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Epipolar Geometry and the Fundamental Matrix

The epipolar geometry is the intrinsic projective geometry between two views. It is
independent of scene structure, and only depends on the cameras’ internal param-
eters and relative pose.

The fundamental matrix F encapsulates this intrinsic geometry. It is a 3 × 3
matrix of rank 2. If a point in 3-space X is imaged as x in the first view, and x′ in
the second, then the image points satisfy the relation x′>Fx = 0.

We will first describe epipolar geometry, and derive the fundamental matrix.
The properties of the fundamental matrix are then elucidated, both for general
motion of the camera between the views, and for several commonly occurring special
motions. It is next shown that the cameras can be retrieved from F up to a projective
transformation of 3-space. This result is the basis for the projective reconstruction
theorem given in chapter 9. Finally, if the camera internal calibration is known, it is
shown that the Euclidean motion of the cameras between views may be computed
from the fundamental matrix up to a finite number of ambiguities.

The fundamental matrix is independent of scene structure. However, it can be
computed from correspondences of imaged scene points alone, without requiring
knowledge of the cameras’ internal parameters or relative pose. This computation
is described in chapter 10.

8.1 Epipolar geometry

The epipolar geometry between two views is essentially the geometry of the inter-
section of the image planes with the pencil of planes having the baseline as axis (the
baseline is the line joining the camera centres). This geometry is usually motivated
by considering the search for corresponding points in stereo matching, and we will
start from that objective here.

Suppose a point X in 3-space is imaged in two views, at x in the first, and x′

in the second. What is the relation between the corresponding image points x and
x′? As shown in figure 8.1a the image points x and x′, space point X, and camera
centres are coplanar. Denote this plane as π. Clearly, the rays back-projected from
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Fig. 8.1. Point correspondence geometry. (a) The two cameras are indicated by their
centres C and C′ and image planes. The camera centres, 3-space point X, and its images
x and x′ lie in a common plane π. (b) An image point x back-projects to a ray in 3-space
defined by the first camera centre, C, and x. This ray is imaged as a line l′ in the second
view. The 3-space point X which projects to x must lie on this ray, so the image of X in
the second view must lie on l′.
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Fig. 8.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the
epipoles e and e′. Any plane π containing the baseline is an epipolar plane, and intersects
the image planes in corresponding epipolar lines l and l′. (b) As the position of the 3D point
X varies, the epipolar planes “rotate” about the baseline. This family of planes is known as
an epipolar pencil. All epipolar lines intersect at the epipole.

x and x′ intersect at X, and the rays are coplanar, lying in π. It is this latter
property that is of most significance in searching for a correspondence.

Supposing now that we know only x, we may ask how the corresponding point
x′ is constrained. The plane π is determined by the baseline and the ray defined
by x. From above we know that the ray corresponding to the (unknown) point x′

lies in π, hence the point x′ lies on the line of intersection l′ of π with the second
image plane. This line l′ is the image in the second view of the ray back-projected
from x. In terms of a stereo correspondence algorithm the benefit is that the search
for the point corresponding to x need not cover the entire image plane but can be
restricted to the line l′.
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Fig. 8.3. Converging cameras. (a) Epipolar geometry for converging cameras. (b) and
(c) A pair of images with superimposed corresponding points and their epipolar lines (in
white). The motion between the views is a translation and rotation. In each image, the
direction of the other camera may be inferred from the intersection of the pencil of epipolar
lines. In this case, both epipoles lie outside of the visible image.

The geometric entities involved in epipolar geometry are illustrated in figure 8.2.
The terminology is

• The epipole is the point of intersection of the line joining the camera centres
(the baseline) with the image plane. Equivalently, the epipole is the image in one
view of the camera centre of the other view. It is also the vanishing point of the
baseline (translation) direction.

• An epipolar plane is a plane containing the baseline. There is a one-parameter
family (a pencil) of epipolar planes.

• An epipolar line is the intersection of an epipolar plane with the image plane.
All epipolar lines intersect at the epipole. An epipolar plane intersects the left
and right image planes in epipolar lines, and defines the correspondence between
the lines.

Examples of epipolar geometry are given in figure 8.3 and figure 8.4. The epipo-
lar geometry of these image pairs, and indeed all the examples of this chapter, is
computed directly from the images as described in section 10.6(p274).
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Fig. 8.4. Motion parallel to the image plane. In the case of a special motion where the
translation is parallel to the image plane, and the rotation axis is perpendicular to the image
plane, the intersection of the baseline with the image plane is at infinity. Consequently the
epipoles are at infinity, and epipolar lines are parallel. (a) Epipolar geometry for motion
parallel to the image plane. (b) and (c) a pair of images for which the motion between views
is (approximately) a translation parallel to the x-axis, with no rotation. Four corresponding
epipolar lines are superimposed in white. Note that corresponding points lie on corresponding
epipolar lines.

8.2 The fundamental matrix F

The fundamental matrix is the algebraic representation of epipolar geometry. In
the following we derive the fundamental matrix from the mapping between a point
and its epipolar line, and then specify the properties of the matrix.

Given a pair of images, it was seen in figure 8.1 that to each point x in one image,
there exists a corresponding epipolar line l′ in the other image. Any point x′ in the
second image matching the point x must lie on the epipolar line l′. The epipolar
line is the projection in the second image of the ray from the point x through the
camera centre C of the first camera. Thus, there is a map

x 7→ l′

from a point in one image to its corresponding epipolar line in the other image. It is
the nature of this map that will now be explored. It will turn out that this mapping
is a (singular) correlation, that is a projective mapping from points to lines, which
is represented by a matrix F, the fundamental matrix.

8.2.1 Geometric derivation

We begin with a geometric derivation of the fundamental matrix. The mapping
from a point in one image to a corresponding epipolar line in the other image may
be decomposed into two steps. In the first step, the point x is mapped to some
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Fig. 8.5. A point x in one image is transferred via the plane π to a matching point x′ in
the second image. The epipolar line through x′ is obtained by joining x′ to the epipole e′.
In symbols one may write x′ = Hπx and l′ = [e′]×x′ = [e′]×Hπx = Fx where F = [e′]×Hπ is
the fundamental matrix.

point x′ in the other image lying on the epipolar line l′. This point x′ is a potential
match for the point x. In the second step, the epipolar line l′ is obtained as the line
joining x′ to the epipole e′.

