm = 0.001

Tables 4, 5, 6 and 7 and Figs. 21 and 22 show results
for various values of the probability of crossover (pc)
and the probability of mutation (pm). They were
computed for 100 generations per 50 triangulations,
using the reduced crossover operator. The best eval-



392 I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations

Table 4. Computational times (s) for 100 generations, each with
50 triangulations, and various pc (pm = 0.001)

N pc = 0 pc = 0.1 pc = 0.25 pc = 0.5

10 3.18 3.22 3.36 3.60
20 6.50 6.89 7.53 8.51
30 9.77 10.76 12.13 14.26
50 16.82 19.74 23.70 29.84

100 33.84 44.12 59.01 81.60
120 41.43 56.62 77.48 110.69
130 44.95 62.93 87.84 124.87
150 52.87 75.77 108.64 161.13
200 71.36 110.39 170.42 256.72
300 109.02 200.01 325.43 515.52
500 188.63 419.14 768.60 1276.96

Table 5. Percentage of cases in which iteration with the given
value of pc provided results better than, worse than or the same
as iteration with pc = 0.25; (100 generations, each with 50 tri-
angulations, pm = 0.001)

pc = 0 pc = 0.1 pc = 0.5

Better 12.00 33.20 54.60
Worse 69.80 51.80 24.20
The same 18.20 15.00 21.20

uations and computation times are compared. Figure
21 and Table 4 are not too surprising; they show that
the higher the probability of crossover (and thus the
number of crossovers made), the higher the compu-
tational time. Table 5 shows that the higher the prob-
ability of crossover, the greater the number of suc-
cessful cases. However, in order to keep the compu-
tational time reasonable, we decided that pc = 0.25
was a reasonable compromise. Figure 22 and Tables
6 and 7 present reasons of our choice of pm = 0.001
as the correct value. The results for different proba-
bility of mutation in Table 7 show very clearly that
for a probability of mutation that is too high “good”
solutions are broken by random changes and results
deteriorate. On the other hand, results for pm = 0
document that “no mutation” is not a good choice
either.
Figure 23 and Table 8 present different computation
times for various numbers of generations (50 trian-
gulations per generation, pc = 0.25, pm = 0.001).
For most experiments, we picked 100 generations as
a basis; higher numbers of generations are generally
too slow.
Table 9 documents that, generally, it is more efficient
to have more generations and less triangulations per

Table 6. Computational times (s) for 100 generations, each with
50 triangulations, and various pm (pc = 0.25)

N pm = 0.001 pm = 0 pm = 0.01 pm = 0.1 pm = 1

10 3.36 3.36 3.68 3.46 3.93
20 7.53 7.57 7.61 7.89 9.64
30 12.13 12.14 12.27 12.90 16.48
50 23.70 23.56 24.12 25.49 35.38

100 59.01 58.96 60.45 65.06 100.10
120 77.48 77.21 79.28 85.89 136.15
130 87.84 87.32 89.73 97.80 155.97
150 108.64 108.01 111.42 122.51 200.38
200 170.42 169.33 174.18 191.23 326.59
300 325.43 322.12 331.36 367.60 660.15
500 768.60 763.72 785.18 881.51 1697.56

Table 7. Percentage of cases in which iteration with the given
value of pm provided results better than, worse than or the same
as iteration with pm = 0.001 (100 generations, each with 50
triangulations, pc = 0.25)

pm = 0 pm = 0.01 pm = 0.1 pm = 1

Better 15.20 15.20 6.10 6.10
Worse 66.60 60.55 75.75 75.75
The same 18.20 24.25 18.15 18.15

Fig. 22. Computation time for 100 generations, each with
50 triangulations, pc = 0.25; pm = 0, 0.001, 0.01, 0.1, 1

generation than vice versa. Times of computation are
not documented, as they are nearly the same, the
lower number of generations being slightly quicker.
Table 10 shows that the higher the number of gen-
erations, the better the solutions found. However,



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 393

23

24

25

Fig. 23. Computation time for different number of gen-
erations; 50 triangulations per generation, pm = 0.001,
pc = 0.25

Fig. 24. Time complexity measured for 100 generations,
each with 50 triangulations, pm = 0.001, pc = 0.25
Fig. 25. Example of the triangulation on 200 points, dis-
tributed uniformly in a unit circle, optimized on 0.25×
fMW +0.25× fMIMAS +0.25× fMAMIS +0.25× fMSR

time demand has to be taken into account; it prevents
a very large number of generations. Figure 24 docu-
ments that measured time complexity is better than
O(N2) – approximately O(N3/2).

