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Abstract

A new approach to subdivision based on the evolution of surfaces under curvature motion is presented. Such an
evolution can be understood as a natural geometric filter process where time corresponds to the filter width. Thus,
subdivision can be interpreted as the application of a geometric filter on an initial surface. The concrete scheme is a
model of such a filtering based on a successively improved spatial approximation starting with some initial coarse
mesh and leading to a smooth limit surface.

In every subdivision step the underlying grid is refined by some regular refinement rule and a linear finite
element problem is either solved exactly or, especially on fine grid levels, one confines to a small number of
smoothing steps within the corresponding iterative linear solver. The approach closely connects subdivision to
surface fairing concerning the geometric smoothing and to cascadic multigrid methods with respect to the actual
numerical procedure. The derived method does not distinguish between different valences of nodes nor between
different mesh refinement types. Furthermore, the method comes along with a new approach for the theoretical
treatment of subdivision.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiresolution mesh representation is a key tool used in computer graphics to achieve real-time
interaction with large and complex object models. In a multiresolution modeling environment we are able
to deal with global shape and structural details of the same object managing meshes of it at different levels
of refinement. We then need tools to coarsen a given fine mesh as well as tools for refining a coarse mesh.
From fine irregular meshes, produced for example by 3D scanning devices, several approaches have been

* Corresponding author.
1 This work was supported by MURST, Italy, grant number MM01111258.

0167-8396/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-8396(02)00150-4



676 U. Diewald et al. / Computer Aided Geometric Design 19 (2002) 675–694

proposed as mesh simplification, progressive meshes, and surface fairing to obtain a coarser/smoother
mesh that forms a surface of arbitrary topology.

Starting from coarse representations of surfaces we can generate appealing smooth representation
by iterative applications of refinement steps while keeping the connectivity of the original mesh. Mesh
refinement approaches range from multiresolution wavelet-based methods to subdivision schemes, where
the quality of the generated mesh is dependent on the subdivision mask used.

We propose a refinement approach that combines the advantages of subdivision (arbitrary topology,
local control and efficiency) with those of variational design (high quality surfaces) (Welch and Witkin,
1992).

The basic idea behind this strategy, first proposed by Kobbelt (1996b) and named variational
subdivision, is to apply, at each subdivision step, a splitting operation to obtain a finer mesh followed by
a smoothing operation to update the vertex mesh locations in order to increase the overall smoothness.
Kobbelt (2000; Schneider and Kobbelt, 2001) considered energies which involve curvature quantities.
The corresponding evolution problems would lead to Willmore flow and surface diffusion respectively,
which are fourth order parabolic problems. Whereas we here restrict to second order mean curvature
flow.

In this paper the smoothing step is based on a geometric diffusion and filtering approach related to
mean curvature motion, which has already been proved to be very promising for surface fairing purposes
(Desbrun et al., 1999; Diewald et al., 2000). Actually, we consider a single fully implicit timestep of mean
curvature motion as our smoothing method. In an iteration we successively refine the surface mesh—
which turns this approach into a subdivision scheme—and solve a semiimplicit problem to approximate
the fully implicit step. This semiimplicit scheme is explicit with respect to the given metric from the last
step and implicit concerning the new positions of the nodes. Thus, our method can be regarded as a fixed
point iteration, where we simultaneously expect to improve the metric and the resolution. This leads to
a suitable geometric smoothing filter on the initial mesh. Our approach is a usual subdivision scheme,
but now founded on tools from the theory of geometric evolution problems (mean curvature motion) and
numerical linear algebra (cascadic multigrid). We try to outline this new perspective which we believe to
offer strong provisions concerning the theoretical analysis of subdivision schemes as well as the range
of applications. Furthermore, as already mentioned this approach bridges the gap between subdivision
and surface fairing on a rigorous basis. Not very surprisingly, several important questions within this new
perspective remain open and require further investigation. Concerning the regularity and convergence we
only state conjectures here.