Step 1: Point transfer via a plane. Refer to figure 8.5. Consider a plane π in
space not passing through either of the two camera centres. The ray through the
first camera centre corresponding to the point x meets the plane π in a point X.
This point X is then projected to a point x′ in the second image. This procedure
is known as transfer via the plane π. Since X lies on the ray corresponding to x,
the projected point x′ must lie on the epipolar line l′ corresponding to the image of
this ray, as illustrated in figure 8.1b. The points x and x′ are both images of the
3D point X lying on a plane. The set of all such points xi in the first image and
the corresponding points x′i in the second image are projectively equivalent, since
they are each projectively equivalent to the planar point set Xi. Thus there is a 2D
homography H� mapping each xi to x′i.

Step 2: Constructing the epipolar line. Given the point x′ the epipolar line
l′ passing through x′ and the epipole e′ can be written as l′ = e′×x′ = [e′]×x′ (the
notation [e′]× is defined in (A3.4–p554)). Since x′ may be written as x′ = H�x, we
have

l′ = [e′]×H�x = Fx

where we define F = [e′]×H�, the fundamental matrix. This shows

Result 8.1. The fundamental matrix F may be written as F = [e′]×H�, where H�
is the transfer mapping from one image to another via any plane π. Furthermore,
since [e′]× has rank 2 and H� rank 3, F is a matrix of rank 2.
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Geometrically, F represents a mapping from the 2-dimensional projective plane
IP2 of the first image to the pencil of epipolar lines through the epipole e′. Thus, it
represents a mapping from a 2-dimensional onto a 1-dimensional projective space,
and hence must have rank 2.

Note, the geometric derivation above involves a scene plane π, but a plane is not
required in order for F to exist. The plane is simply used here as a means of defining
a point map from one image to another. The connection between the fundamental
matrix and transfer of points from one image to another via a plane is dealt with
in some depth in chapter 12.

8.2.2 Algebraic derivation

The form of the fundamental matrix in terms of the two camera projection matrices,
P, P′, may be derived algebraically. The following formulation is due to Xu and
Zhang [Xu-96].

The ray back-projected from x by P is obtained by solving PX = x. The one-
parameter family of solutions is of the form given by (5.13–p148) as

X(λ) = P+x + λC

where P+ is the pseudo-inverse of P, i.e. PP+ = I, and C its null-vector, namely the
camera centre, defined by PC = 0. The ray is parametrized by the scalar λ. In
particular two points on the ray are P+x (at λ = 0), and the first camera centre C
(at λ = ∞). These two points are imaged by the second camera P′ at P′P+x and
P′C respectively in the second view. The epipolar line is the line joining these two
projected points, namely l′ = (P′C)× (P′P+x). The point P′C is the epipole in the
second image, namely the projection of the first camera centre, and may be denoted
by e′. Thus, l′ = [e′]×(P′P+)x = Fx, where F is the matrix

F = [e′]×P′P+. (8.1)

This is essentially the same formula for the fundamental matrix as the one derived
in the previous section, the homography H� having the explicit form H� = P′P+ in
terms of the two camera matrices. Note that this derivation breaks down in the
case where the two camera centres are the same for, in this case, C is the common
camera centre of both P and P′, and so P′C = 0. It follows that F defined in (8.1) is
the zero matrix.

Example 8.2. Suppose the camera matrices are those of a calibrated stereo rig with
the world origin at the first camera

P = K[I | 0] P′ = K′[R | t].
Then

P+ =

[
K−1

0>

]
C =

(
0
1

)
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and

F = [P′C]×P′P+

= [K′t]×K′RK−1 = K′−>[t]×RK−1 = K′−>R[R>t]×K−1 = K′−>RK>[KR>t]×(8.2)

where the various forms follow from result A3.3(p555). Note that the epipoles
(defined as the image of the other camera centre) are

e = P

(
−R>t

1

)
= KR>t e′ = P′

(
0
1

)
= K′t. (8.3)

Thus we may write (8.2) as

F = [e′]×K′RK−1 = K′−>[t]×RK−1 = K′−>R[R>t]×K−1 = K′−>RK>[e]×. (8.4)

4
The expression for the fundamental matrix can be derived in many ways, and indeed
will be derived again several times in this book. In particular, (16.3–p400) expresses
F in terms of 4 × 4 determinants composed from rows of the camera matrices for
each view.

8.2.3 Correspondence condition

Up to this point we have considered the map x → l′ defined by F. We may now
state the most basic properties of the fundamental matrix.

Result 8.3. The fundamental matrix satisfies the condition that for any pair of
corresponding points x↔ x′ in the two images

x′>Fx = 0.

This is true, because if points x and x′ correspond, then x′ lies on the epipolar
line l′ = Fx corresponding to the point x. In other words 0 = x′>l′ = x′>Fx.
Conversely, if image points satisfy the relation x′>Fx = 0 then the rays defined by
these points are coplanar. This is a necessary condition for points to correspond.

The importance of the relation of result 8.3 is that it gives a way of characteriz-
ing the fundamental matrix without reference to the camera matrices, i.e. only in
terms of corresponding image points. This enables F to be computed from image
correspondences alone. We have seen from (8.1) that F may be computed from the
two camera matrices, P, P′, and in particular that F is determined uniquely from
the cameras, up to an overall scaling. However, we may now enquire how many
correspondences are required to compute F from x′>Fx = 0, and the circumstances
under which the matrix is uniquely defined by these correspondences. The details
of this are postponed until chapter 10, where it will be seen that in general at least
7 correspondences are required to compute F.
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• F is a rank 2 homogeneous matrix with 7 degrees of freedom.

• Point correspondence: If x and x′ are corresponding image points, then

x′>Fx = 0.