Table 8. Computation times (s) for different number of genera-
tions, each with 50 triangulations (pc = 0.25, pm = 0.001)

N 50 gen 100 gen 200 gen 300 gen

10 1.659 3.358 6.74 10.141
20 3.762 7.530667 15.136 22.676
30 6.059 12.13433 24.258 36.449
50 11.844 23.69733 47.388 70.952

100 29.626 59.011 118.053 177.655
120 38.949 77.48167 154.936 231.65
130 44.411 87.83933 174.888 263.299
150 54.308 108.643 217.075 326.737
200 85.739 170.4217 338.66 507.069
300 163.842 325.431 639.843 961.586
500 387.594 768.602 1517.598 2270.05

Table 9. Percentage of cases in which 100 generations, each
with 50 triangulations, is better than 50 generations, each with
100 triangulations (pm = 0.001,pc = 0.25)

100 gen.×50 tr. is better 48.50
100 gen.×50 tr. is worse 33.33

Both the same 18.17

Table 10. Percentage of cases in which more than 100 genera-
tions found a better solution than 100 generations (50 triangula-
tions per generation, pc = 0.25, pm = 0.001)

50 gen. 200 gen. 300 gen.

Better than 100 gen. 0 75.00 78.85
Worse than 100 gen. 66.75 0 0

The same 33.25 25.00 21.15

Figure 25 shows an example of generated triangula-
tion on uniform random data optimized with 0.25×
fMW+0.25× fMIMAS+0.25× fMAMIS+0.25× fMSR.
Let us sum up the results. The most important argu-
ment against GO is time requirement. Because in-
stead of one triangulation, several thousands are gen-
erated, computation time inevitably must be much
worse than if a deterministic triangulation algorithm,
computing only one mesh, is used. In our opinion,
GO is especially suitable in a situation where qual-
ity is preferred to speed. However, if processing time
is substantial, GO cannot compare with the ‘classi-
cal’ deterministic algorithm, e.g., for 500 data points,
a Delaunay triangulation can be computed in less
than 1 s, while GO needs about 12 min. Some in-
crease in speed might be achieved by parallelization,
as members of one generation could be distributed



394 I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations

among processing elements, a natural synchroniza-
tion point being the end of the computation of a new
generation. The most important argument for GO is
its versatility – its application is independent of the
type of criterion. In other words, GO contains an in-
finite number of particular triangulators.

6 Conclusion

This paper introduces a new category of multicriteria-
optimized triangulations and presents how the ge-
netic approach can be used to obtain them. Combi-
nation of weight and angle criteria in one triangu-
lation may bring new possibilities for geometrical
modeling and data visualization. It is also possi-
ble to compute triangle meshes, which are opti-
mized differently in different subareas. The method
also enables a particular direction to be preferred,
which may be useful in terrain modeling (the so-
called data-dependent triangulations [10, 15]). The
main weakness of the proposed method is time de-
mand. However, if quality is preferred to speed, the
method may provide an interesting tool for unusual
triangulations.

Acknowledgements. Authors would like to thank to Prof. Dr. V. Skala
from the University of West Bohemia in Pilsen, Czech Republic for
providing the environment in which this work has been possible and to
anonymous referee for substantial encouragement and set of particular
ideas how to improve the quality of the paper. This work was supported
by the Ministry of Education of The Czech Republic – project VS 97
155 and project GA AV A2030801.

References

1. Aichholzer O, Aurenhammer F, Hainz R (1998) New results
on MWT subgraphs. TR No. 140, 1998, Institute for Theo-
retical Computer Science, Graz University of Technology

2. Anagnostou E, Corneil D (1993) Polynomial-time in-
stances of the MWT problem. Comput Geom Theor Appl
3:247–259

3. Aurenhammer F (1991) Voronoi diagrams – a survey of
a fundamental geometric data structure. ACM Comput Surv
23(3):345–405

4. Bartánus M, Ferko A, Mag R, Niepel L, Plachetka T,
Šikudová E (1996) New heuristics for Minimum Weight
Triangulation. In: WSCG 96, Conference Proceedings, Uni-
versity of West Bohemia, Pilsen, pp 31–40