The key aspect for the smoothing step is the geometric diffusion, strictly related to a well-known
physical concept. In physics, in fact, diffusion is known as a process that equilibrates spatial variations
in concentration. If we consider some initial concentration functionρ0 on a domainΩ ⊂ R

2 and
seek solutions of the linear heat equation∂tρ − �ρ = 0 with initial data ρ0 and natural boundary
conditions on∂Ω , we obtain a scale of successively smoothed concentrations{ρ(t)}t∈R+. ForΩ = R

2

the solution of this parabolic problem coincides with the filtering of the initial data using a Gaussian filter
Gσ (x)= (2πσ 2)−1e−x2/(2σ 2) of width or standard deviationσ , i.e.,ρ(σ 2/2)=Gσ ∗ρ0. In case of surfaces
which are graphs we may consider the same process to obtain a smooth representation of an initially
coarse graph. Concerning general surfaces one may ask for analogous evolutionary smoothing strategies.
The counterpart of the Euclidean Laplacian� on smooth surfacesM is the Laplace–Beltrami operator
�M and the corresponding evolution applied to the surface coincides with the motion driven by the mean
curvature. The aim of this paper is to develop a novel approach to subdivision based on this observation.
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Curvature motion is a continuous model, thus we have to discretize it in time and space and to
incorporate the iterative process of refinement and subdivision. Concerning the discretization in time
it turns out that we can confine to one fully implicit time step of the curvature evolution, like in the heat
equation case, where a single implicit time step already has nice smoothing properties. With respect to
the spatial discretization we will pick up the cascadic multigrid approach (Bornemann and Deuflhard,
1996) coupled with a suitable fix point iteration in the surface metric.

We obtain a subdivision method which is closely related to standard subdivision schemes concerning
the computational complexity. Our approach however has the following advantages:

– Many qualitative properties of the approach can be studied already on the continuous level and do
not require a detailed analysis of the discretization.

– The model is independent of the type of meshes, especially of the valences of the mesh nodes, and
the considered refinement rules. These characteristics are naturally incorporated in the finite element
matrices and do not influence the method’s performance significantly (cf. Fig. 6).

– The resulting scheme can easily be adapted to different applications, e.g., to spatially variation of the
corresponding filter width (cf. Fig. 1) or to solely smoothing the edges of coarse polygonal models
(cf. Fig. 2).

Furthermore, it carries strong provisions for further extensions (cf. Section 9). Finally, we expect the
resulting limit surfaces to beC2,α-smooth for everyα ∈ [0,1). By C2,α we denote the Hölder space, i.e.,
f ∈ C2,α if f is two times differentiable and all second order partial derivatives are Hölder continuous
with respect to the exponentα, cf. (Gilbarg and Trudinger, 1983).

The paper is organized as follows. In Section 2 we will review subdivision methodology, in Sections 3
and 4 the background of geometric diffusion and cascadic numerical methods will be sketched (these
sections essentially prepare the terminology and may be skipped by readers already familiar with these
topics). Section 5 outlines a simple subdivision scheme for graphs, which already involves the basic
features of our approach. Then Section 6 develops the new subdivision approach and Section 7 discusses
the algorithmical aspects especially giving details on the involved weights and finite element matrices.
An important generalization to non-uniform geometric filter width is given in Section 8. Finally we draw
conclusions in Section 9.

Fig. 1. Starting from a coarse mesh (left) and considering a spatially varying filter width we obtain a limit surface with locally
different smoothness modulus.
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Fig. 2. Increasing a varying filter width one obtains a scale of subdivision surfaces ranging from smoothed sharp edges up
to a smoothing of the complete geometry. On the bottom the corresponding mean curvatures are color coded on the surfaces,
especially showing the boundedness of the curvature and giving an indication of bounded second derivatives.

Let us emphasize that throughout this paper all surfaces are drawn flat shaded to support a better
inspection of the resulting surface smoothness.

2. Review of subdivision

Classical spline approaches for generating and modeling surfaces, have great difficulties with surfaces
of arbitrary topology. On the other hand the variational approach to surface design, where surfaces are
computed minimizing some energy functional, can easily deal with arbitrary topology and surface modi-
fications but the computational cost can be very high. Subdivision schemes address the arbitrary topology
modeling pretty well, and in addition they come along with results on certain orders of continuity.