• Epipolar lines:

� l′ = Fx is the epipolar line corresponding to x.

� l = F>x′ is the epipolar line corresponding to x′.

• Epipoles:

� Fe = 0.

� F>e′ = 0.

• Computation from camera matrices P, P′:
� General cameras,

F = [e′]×P′P+, where P+ is the pseudo-inverse of P, and e′ = P′C, with PC = 0.

� Canonical cameras, P = [I | 0], P′ = [M |m],
F = [e′]×M = M−>[e]×, where e′ = m and e = M−1m.

� Cameras not at infinity P = K[I | 0], P′ = K′[R | t],
F = K′−>[t]×RK−1 = [K′t]×K′RK−1 = K′−>RK>[KR>t]×.

Table 8.1. Summary of fundamental matrix properties.

8.2.4 Properties of the fundamental matrix

Definition 8.4. Suppose we have two images acquired by cameras with non-
coincident centres, then the fundamental matrix F is the unique 3 × 3 rank 2
homogeneous matrix which satisfies

x′>Fx = 0 (8.5)

for all corresponding points x↔ x′.

We now briefly list a number of properties of the fundamental matrix. The most
important properties are also summarized in table 8.1.

(i) Transpose: If F is the fundamental matrix of the pair of cameras (P, P′),
then F> is the fundamental matrix of the pair in the opposite order: (P′, P).

(ii) Epipolar lines: For any point x in the first image, the corresponding epipo-
lar line is l′ = Fx. Similarly, l = F>x′ represents the epipolar line correspond-
ing to x′ in the second image.

(iii) The epipole: for any point x (other than e) the epipolar line l′ = Fx contains
the epipole e′. Thus e′ satisfies e′>(Fx) = (e′>F)x = 0 for all x. It follows
that e′>F = 0, i.e. e′ is the left null-space of F. Similarly Fe = 0, i.e. e is the
right null-space of F.
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Fig. 8.6. Epipolar line homography. (a) There is a pencil of epipolar lines in each
image centred on the epipole. The correspondence between epipolar lines, li ↔ l′i, is defined
by the pencil of planes with axis the baseline. (b) The corresponding lines are related by
a perspectivity with centre any point p on the baseline. It follows that the correspondence
between epipolar lines in the pencils is a 1D homography.

(iv) F has seven degrees of freedom: a 3 × 3 homogeneous matrix has eight in-
dependent ratios (there are nine elements, and the common scaling is not
significant); however, F also satisfies the constraint det F = 0 which removes
one degree of freedom.

(v) F is a correlation, a projective map taking a point to a line (see definition
1.28(p39)). In this case a point in the first image x defines a line in the
second l′ = Fx, which is the epipolar line of x. If l and l′ are corresponding
epipolar lines (see figure 8.6a) then any point x on l is mapped to the same
line l′. This means there is no inverse mapping, and F is not of full rank. For
this reason, F is not a proper correlation (which would be invertible).

8.2.5 The epipolar line homography

The set of epipolar lines in each of the images forms a pencil of lines passing through
the epipole. Such a pencil of lines may be considered as a 1-dimensional projective
space. It is clear from figure 8.6b that corresponding epipolar lines are perspectively
related, so that there is a homography between the pencil of epipolar lines centred
at e in the first view, and the pencil centred at e′ in the second. A homography
between two such 1-dimensional projective spaces has 3 degrees of freedom.

The degrees of freedom of the fundamental matrix can thus be counted as follows:
2 for e, 2 for e′, and 3 for the epipolar line homography which maps a line through
e to a line through e′. A geometric representation of this homography is given
in section 8.4. Here we give an explicit formula for this mapping.

Result 8.5. Suppose l and l′ are corresponding epipolar lines, and k is any line not
passing through the epipole e, then l and l′ are related by l′ = F[k]×l. Symmetrically,
l = F>[k′]×l′.

Proof The expression [k]×l = k × l is the point of intersection of the two lines k
and l, and hence a point on the epipolar line l – call it x. Hence, F[k]×l = Fx is the
epipolar line corresponding to the point x, namely the line l′.
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Fig. 8.7. Under a pure translational camera motion, 3D points appear to slide along parallel
rails. The images of these parallel lines intersect in a vanishing point corresponding to the
translation direction. The epipole e is the vanishing point.

Furthermore a convenient choice for k is the line e, since k>e = e>e 6= 0, so that
the line e does not pass through the point e as is required. A similar argument
holds for the choice of k′ = e′. Thus the epipolar line homography may be written
as

l′ = F[e]×l l = F>[e′]×l′ .

8.3 Fundamental matrices arising from special motions

A special motion arises from a particular relationship between the translation di-
rection, t, and the direction of the rotation axis, a. We will discuss two cases:
pure translation, where there is no rotation; and pure planar motion, where t is
orthogonal to a (the significance of the planar motion case is described in section
2.4.1(p58)). The ‘pure’ indicates that there is no change in the internal parame-
ters. Such cases are important, firstly because they occur in practice, for example
a camera viewing an object rotating on a turntable is equivalent to planar motion
for pairs of views; and secondly because the fundamental matrix has a special form
and thus additional properties.

8.3.1 Pure translation

In considering pure translations of the camera, one may consider the equivalent
situation in which the camera is stationary, and the world undergoes a translation
−t. In this situation points in 3-space move on straight lines parallel to t, and the
imaged intersection of these parallel lines is the vanishing point v in the direction
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Fig. 8.8. Pure translational motion. (a) under the motion the epipole is a fixed point,
i.e. has the same coordinates in both images, and points appear to move along lines radiating
from the epipole. The epipole in this case is termed the Focus of Expansion (FOE). (b) and
(c) the same epipolar lines are overlaid in both cases. Note the motion of the posters on the
wall which slide along the epipolar line.

of t. This is illustrated in figure 8.7 and figure 8.8. It is evident that v is the epipole
for both views, and the imaged parallel lines are the epipolar lines. The algebraic
details are given in the following example.