5. Beirouti R, Snoeyink J (1998) Implementations of the LMT
heuristic for minimum weight triangulation. Proc 14th An-
nual Symposium Comput Geom, Minneapolis, ACM, pp
96–105

6. Bern M, Edelsbrunner H, Eppstein D, Mitchell S, Tan TS
(1993) Edge insertion for optimal triangulations. Discrete
Comput Geom 10:47–65

7. Bern M, Eppstein D (1995) Mesh generation and optimal
triangulation, 2nd edn. In: Lecture Notes Series on Comput-
ing, vol 4, World Scientific, pp 47–123

8. de Berg M, van Kreveld M, Overmars M, Schwarzkopf O
(1997) Computational geometry. Algorithms and applica-
tions. Springer, Berlin Heidelberg

9. Brown KQ (1979) Voronoi diagrams from convex hulls. In-
form Proc Lett 9(5):223–228

10. Brown JL (1991) Vertex based data dependent triangula-
tions. Comput Aided Geom Des 8:239–251

11. Capp K, Julstrom BA (1998) A weight-coded genetic al-
gorithm for the minimum weight triangulation problem.
In: Carroll J, Lamont GB, Oppenheim D, George KM,
Bryant B (eds) Applied computing 1998: Proceedings of
the 1998 ACM Symposium on Applied Computing, ACM,
New York, pp 327–331

12. Cignoni P, Montani C, Scopigno R (1992) A Merge-first di-
vide & conquer algorithm for Ed Delaunay triangulations.
Intern Rep C92/16, CNUCE/CNR, Pisa

13. Dickerson MT, Montague MH (1996) A (usually ?) con-
nected subgraph of the minimum weight triangulation. Proc
ACM 12th Symp Comput Geom, Philadelphia, pp 204–213

14. Duppe RD, Gottschalk HH (1970) Automatische Interpo-
lation von Isolinien bei willkürlichen Stützpunkten. Allg
Vermessungsber 77:423–426

15. Dyn N, Levin D, Rippa S (1990) Data dependent triangula-
tions for piecewise linear interpolation. IMA J Numer Anal
10:137–154

16. Edelsbrunner H, Tan TS, Waupotisch R (1990)
An O(n2 log n) time algorithm for the MinMax angle tri-
angulation. Proc. 6th ACM Symp Comput Geom, Berkley,
pp 44–52

17. Edelsbrunner H, Tan TS (1991) A quadratic time algo-
rithm for the minmax length triangulation. SIAM J Comput
22:527–551

18. Edelsbrunner H, Tan TS, Waupotisch R (1992)
An O(N2 log N) time algorithm for the minmax angle trian-
gulation. SIAM J Stat Sci Comput 13, 1992:994–1008

19. Edelsbrunner H, Tan TS (1993) A quadratic time algo-
rithm for the minmax length triangulation. SIAM J Comput
22(3):527–551

20. Eppstein D (1992) The farthest point Delaunay triangulation
minimizes angles. Comput Geom Theory Appl 1:143–148

21. Fang T-P, Piegl LA (1992) Algorithm for Delaunay triangu-
lation and convex-hull computation using a sparse matrix.
CAD 24(8):425–436

22. Fang T-P, Piegl LA (1993) Delaunay triangulation using
a uniform grid. IEEE Comput Graph Appl 5:36–47

23. Garey MR, Johnson DS (1979) Computers and intractabil-
ity. Freeman, San Francisco

24. Goldberg DE (1989) Genetic algorithms in search, op-
timization and machine learning, Addison-Wesley, New
York

25. Heath LS, Pemmaraju SV (1994) New results for the MWT
problem. Algorithmica 12:533–552

26. Holland JH (1975) Adaptation in Natural and Artifical Sys-
tems. University of Michigan Press, Ann Arbor

27. Keil JM (1994) Computing a subgraph of the minimum
weight triangulation. Comput Geom 4:13–26

28. Kolingerová I, Magová I, Ferko A, Niepel L (1997) Better
subgraph of minimum weight triangulation. In: Spring Con-



I. Kolingerová, A. Ferko: Multicriteria-optimized triangulations 395

ference on Computer Graphics SCCG 1997, Conference
Proceedings, Comenius University, Bratislava, pp 49–56

29. Kolingerová I (1998) Genetic approach to the minimum
weight triangulation. In: WSCG’98 Conference Proceed-
ings, Vol. II, University of West Bohemia, Pilsen, pp 184–
191

