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Deep architectures

 How to recognize complex
objects from raw data?

e Problem of variability
(position, rotation, size)

e Deep architectures important:
* in artificial intelligence
* In biological systems

e allow to make a cascade of
nonlinear transformations —
deep learning
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Methods using artificial neural networks

e Dbrain-inspired
 Dbasic building blocks (computing elements) — artificial neurons:
« deterministic (perceptron, RBF) — discriminatory models (c)

e stochastic (probabilistic) — generative models (a,b)
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* multi-layered feedforward architectures
 model parameters are learned using training data

 model performance evaluated on testing data (generalization)



Brief history of connectionism

classical connectionism (until 1940s)
« within philosophy, psychology
old connectionism (1950s-1970s) — birth of computer era

* Dbeginning of theory of artificial neural networks

* linked to cognitive science revolution

new connectionism (from 1986)

* parallel distributed processing — subsymbolic processing
« multi-layer NN models (incl. recurrent)

even newer connectionism (late 1990s)

« multilayer generative models (probabilistic approach)



Learning paradigms in NN

supervised (with teacher) unsupervised (self-organized)
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Typical artificial neuron model

1. receives signals from other neurons (or sensors)
2. processes (Integrates) incoming signals
3. sends the processed signal to other neurons (or muscles)
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Discrete perceptron

* Inputs x , weights w, output y

e Activation:

y =f(2n._1 ijj B e) loput

]_

y=F(X " wx)

signals

xn—lrl:_l

e f=threshold function: unipolar
{0,1} or bipolar {-1,+1}

e Supervised learning — uses
teacher signal d

e Learning rule:

(Rosenblatt, 1962)

vo—(3

Activation
function

f

Summing l
function
a
Thereshald

Synaptic weights

wj(t+1) = w]_(t) +x(d-vy) X

F. Rosenblatt (1962). Principles of Neurodynamics, Spartan, New York, NY.



Summary of perceptron algorithm

Given: training data: input-target {x, d} pairs, unipolar perceptron
Initialization: randomize weights, set learning rate
Training:

1. choose input x, compute output y, set E=0

2. evaluate error function e(t) = V2 (d — y), E < E + e(t)

3. adjust weights using delta rule (if e(z) > 0)

4. if all patterns used, then goto 5, else goto 1

5.1f E =0 (all patterns in the set classified correctly), then end

else reorder inputs, £E- 0,goto 1



Perceptron classification capacity

WX, +wx,+ . +wx =0 linear separability of two classes
A x2
2D
example linear
decision
boundary

Fixed-increment convergence theorem (Rosenblatt, 1962): “Let the
classes A and B are finite and linearly separable, then perceptron learning
algorithm converges (updates its weight vector) in a finite number of steps.”



Historical background:
First generation neural networks

Perceptrons (~1960)
used a layer of hand-
coded features and tried
to recognize objects by
learning how to weight
these features.

— There was a neat
learning algorithm for
adjusting the weights.

— But perceptrons are
fundamentally limited
iIn what they can learn
to do.

Bomb Toy _
output units

e.qg. class labels

non-adaptive
hand-coded
- features

input units
e.g. pixels

Sketch of a typical
perceptron from the 1960’s

(Hinton, 2007)



Second generation neural networks (~1985)

Compare outputs with
correct answer to get
error signal

«= Outputs

hidden
\/ layers

<= iNnput vector

(Hinton, 2007)



Two-layer perceptron

Inputs x , weights w, v, outputs y

X, O
Nonlinear activation function f
Unit activation: X; O

he=f(X v, N/ © %

g+1 o
yi:f<zk:1 Wikhk)

Bias input:  x ., ,=h_,,=—1

Activation function examples:
flnet) = 1/ (1+exp(-net))
f(net) = tanh(net)




Learning equations for original BP

Hidden-output weights:
w (t+1)=w (1) + «d,h  Where 6, =(d —-y)f'

Input-hidden weights:

V(D =, () + x5, % where 5 = (2w, 8)f,

BP provides an “approximation” to the layern  layer n+1

trajectory in weight space computed by the
method of steepest descent. k /

- smoothness of the trajectory depends on O V\W 6



Convolutional Neural Networks
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(Arel et al, 2010)



Application: Recognizing hand-written ZIP codes

Input: 16x16 units, (-1,1) range (LeCun, et al, 1989)
3 hidden layers (HL) 10 output units [O[T2[3[a[5[6[7I8] 9|

Reduction of free parameters by
weight sharing on HL1: all 64 unitsin 30 units
a group had the same 25 weights

the same principle used in HL2 1eeallrg ot T
detectors 5 as
1256 units and 9760 weights oy
Error back-propagation learning used,
i i 12 feat 3284
accelerated with quasi-Newton rule b T e
(8 by 8) N Fry

1% error on train set (7,300 digits),
5% on test set (2,000 digits).