Example 8.6. Suppose the motion of the cameras is a pure translation with no
rotation and no change in the internal parameters. One may assume that the two
cameras are P = K[I | 0] and P′ = K[I | t]. Then from (8.4) (using R = I and K = K′)

F = [e′]×KK−1 = [e′]×.

If the camera translation is parallel to the x-axis, then e′ = (1, 0, 0)>, so

F =

 0 0 0
0 0 −1
0 1 0

 .

The relation between corresponding points, x′>Fx = 0, reduces to y = y′, i.e. the
epipolar lines are corresponding rasters. This is the situation that is sought by
image rectification described in section 10.12(p289). 4

Indeed if the image point x is normalized as x = (x, y, 1)>, then from
x = PX = K[I | 0]X, the space point’s (inhomogeneous) coordinates are (x,y, z)> =
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zK−1x, where z is the depth of the point X (the distance of X from the camera
centre measured along the principal axis of the first camera). It then follows from
x′ = P′X = K[I | t]X that the mapping from an image point x to an image point x′

is

x′ = x + Kt/z. (8.6)

The motion x′ = x+Kt/z of (8.6) shows that the image point “starts” at x and then
moves along the line defined by x and the epipole e = e′ = v. The extent of the
motion depends on the magnitude of the translation t (which is not a homogeneous
vector here) and the inverse depth z, so that points closer to the camera appear to
move faster than those further away – a common experience when looking out of a
train window.

Note that in this case of pure translation F = [e′]× is skew-symmetric and has
only 2 degrees of freedom, which correspond to the position of the epipole. The
epipolar line of x is l′ = Fx = [e]×x, and x lies on this line since x>[e]×x = 0, i.e.
x, x′ and e = e′ are collinear (assuming both images are overlaid on top of each
other). This collinearity property is termed auto-epipolar, and does not hold for
general motion.

General motion. The pure translation case gives additional insight into the
general motion case. Given two arbitrary cameras, we may rotate the camera used
for the first image so that it is aligned with the second camera. This rotation may
be simulated by applying a projective transformation to the first image. A further
correction may be applied to the first image to account for any difference in the
calibration matrices of the two images. The result of these two corrections is a
projective transformation H of the first image. If one assumes these corrections to
have been made, then the effective relationship of the two cameras to each other is
that of a pure translation. Consequently, the fundamental matrix corresponding to
the corrected first image and the second image is of the form F̂ = [e′]×, satisfying
x′>F̂x̂ = 0, where x̂ = Hx is the corrected point in the first image. From this one
deduces that x′>[e′]×Hx = 0, and so the fundamental matrix corresponding to the
initial point correspondences x↔ x′ is F = [e′]×H. This is illustrated in figure 8.9.

Example 8.7. Continuing from example 8.2, assume again that the two cameras
are P = K[I | 0] and P′ = K′[R | t]. Then as described in section 7.4.2(p194) the
requisite projective transformation is H = K′RK−1 = H∞, where H∞ is the infinite
homography (see section 12.4(p327)), and F = [e′]×H∞.

If the image point x is normalized as x = (x, y, 1)>, as in example 8.6, then
(x,y, z)> = zK−1x, and from x = P′X = K′[R | t]X the mapping from an image
point x to an image point x′ is

x′ = K′RK−1x + K′t/z. (8.7)

The mapping is in two parts: the first term depends on the image position alone,
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Fig. 8.9. General camera motion. The first camera (on the left) may be rotated and
corrected to simulate a pure translational motion. The fundamental matrix for the original
pair is the product F = [e′]×H, where [e′]× is the fundamental matrix of the translation, and
H is the projective transformation corresponding to the correction of the first camera.

i.e. x, but not the point’s depth z, and takes account of the camera rotation and
change of internal parameters; the second term depends on the depth, but not on
the image position x, and takes account of camera translation. In the case of pure
translation (R = I, K = K′) (8.7) reduces to (8.6). 4

8.3.2 Pure planar motion

In this case the rotation axis is orthogonal to the translation direction. Orthogo-
nality imposes one constraint on the motion, and it is shown in the exercises at the
end of this chapter that if K′ = K then Fs, the symmetric part of F, has rank 2 in
this planar motion case (note, for a general motion the symmetric part of F has full
rank). Thus, the condition that det Fs = 0 is an additional constraint on F and
reduces the number of degrees of freedom from 7, for a general motion, to 6 degrees
of freedom for a pure planar motion.

8.4 Geometric representation of the fundamental matrix

This section is not essential for a first reading and the reader may optionally skip
to section 8.5.

In this section the fundamental matrix is decomposed into its symmetric and
asymmetric parts, and each part is given a geometric representation. The symmetric
and asymmetric parts of the fundamental matrix are

Fs =
(
F + F>

)
/2 Fa =

(
F− F>

)
/2

so that F = Fs + Fa.
To motivate the decomposition, consider the points X in 3-space that map to

the same point in two images. These image points are fixed under the camera
motion so that x = x′. Clearly such points are corresponding and thus satisfy
x>Fx = 0, which is a necessary condition on corresponding points. Now, for any
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skew-symmetric matrix A the form x>Ax is identically zero. Consequently only the
symmetric part of F contributes to x>Fx = 0, which then reduces to x>Fsx = 0. As
will be seen below the matrix Fs may be thought of as a conic in the image plane.

Geometrically the conic arises as follows. The locus of all points in 3-space for
which x = x′ is known as the horopter curve. Generally this is a twisted cu-
bic curve in 3-space (see section 2.3(p57)) passing through the two camera cen-
tres [Maybank-93]. The image of the horopter is the conic defined by Fs. We
return to the horopter in chapter 21.

Symmetric part. The matrix Fs is symmetric and is of rank 3 in general. It
has 5 degrees of freedom and is identified with a point conic, called the Steiner
conic (the name is explained below). The epipoles e and e′ lie on the conic Fs.
To see that the epipoles lie on the conic, i.e. that e>Fse = 0, start from Fe = 0.
Then e>Fe = 0 and so e>Fse + e>Fae = 0. However, e>Fae = 0, since for any
anti-symmetric matrix S, x>Sx = 0. Thus e>Fse = 0. The derivation for e′ follows
in a similar manner.