30. Kolingerová I (1998) Genetic optimization of the triangula-
tion weight. In: 3IA ’98 International Conference Proceed-
ings, Technical University of Limoges, Limoges, pp 23–34

31. Krznaric D (1997) Progress in hierarchical clustering &
minimum weight triangulation. PhD Thesis, University of
Lund

32. Kyoda Y, Imai K, Takuchi F, Tajima A (1997) A branch-
and-cut approach for minimum weight triangulation. In:
Proceedings of Algorithms & Computations, 8th Interna-
tional Symposium ISAAC ’97, Lecture Notes on Computer
Science 1350. Springer, Berlin, Heidelberg, pp 384–393

33. Lawson CL (1977) Software for C1 interpolation. In: Rice
JR (ed) Mathematical Software III, Academic, New York,
pp 161–194

34. Levcopoulos C (1986) An Ω(
√

N) lower bound for the
nonoptimality of the greedy triangulation. Inform Proc Lett
22:25–31

35. Magová I, Ferko A, Niepel L (1997) On edges elimination
for the shortest mesh. In: WSCG’97 Conference Proceed-
ings, University of West Bohemia, Pilsen, pp 396–403

36. Manacher GK, Zobrist AL (1979) Neither the greedy nor
the Delaunay triangulation of a planar point set approxi-
mates the optimal triangulation. Inform Proc Lett 9(1):31–
34

37. Meijer H, Rappaport D (1992) Computing the MWT of
a set of linearly ordered points. Inform Proc Lett 42:5–38

38. Michalewitz Z (1996) Genetic algorithms +data structures
= evolution programs. Springer, Berlin, Heidelberg

39. Midtbo T (1993) Spatial modelling by Delaunay networks
of two and three dimensions.
Available at http://www.iko.unit.no/tmp/term.html

40. Okabe A, Boots B, Sugihara K (1992) Spatial tessela-
tions: concepts and applications of Voronoi diagrams. Wi-
ley, Chichester

41. O’ Rourke J (1994) Computational geometry in C. Cam-
bridge University Press, New York

42. Plaisted DA, Hong J (1987) A heuristic triangulation algo-
rithm. J Algorithms 8:405–437

43. Preparata FP, Shamos MI (1985) Computational geometry:
an introduction. Springer, Berlin Heidelberg New York

44. Qin K, Wang W, Gong M (1997) A genetic algorithm for
the minimum weight triangulation. In: Proc. 1997 IEEE Int.
Conf. Evol. Comput., Piscataway, IEEE, pp 541–546

45. Schumaker LL (1993) Computing optimal triangulations
using simulated annealing. Comput Aided Geom Des
10:329–345

46. Wu Y, Wainwright RL (1993) Near-optimal triangulation of
a point set using genetic algorithms. In: Proc. 7th Oklahoma
Symp. Artificial Intelligence, USA, pp 121–131

47. Yang B-T, Xu Y-F, You Z-Y (1994) A chain decomposition
algorithm for the proof of a property on minimum weight
triangulations. In: Du D-Z, Zhang X-S (eds) Algorithms
and computation. Springer, Berlin, Heidelberg, pp 423–427

IVANA KOLINGEROVÁ grad-
uated in Computer Science in
1987, received her PhD in In-
formatics and Computer Sci-
ence in 1994 and habilitated in
2000. She works as an asso-
ciate professor in the Depart-
ment of Computer Science and
Engineering at the University of
West Bohemia in Pilsen, Czech
Republic. Her research inter-
ests include computer graph-
ics and computational geometry,
especially application of non-

traditional mathematical methods. Her international experience
includes Denmark, U.S.A. and Slovenia.

ANDREJ FERKO studied nu-
merical analysis and obtained
his CSc. (PhD equivalent) at
Comenius University in inte-
grated circuit design. Currently,
he is lecturing professor with
the Department of Computer
Graphics and Image Process-
ing at Comenius University in
Bratislava, Slovakia. His current
research interests include com-
puter graphics, standardization
and multimedia, computational
geometry (meshing). He is a

Slovak representative for ISO/IEC JTC1/SC24 Information
Processing – Computer Graphics and Image Processing (O-
membership). Annually he co-organizes the Spring Conference
on Computer Graphics and Central European Student Seminar
on Computer Graphics.