Subdivision surface modeling is a lively area of research and a promising approach to the efficient
design of surfaces with complex geometry. The basic idea behind subdivision is to refine and smooth a
given coarse mesh until a smooth surface is obtained. Suppose our surface is represented as a triangular
meshM embedded inR3. Starting with an initial coarse meshM0, successive meshes are determined
iteratively by the equation

Mk = Sk
(
Mk−1

)
whereSk is the subdivision operator at thekth level which takes the points from levelk to points on the
finer levelk + 1. Assuming that the subdivision converges, the actual subdivision surface is defined as
the limit of this sequence of successive refinements:

M := lim
k→∞S

k ◦ Sk−1 ◦ · · · ◦ S1M0.
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The subdivision schemes for arbitrary topology control meshes come in two classes: approximating and
interpolating. Many variants of the approximating schemes have been considered; the classical ones
are due to Catmull–Clark (1978), and Doo–Sabin (1978), who for rectangular meshes considered an
extension of quadratic and cubic B-splines, respectively, while a scheme based on quartic box splines on
triangular meshes was presented by Loop (1987). An extension of Loop’s scheme, introduced by Hoppe
et al. (1994) incorporates sharp edges on the final limit surface.

Since the ability to control the resulting surface exactly is very important in many applications, a
number of interpolating schemes have been proposed to force the limit surface to interpolate particular
points (Dyn et al., 1987, 1990; Kobbelt, 1996a, Zorin et al., 1996). Dyn, Gregory and Levin (1987)
introduced the butterfly scheme, a simple interpolating subdivision algorithm applicable to arbitrary
triangular meshes. Since it only leads toC1 surfaces in the regular setting (all vertices of the mesh
have valence 6), an improved butterfly scheme, the so-called modified butterfly, resulting in smoother
surfaces, has been introduced in (Zorin et al., 1996).

All previously mentioned subdivision schemes are based on one of the two tilings of the plane: the
tiling with regular triangles and the tiling with squares. However these are not the only refinable tilings:
bisection refinement introduced in (Velho and Zorin, 2001), for example, gives rise to the so called 4-8
subdivision scheme.

For subdivision schemes, the fundamental issue is that about the properties of the limit surface. This
includes determining whether a limit object exists and whether that object is smooth.

Most known stationary subdivision schemes generate at leastC1-continuity surfaces on arbitrary
meshes in the regular setting (Reif, 1995; Zorin, 1997); while additional criteria based on the eigen
structure of the subdivision matrix are required at the extraordinary points to guarantee the smoothness
of the limit surface. Recently, the smoothness of the subdivision surfaces in irregular setting (that is near
extraordinary vertices) has been rigorously proved in (Reif, 1995; Zorin, 2000). The Loop scheme and
the Catmull–Clark schemes, for example, produce surfaces that areC2-continuous everywhere except at
extraordinary vertices, where they areC1-continuous. The butterfly scheme isC1 on regular meshes but
notC1-continuous at extraordinary points, while the modified butterfly scheme guaranteesC1-continuity
for arbitrary irregular meshes.

In (Kobbelt, 1996b; Kobbelt and Schröder, 1998) an approach to mesh refinement based on variational
methods has been proposed in order to define univariate variational subdivision schemes. Such schemes
perform the refinement by uniform subdivision to generate sequences of polygons while the position
of the newly inserted vertices is determined by the minimization of a fairness functional measuring
a discrete approximation of some bending energy. The well known class of stationary interpolatory
refinement schemes is proved to be a special case of these variational schemes. In (Kobbelt, 1997) a
similar approach is studied in the bivariate setting of refined triangular meshes.