Anti-symmetric part. The matrix Fa is skew-symmetric and may be written
as Fa = [xa]×, where xa is the null-vector of Fa. The skew-symmetric part has 2
degrees of freedom and is identified with the point xa.

The relation between the point xa and conic Fs is shown in figure 8.10a. The
polar of xa intersects the Steiner conic Fs at the epipoles e and e′ (the pole–polar
relation is described in section 1.2.3(p8)). The proof of this result is left as an
exercise.

Epipolar line correspondence. It is a classical theorem of projective geometry
due to Steiner [Semple-79] that for two line pencils related by a homography, the
locus of intersections of corresponding lines is a conic. This is precisely the situation
here. The pencils are the epipolar pencils, one through e and the other through e′.
The epipolar lines are related by a 1D homography as described in section 8.2.5.
The locus of intersection is the conic Fs.

The conic and epipoles enable epipolar lines to be determined by a geometric
construction as illustrated in figure 8.10b. This construction is based on the fixed
point property of the Steiner conic Fs. The epipolar line l = x× e in the first view
defines an epipolar plane in 3-space which intersects the horopter in a point, which
we will call Xc. The point Xc is imaged in the first view at xc, which is the point
at which l intersects the conic Fs (since Fs is the image of the horopter). Now the
image of Xc is also xc in the second view due to the fixed-point property of the
horopter. So xc is the image in the second view of a point on the epipolar plane of
x. It follows that xc lies on the epipolar line l′ of x, and consequently l′ may be
computed as l′ = xc × e′.

The conic together with two points on the conic account for the 7 degrees of
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Fig. 8.10. Geometric representation of F. (a) The conic Fs represents the symmetric
part of F, and the point xa the skew-symmetric part. The conic Fs is the locus of intersection
of corresponding epipolar lines, assuming both images are overlaid on top of each other. It
is the image of the horopter curve. The line la is the polar of xa with respect to the conic
Fs. It intersects the conic at the epipoles e and e′. (b) The epipolar line l′ corresponding
to a point x is constructed as follows: intersect the line defined by the points e and x with
the conic. This intersection point is xc. Then l′ is the line defined by the points xc and e′.

freedom of F: 5 degrees of freedom for the conic and one each to specify the two
epipoles on the conic. Given F, then the conic Fs, epipoles e, e′ and skew-symmetric
point xa are defined uniquely. However, Fs and xa do not uniquely determine F

since the identity of the epipoles is not recovered, i.e. the polar of xa determines
the epipoles but does not determine which one is e and which one e′.

Pure planar motion. We return to the case of planar motion discussed above in
section 8.3.2, where Fs has rank 2. It is evident that in this case the Steiner conic
is degenerate and from section 1.2.3(p8) is equivalent to two non-coincident lines:

Fs = lhls> + lslh>

as depicted in figure 8.11a. The geometric construction of the epipolar line l′ cor-
responding to a point x of section 8.4 has a simple algebraic representation in this
case. As in the general motion case, there are three steps, illustrated in figure 8.11b:
first the line l = e × x joining e and x is computed; second, its intersection point
with the “conic” xc = ls× l is determined; third the epipolar line l′ = e′×xc is the
join of xc and e′. Putting these steps together we find

l′ = e′ × [ls × (e× x)] = [e′]×[ls]×[e]×x.

It follows that F may be written as

F = [e′]×[ls]×[e]×. (8.8)

The 6 degrees of freedom of F are accounted for as 2 degrees of freedom for each of
the two epipoles and 2 degrees of freedom for the line.

The geometry of this situation can be easily visualized: the horopter for this
motion is a degenerate twisted cubic consisting of a circle in the plane of the motion
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Fig. 8.11. Geometric representation of F for planar motion. (a) The lines ls and lh
constitute the Steiner conic for this motion, which is degenerate. Compare this figure with
the conic for general motion shown in figure 8.10. (b) The epipolar line l′ corresponding to
a point x is constructed as follows: intersect the line defined by the points e and x with the
(conic) line ls. This intersection point is xc. Then l′ is the line defined by the points xc

and e′.

(the plane orthogonal to the rotation axis and containing the camera centres), and
a line parallel to the rotation axis and intersecting the circle. The line is the screw
axis (see section 2.4.1(p58)). The motion is equivalent to a rotation about the screw
axis with zero translation. Under this motion points on the screw axis are fixed, and
consequently their images are fixed. The line ls is the image of the screw axis. The
line lh is the intersection of the image with the plane of the motion. This geometry
is used for auto-calibration in chapter 18.

8.5 Retrieving the camera matrices

To this point we have examined the properties of F and of image relations for a point
correspondence x↔ x′. We now turn to one of the most significant properties of F,
that the matrix may be used to determine the camera matrices of the two views.

8.5.1 Projective invariance and canonical cameras

It is evident from the derivations of section 8.2 that the map l′ = Fx and the cor-
respondence condition x′>Fx = 0 are projective relationships: the derivations have
involved only projective geometric relationships, such as the intersection of lines
and planes, and in the algebraic development only the linear mapping of the pro-
jective camera between world and image points. Consequently, the relationships
depend only on projective coordinates in the image, and not, for example on Eu-
clidean measurements such as the angle between rays. In other words the image
relationships are projectively invariant: under a projective transformation of the
image coordinates x̂ = Hx, x̂′ = H′x′, there is a corresponding map l̂

′
= F̂x̂ with

F̂ = H′−>FH−1 the corresponding rank 2 fundamental matrix.
Similarly, F only depends on projective properties of the cameras P, P′. The
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camera matrix relates 3-space measurements to image measurements and so depends
on both the image coordinate frame and the choice of world coordinate frame. F

does not depend on the choice of world frame, for example a rotation of world
coordinates changes P, P′, but not F. In fact, the fundamental matrix is unchanged
by a projective transformation of 3-space. More precisely,

Result 8.8. If H is a 4 × 4 matrix representing a projective transformation of 3-
space, then the fundamental matrices corresponding to the pairs of camera matrices
(P, P′) and (PH, P′H) are the same.