“optimal brain damage” - further
g:rlrrglnatlon of weights to reduce test e o




Stochastic binary units

(Bernoulli variables)
These have a state of 1 !
or 0. T

p(s; =1)

The probability of

turning on is determined 0 |

by the weighted input 0

from other units (plus a b; + 2 SiWi —
bias) J

p(s; =1)



Restricted Boltzmann Machine (RBM)

hidden Task 2 @ Pl ¥)
Q aggregated
posterior distribution

on hidden units

visible

Task 1 @ p(v|h,W)

+ Each RBM converts its data distribution data distribution
into an aggregated posterior distribution
over its hidden units.

» This divides the task of modeling its
data into two tasks:

on visible units

(Smolensky, 1986)



The Energy of a joint configuration

(ignoring terms to do with biases)

binary state of binary state of
visible unit i hidden unit j

\ /
Evh) = = ¥ vihw;
/ N\

Energy with configuration weight between
v on the visible units and units i and |

h on the hidden units

~OE(v,h)

aw_g

v.h.

v

(Hinton, 2007)



Weights = Energies = Probabilities

« Each possible joint configuration of the visible
and hidden units has an energy

— The energy Is determined by the weights and
biases (as in a Hopfield net).

* The energy of a joint configuration of the visible
and hidden units determines its probability:

—E(v,h
p(v, ) o = H)
* The probability of a configuration over the visible

units is found by summing the probabilities of all
the joint configurations that contain it.

(Hinton, 2007)



A quick way to learn an RBM

O@QO

ODO

-:vh/ \ {w/

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a "reconstruction”.

t=0 t=1
data reconstruction Update the hidden units again.
0 1
Aw; = & (<vih;> —<v;h;>)

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

(Hinton, 2007)



How to learn a set of features that are good for
reconstructing images of the digit 2

20 binary 20 binary
feature feature
neurons neurons

Increment weights Decrement weights
between an active between an active
pixel and an active pixel and an active

feature feature

16 x 16 16 x 16
pixel pixel
image image

data reconstruction
(reality) (better than reality)



Deep Belief Network (DBN) = stacked RBMs

The top two layers form an

associative memory whose 2000 top-level neurons
energy landscape models the low
dimensional manifolds of the I I
digits.
10 label
The energy valleys have names wmp T 500 neurons

11

500 neurons

The model learns to generate
combinations of labels and images.

To perform recognition we start with a I l
neutral state of the label units and do 28 x 28
an up-pass from the image followed pixel
by a few iterations of the top-level image

associative memory.

(Hinton, 2006)



Examples of correctly recognized handwritten digits
that the neural network had never seen before

oclwli N\ (/A2
de2dQ 2 ASH7
3¢ 79144046 >9
lel 772\ 71T4279

Its very
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How well does it discriminate on MNIST test set with
no extra information about geometric distortions?

« Generative model based on RBM'’s 1.25%
« Support Vector Machine (Decoste et. al.) 1.4%
« Backprop with 1000 hiddens (Platt) ~1.6%
« Backprop with 500 -->300 hiddens ~1.6%
« K-Nearest Neighbor ~ 3.3%

« See Le Cun et. al. 1998 for more results

 |ts better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.



Convolutional DBN

//INP Pk /\ Pk (pooling layer)
Ny \
;H/ C'z‘j hku \/ H¥ (detection layer)
» sharing weights

\ among all locations
Wk within a layer
* Probabilistic max-pooling

7 ]  Both features lead to
;V/ waé v / V (visible layer) translational invariance

and contribute to scalability
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(Lee et al, 2009)



CDBN performance on MNIST and Caltech-101 datasets

Table 2. Test error for MNIST dataset

Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.621£0.12% | 2.13£0.10% | 1.91+0.09% | 1.59+0.11% | 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four

object categories (faces, cars, airplanes, motorbikes).

(Lee et al, 2009)



CDBN - face reconstruction (Caltech-101)

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.



Multi-column deep NN

Trained by error
back-propagation!

Image
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(Schmidhuber et al, 2010)



Digit recognition - MNIST
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Figure 3: (a) Preprocessed images, from top to bottom: original. Imadjust, Histeq, Adapthisteq, Conorm.
(b) The 68 errors of the MCDNN, with correct label (left) and first and second best predictions (middle and

right). _
(Ciresan et al, 2012)



Mammalian visual system

BA
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Crucial role of spatial attention:

[ = Triggered top-down or bottom-up
%E ELGI*I
RGC




Summary

Complex image recognition — extremely difficult
Neural network approaches

« Discriminative (e.g. back-propagation) - reNNaissance
* Generative (e.g. DBNs, HTM,...)

- provide added value (biologically plausible)
Convolution useful in both approaches

Attentional component inevitable for complex images

Maybe more inspiration from biology



	Slide 1
	Slide 2
	Slide 3
	History
	Learning in NN
	Artificial neuron
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	2-mlp
	Slide 13
	Slide 14
	ZIP
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