Proof Observe that PX = (PH)(H−1X), and similarly for P′. Thus if x ↔ x′ are
matched points with respect to the pair of cameras (P, P′), corresponding to a 3D
point X, then they are also matched points with respect to the pair of cameras
(PH, P′H), corresponding to the point H−1X.

Thus, although from (8.1–p224) a pair of camera matrices (P, P′) uniquely deter-
mine a fundamental matrix F, the converse is not true. The fundamental matrix
determines the pair of camera matrices at best up to right-multiplication by a 3D
projective transformation. It will be seen below that this is the full extent of the
ambiguity, and indeed the camera matrices are determined up to a projective trans-
formation by the fundamental matrix.

Canonical form of camera matrices. Given this ambiguity, it is common to
define a specific canonical form for the pair of camera matrices corresponding to
a given fundamental matrix in which the first matrix is of the simple form [I | 0],
where I is the 3×3 identity matrix and 0 a null 3-vector. To see that this is always
possible, let P be augmented by one row to make a 4 × 4 non-singular matrix,
denoted P∗. Now letting H = P∗−1, one verifies that PH = [I | 0] as desired.

The following result is very frequently used

Result 8.9. The fundamental matrix corresponding to a pair of camera matrices
P = [I | 0] and P′ = [M |m] is equal to [m]×M.

This is easily derived as a special case of (8.1–p224).

8.5.2 Projective ambiguity of cameras given F

It has been seen that a pair of camera matrices determines a unique fundamental
matrix. This mapping is not injective (one-to-one) however, since pairs of camera
matrices that differ by a projective transformation give rise to the same fundamen-
tal matrix. It will now be shown that this is the only ambiguity. We will show that
a given fundamental matrix determines the pair of camera matrices up to right mul-
tiplication by a projective transformation. Thus, the fundamental matrix captures
the projective relationship of the two cameras.
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Theorem8.10. Let F be a fundamental matrix and let (P, P′) and (P̃, P̃′) be two pairs
of camera matrices such that F is the fundamental matrix corresponding to each of
these pairs. Then there exists a non-singular 4 × 4 matrix H such that P̃ = PH and
P̃
′ = P′H.

Proof Suppose that a given fundamental matrix F corresponds to two different pairs
of camera matrices (P, P′) and (P̃, P̃′). As a first step, we may simplify the problem
by assuming that each of the two pair of camera matrices is in canonical form with
P = P̃ = [I | 0], since this may be done by applying projective transformations to
each pair as necessary. Thus, suppose that P = P̃ = [I | 0] and that P′ = [A | a] and
P̃
′ = [Ã | ã]. According to result 8.9 the fundamental matrix may then be written
F = [a]×A = [ã]×Ã.
We will need the following lemma:

Lemma 8.11. Suppose the rank 2 matrix F can be decomposed in two different ways
as F = [a]×A and F = [ã]×Ã; then ã = ka and Ã = k−1(A + av>) for some non-zero
constant k and 3-vector v.

Proof First, note that a>F = a>[a]×A = 0, and similarly, ã>F = 0. Since F has
rank 2, it follows that ã = ka as required. Next, from [a]×A = [ã]×Ã it follows that
[a]×

(
kÃ− A

)
= 0, and so kÃ − A = av> for some v. Hence, Ã = k−1(A + av>) as

required.

Applying this result to the two camera matrices P′ and P̃
′ shows that P′ = [A | a]

and P̃
′ = [k−1(A + av>) | ka] if they are to generate the same F. It only remains

now to show that these camera pairs are projectively related. Let H be the matrix

H =

[
k−1I 0

k−1v> k

]
. Then one verifies that PH = k−1[I | 0] = k−1P̃, and furthermore,

P′H = [A | a]H = [k−1(A + av>) | ka] = [Ã | ã] = P̃
′

so that the pairs P, P′ and P̃, P̃
′ are indeed projectively related.

This can be tied precisely to a counting argument: the two cameras P and P′ each
have 11 degrees of freedom, making a total of 22 degrees of freedom. To specify a
projective world frame requires 15 degrees of freedom (section 2.1(p45)), so once the
degrees of freedom of the world frame are removed from the two cameras 22−15 = 7
degrees of freedom remain – which corresponds to the 7 degrees of freedom of the
fundamental matrix.

8.5.3 Canonical cameras given F

We have shown that F determines the camera pair up to a projective transformation
of 3-space. We will now derive a specific formula for a pair of cameras with canonical
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form given F. We will make use of the following characterization of the fundamental
matrix F corresponding to a pair of camera matrices:

Result 8.12. A non-zero matrix F is the fundamental matrix corresponding to a
pair of camera matrices P and P′ if and only if P′>FP is skew-symmetric.

Proof The condition that P′>FP is skew-symmetric is equivalent to X>P′>FPX = 0
for all X. Setting x′ = P′X and x = PX, this is equivalent to x′>Fx = 0, which is
the defining equation for the fundamental matrix.

One may write down a particular solution for the pairs of camera matrices in
canonical form that correspond to a fundamental matrix as follows:

Result 8.13. Let F be a fundamental matrix and S any skew-symmetric matrix.
Define the pair of camera matrices

P = [I | 0] and P′ = [SF | e′],
where e′ is the epipole such that e′>F = 0, and assume that P′ so defined is a valid
camera matrix (has rank 3). Then F is the fundamental matrix corresponding to the
pair (P, P′).

To demonstrate this, we invoke result 8.12 and simply verify that

[SF | e′]>F[I | 0] =

[
F>S>F 0
e′>F 0

]
=

[
F>S>F 0

0> 0

]
(8.9)

which is skew-symmetric.
The skew-symmetric matrix S may be written in terms of its null-vector as

S = [s]×. Then [[s]×F | e′] has rank 3 provided s>e′ 6= 0, according to the fol-
lowing argument. Since e′F = 0, the column space (span of the columns) of F is
perpendicular to e′. But if s>e′ 6= 0, then s is not perpendicular to e′, and hence
not in the column space of F. Now, the column space of [s′]×F is spanned by the
cross-products of s with the columns of F, and therefore equals the plane perpen-
dicular to s. So [s]×F has rank 2. Since e′ is not perpendicular to s, it does not lie
in this plane, and so [[s]×F | e′] has rank 3, as required.

As suggested by Luong and Viéville [Luong-96] a good choice for S is S = [e′]×,
for in this case e′>e′ 6= 0, which leads to the following useful result.

Result 8.14. The camera matrices corresponding to a fundamental matrix F may
be chosen as P = [I | 0] and P′ = [[e′]×F | e′].
Note that the camera matrix P′ has left 3 × 3 submatrix [e′]×F which has rank 2.
This corresponds to a camera with centre on π∞. However, there is no particular
reason to avoid this situation.

The proof of theorem 8.10 shows that the four parameter family of camera pairs
in canonical form P̃ = [I | 0], P̃′ = [A+av> | ka] have the same fundamental matrix
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as the canonical pair, P = [I | 0], P′ = [A | a]; and that this is the most general
solution. To summarize:

Result 8.15. The general formula for a pair of canonic camera matrices corre-
sponding to a fundamental matrix F is given by

P = [I | 0] P′ = [[e′]×F + e′v> | λe′] (8.10)

where v is any 3-vector, and λ a non-zero scalar.

8.6 The essential matrix

The essential matrix is the specialization of the fundamental matrix to the case of
normalized image coordinates (see below). Historically, the essential matrix was
introduced (by Longuet-Higgins) before the fundamental matrix, and the funda-
mental matrix may be thought of as the generalization of the essential matrix in
which the (inessential) assumption of calibrated cameras is removed. The essential
matrix has fewer degrees of freedom, and additional properties, compared to the
fundamental matrix. These properties are described below.

Normalized coordinates. Consider a camera matrix decomposed as P = K[R | t],
and let x = PX be a point in the image. If the calibration matrix K is known, then
we may apply its inverse to the point x to obtain the point x̂ = K−1x. Then
x̂ = [R | t]X, where x̂ is the image point expressed in normalized coordinates. It
may be thought of as the image of the point X with respect to a camera [R | t] having
the identity matrix I as calibration matrix. The camera matrix K−1P = [R | t] is
called a normalized camera matrix, the effect of the known calibration matrix having
been removed.

Now, consider a pair of normalized camera matrices P = [I | 0] and P′ = [R | t].
The fundamental matrix corresponding to the pair of normalized cameras is cus-
tomarily called the essential matrix, and according to (8.2–p225) it has the form

E = [t]×R = R [R>t]×.

Definition 8.16. The defining equation for the essential matrix is

x̂′>Ex̂ = 0 (8.11)

in terms of the normalized image coordinates for corresponding points x↔ x′.

Substituting for x̂ and x̂′ gives x′>K′−>EK−1x = 0. Comparing this with the relation
x′>Fx = 0 for the fundamental matrix, it follows that the relationship between the
fundamental and essential matrices is

E = K′>FK. (8.12)
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8.6.1 Properties of the essential matrix

The essential matrix, E = [t]×R, has only five degrees of freedom: both the rotation
matrix R and the translation t have three degrees of freedom, but there is an overall
scale ambiguity – like the fundamental matrix, the essential matrix is a homogeneous
quantity.

The reduced number of degrees of freedom translates into extra constraints that
are satisfied by an essential matrix, compared with a fundamental matrix. We
investigate what these constraints are.

Result 8.17. A 3×3 matrix is an essential matrix if and only if two of its singular
values are equal, and the third is zero.

Proof This is easily deduced from the decomposition of E as [t]×R = SR, where S is
skew-symmetric. We will use the matrices

W =

 0 −1 0
1 0 0
0 0 1

 and Z =

 0 1 0
−1 0 0
0 0 0

 . (8.13)

It may be verified that W is orthogonal and Z is skew-symmetric. From Result A3.1-
(p554), which gives a block decomposition of a general skew-symmetric matrix, the
3×3 skew-symmetric matrix S may be written as S = kUZU> where U is orthogonal.
Noting that, up to sign, Z = diag(1, 1, 0)W, then up to scale, S = Udiag(1, 1, 0)WU>,
and E = SR = U diag(1, 1, 0)(WU>R). This is a singular value decomposition of E with
two equal singular values, as required. Conversely, a matrix with two equal singular
values may be factored as SR in this way.

Since E = U diag(1, 1, 0)V>, it may seem that E has six degrees of freedom and
not five, since both U and V have three degrees of freedom. However, because
the two singular values are equal, the SVD is not unique – in fact there is a
one-parameter family of SVDs for E. Indeed, an alternative SVD is given by
E = (U diag(R2×2, 1)) diag(1, 1, 0)(diag(R2×2

>, 1))V> for any 2× 2 rotation matrix R.

8.6.2 Extraction of cameras from the essential matrix

The essential matrix may be computed directly from (8.11) using normalized image
coordinates, or else computed from the fundamental matrix using (8.12). (Methods
of computing the fundamental matrix are deferred to chapter 10). Once the essential
matrix is known, the camera matrices may be retrieved from E as will be described
next. In contrast with the fundamental matrix case, where there is a projective
ambiguity, the camera matrices may be retrieved from the essential matrix up to
scale and a four-fold ambiguity. That is there are four possible solutions, except for
overall scale, which cannot be determined.

We may assume that the first camera matrix is P = [I | 0]. In order to compute
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the second camera matrix, P′, it is necessary to factor E into the product SR of a
skew-symmetric matrix and a rotation matrix.

Result 8.18. Suppose that the SVD of E is U diag(1, 1, 0)V>. Using the notation of
(8.13), there are (ignoring signs) two possible factorizations E = SR as follows:

S = UZU> R = UWV> or UW>V> . (8.14)

Proof That the given factorization is valid is true by inspection. That there are
no other factorizations is shown as follows. Suppose E = SR. The form of S is
determined by the fact that its left null-space is the same as that of E. Hence
S = UZU>. The rotation R may be written as UXV>, where X is some rotation
matrix. Then

U diag(1, 1, 0)V> = E = SR = (UZU>)(UXV>) = U(ZX)V>

from which one deduces that ZX = diag(1, 1, 0). Since X is a rotation matrix, it
follows that X = W or X = W>, as required.

The factorization (8.14) determines the t part of the camera matrix P′, up to
scale, from S = [t]×. However, the Frobenius norm of S = UZU> is 2, which means
that if S = [t]× including scale then ||t|| = 1, which is a convenient normalization
for the baseline of the two camera matrices. Since St = 0, it follows that t =
U (0, 0, 1)> = u3, the last column of U. However, the sign of E, and consequently t,
cannot be determined. Thus, corresponding to a given essential matrix, there are
four possible choices of the camera matrix P′, based on the two possible choices of
R and two possible signs of t. To summarize:

Result 8.19. For a given essential matrix E = U diag(1, 1, 0)V>, and first camera
matrix P = [I | 0], there are four possible choices for the second camera matrix P′,
namely

P′ = [UWV> | +u3] or [UWV> | −u3] or [UW>V> | +u3] or [UW>V> | −u3].

8.6.3 Geometrical interpretation of the four solutions

It is clear that the difference between the first two solutions is simply that the
direction of the translation vector from the first to the second camera is reversed.

The relationship of the first and third solutions in result 8.19 is a little more
complicated. However, it may be verified that

[UW>V> | u3] = [UWV> | u3]

[
VW>W>V>

1

]

and VW>W>V> = V diag(−1,−1, 1)V> is a rotation through 180◦ about the line joining
the two camera centres. Two solutions related in this way are known as a “twisted
pair”.
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Fig. 8.12. The four possible solutions for calibrated reconstruction from E. Be-
tween the left and right sides there is a baseline reversal. Between the top and bottom rows
camera B rotates 180◦ about the baseline. Note, only in (a) is the reconstructed point in
front of both cameras.

The four solutions are illustrated in figure 8.12, where it is shown that a recon-
structed point X will be in front of both cameras in one of these four solutions only.
Thus, testing with a single point to determine if it is in front of both cameras is
sufficient to decide between the four different solutions for the camera matrix P′.
Note. The point of view has been taken here that the essential matrix is a ho-
mogeneous quantity. An alternative point of view is that the essential matrix is
defined exactly by the equation E = [t]×R, (i.e. including scale), and is determined
only up to indeterminate scale by the equation x′>Ex = 0. The choice of point of
view depends on which of these two equations one regards as the defining property
of the essential matrix.

8.7 Closure

8.7.1 The literature

The essential matrix was introduced to the computer vision community by Longuet-
Higgins [LonguetHiggins-81], with a matrix analogous to E appearing in the pho-
togrammetry literature, e.g. [VonSanden-08]. Many properties of the essential
matrix have been elucidated particularly by Huang and Faugeras [Huang-89],
[Maybank-93], and [Horn-90].
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The realization that the essential matrix could also be applied in uncalibrated
situations, as it represented a projective relation, developed in the early part of the
1990s, and was published simultaneously by Faugeras [Faugeras-92a, Faugeras-92b],
and Hartley et al. [Hartley-92a, Hartley-92c].

The special case of pure planar motion was examined by [Maybank-93] for the
essential matrix. The corresponding case for the fundamental matrix is investigated
by Beardsley and Zisserman [Beardsley-95b] and Viéville and Lingrand [Viéville-95],
where further properties are given.

8.7.2 Notes and exercises

(i) Fixating cameras. Suppose two cameras fixate on a point in space such
that their principal axes intersect at that point. Show that if the image
coordinates are normalized so that the coordinate origin coincides with the
principal point then the F33 element of the fundamental matrix is zero.

(ii) Mirror images. Suppose that a camera views an object and its reflection
in a plane mirror. Show that this situation is equivalent to two views of the
object, and that the fundamental matrix is skew-symmetric. Compare the
fundamental matrix for this configuration with that of: (a) a pure translation,
and (b) a pure planar motion. Show that the fundamental matrix is auto-
epipolar (as is (a)).

(iii) Show that if the vanishing line of a plane contains the epipole then the plane
is parallel to the baseline.

(iv) Steiner conic. Show that the polar of xa intersects the Steiner conic Fs at
the epipoles (figure 8.10a). Hint, start from Fe = Fse + Fae = 0. Since e
lies on the conic Fs, then l1 = Fse is the tangent line at e, and l2 = Fae =
[xa]×e = xa × e is a line through xa and e.

(v) Planar motion. It is shown by [Maybank-93] that if the rotation axis direc-
tion is orthogonal or parallel to the translation direction then the symmetric
part of the essential matrix has rank 2. We assume here that K = K′. Then
from (8.12), F = K−>EK−1, and so

Fs = (F + F>)/2 = K−>(E + E>)K−1/2 = K−>EsK−1.

It follows from det(Fs) = det(K−1)2 det(Es) that the symmetric part of F is
also singular. Does this result hold if K 6= K′?

(vi) Any matrix F of rank 2 is the fundamental matrix corresponding to some
pair of camera matrices (P, P′) This follows directly from result 8.14 since the
solution for the canonical cameras depends only on the rank 2 property of F.

(vii) Show that the 3D points determined from one of the ambiguous reconstruc-
tions obtained from E are related to the corresponding 3D points determined
from another reconstruction by either (i) an inversion through the second
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camera centre; or (ii) a harmonic homology of 3-space (see section A5.2-
(p584)), where the homology plane is perpendicular to the baseline and
through the second camera centre, and the vertex is the first camera centre.

(viii) Following a similar development to section 8.2.2, derive the form of the fun-
damental matrix for two linear pushbroom cameras. Details of this matrix
are given in [Gupta-97] where it is shown that affine reconstruction is possible
from a pair of images.