3. Surface fairing and curvature motion

In this section we will outline evolutionary smoothing methods and their applications in surface
fairing. This will motivate our subdivision scheme (cf. Section 7) which generates new triangulated
surfaces instead of improving the quality of given surfaces reviewed in this section. Simultaneously
we will introduce the basic notation of geometry and geometric differential operators which will be used
in the outline and discussion of our subdivision approach. For a detailed introduction to geometry and
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differential calculus we refer to (do Carmo, 1993) and (Chavel, 1984, Chapter 1). Let us consider a
smooth compact embedded manifoldM ⊂ R

3 without boundary. Letx :Ω → M; ξ �→ x(ξ) be some
coordinate map from an atlas. For each pointx on M the tangent spaceTxM is spanned by the basis
{ ∂x
∂ξ1
, ∂x
∂ξ2

}. By T M we denote the tangent bundle. Measuring length onM requires the definition of a
metric g(·, ·) :TxM × TxM → R. As the corresponding matrix notation we obtain a matrixg whose
entries are given bygij = ∂x

∂ξi
· ∂x
∂ξj

, where· indicates the scalar product inR3. The entries of the inverse

of g are denoted bygij . The gradient∇Mf of a functionf is defined as the representation ofdf with
respect to the metricg. In coordinates we obtain

∇Mf :=
∑
i,j

gij
∂(f ◦ x)
∂ξj

∂

∂ξi
.

We define the divergence divM v of a vector fieldv ∈ T M as the dual operator of the gradient with
respect to theL2-product onM and obtain in coordinates

divM v :=
∑
i

∂

∂ξi

(
(vi ◦ x)

√
detg

) 1√
detg

.

Finally, the Laplace–Beltrami operator�M is given by

�Mu := divM ∇Mu.

With this Laplace–Beltrami operator at hand we can define diffusion on surfaces in analogy to the
linear diffusion problem in the Euclidean space. Furthermore, we can consider a diffusion of the manifold
geometry itself. I.e., we seek one parameter family of embedded manifolds{M(t)}t�0 and corresponding
parametrizationsx(t), such that

∂tx(t)−�M(t)x(t)= 0, M(0)= M0.

Integration by parts leads to the variational formulation.

(∂tx, θ)M(t) + (∇M(t)x,∇M(t)θ)T M(t) = 0

for all test functionsθ ∈ C∞(M(t)). Here (φ,ψ)M := ∫
M φψ dx is the L2-product onM and

(v,w)M := ∫
M g(v,w) dx is a scalar product onTM, respectively. Already Dziuk (1991) presented a

semi implicit finite element scheme for geometric diffusion based on this formulation. The fundamental
observation is that this geometric diffusion of the coordinate mapping itself coincides with the motion
by mean curvature (MCM) (Huisken, 1987); in fact for any manifoldM we have�Mx = −H(x)N(x),
and thus we obtain∂tx = −H(x)N(x), whereH(x) is the corresponding mean curvature (here defined
as the sum of the two principal curvatures), andN(x) is the normal on the surface at each pointx. For the
sake of simplicity we defineMCM(t)M0 := M(t), whereM(t) is the solution surface for timet . Thus
MCM(σ 2/2)M can be regarded as the application of a “geometric ” Gaussian filter of widthσ to M.
The mean curvature motion model is known as the gradient flow with respect to surface area. This is one
indication for the strong regularizing effect ofMCM.

Previous work on surface fairing has already involved the concept of curvature motion. On triangulated
surfaces as they frequently appear in computer graphics applications, several authors introduced
appropriate discretized operators. Taubin (1995) and Kobbelt (1997) considered an umbrella operator,
which is a “spring force type” implementation of the Laplace–Beltrami operator. Desbrun et al. (1999)
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considered an implicit discretization of geometric diffusion closely related to Dziuk’s approach to obtain
strongly stable numerical smoothing schemes.

Finally, to underline the similarities of our discrete, cascadic curvature motion approach to subdivision
and the basic finite element implementation of MCM we shortly sketch the numerical algorithm. We
have to choose a spatial and a time discretization. Here we follow Dziuk’s approach (1991). To clarify
the notation we will denote discrete quantities with upper case letters throughout this paper to distinguish
them from the corresponding continuous quantities in lower case letters. For the ease of presentation
we restrict ourselves to triangular surfaces. We seek a familyMk

h of discrete successively smoothed
surfaces starting from some initial surfaceM0

h. Here the subscripth indicates the grid size andk the
time step. On surfacesMh we define the finite element space of piecewise linear continuous functions
V h. The coordinate vectorX can be regarded as a function in(V h)3. The metric and the gradients of
functions onMh are evaluated accordingly on each triangle. We expectXk to be an approximation of
x(kτ) whereτ is the selected timestep and discretize the time derivative by a backward Euler scheme as
∂tx(kτ)≈ τ−1(Xk −Xk−1). Now we are able to formulate our finite element problem making use of the
above variational formulation:

Find a family of triangular surfaces{Mk}k�0 and corresponding parametrizationsXk ∈ (V h)3, such
that (

Xk −Xk−1

τ
,Θ

)h
Mk−1

h

+ (∇Mk−1
h
Xk,∇Mk−1

h
Θ

)
T Mk−1

h

= 0

for all discrete test functionsΘ ∈ (V h)3. Here, we use the lumped mass scalar product(·, ·)hMh
, which is

defined by(U,V )hMh
:= ∫

Mh
Ih(U V )dx for two discrete functionsU,W ∈ V h, whereIh :C0(Mh)→

V h denotes the nodal projection operator (cf. (Thomée, 1984)). We can rewrite this using the notation
for the discrete Laplace–Beltrami operator(�Mh

U,Θ)hMh
:= −(∇Mh

U,∇Mh
Θ)T Mh

for all Θ ∈ V h.
Hence, we obtain

Xk −Xk−1

τ
−�Mk−1

h
Xkh = 0.

Finally, in each step of the discrete evolution we have to solve a single system of linear equations. In
terms of nodal vectors, which we indicate by a bar on top of the corresponding discrete function we can
rewrite the scheme and get(

Mk−1 + τLk−1
)�Xk =Mk−1�Xk−1

for the new vertex positions�Xk at timetk = k τ . Here, we assume the lumped mass matrixMk and the
stiffness matrixLk, whose entries are given by

Mk
ij = (Φi,Φj)hMk

h

, Lkij = (∇Mk
h
Φi,∇Mk

h
Φj )T Mk

h
,

to be applied simultaneously to each of the three coordinate components.

4. Cascadic iteration schemes

Multigrid methods (Hackbusch, 1985) are known to be efficient solvers for systems of linear
equationsB �X =R characterized by an intrinsic hierarchical structure for example resulting from a finite
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element discretization. Typically an underlying grid hierarchy induces a hierarchical structure on the
corresponding discrete function spaces. Let us consider a sequence of finite element spaces{Vj }, with
V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ Vjmax corresponding to a hierarchy of nested gridsM0, . . . ,Mjmax. In
the solution process one typically iterates overj , solving an appropriately restricted systemBj�Xj =Rj
on level j and then refines the grid. HereBj and Rj are restrictions ofB = Bjmax and R = Rjmax,
respectively.

Thus, the previously calculated solution�Xj−1 can be considered as good initial data for an iterative
solver on levelj . Somewhat surprising this naive strategy turns out to be theoretically well founded and
robust (Bornemann and Deuflhard, 1996) as long as an error control in the energy norm is considered.
Indeed, the number of required iterations or smoothing stepsnj on levelj can be fixed a priori. On coarse
levels more iterations are required than on finer levels, where very few iterations are sufficient to ensure
a required approximation quality on the finest grid level. Even better, Bornemann and Deuflhard (1996)
proved optimality for thiscascadicscheme in the sense that the overall cost of the solution process is
O(m) wherem is the number of unknowns on the finest grid level. Hence under these circumstances
one can avoid the more complex nested iterations which a more general multigrid solver would use.
In the case of the above surface evolution problems (cf. Section 3), in timestepk we have to solve for
�X = �Xk givenB = (Mk−1 + τLk−1) andR =Mk−1�Xk−1. Here one might apply cascadic iterations as
well. But we have to take care of the dependence of the matrices on the metric, which differs with a
varying resolution of the mesh. Nevertheless on sufficiently fine grids we expect a negligible impact of
this effect on the performance of a cascadic iteration. Obviously, in principle subdivision can be regarded
as a cascadic iteration scheme, where one successively applies refinement and smoothing steps. In what
follows we will work out this observation in detail.

5. A cascadic linear filtering approach on graphs

At first, let us consider the case of surfacesM, which are graphs in thex2 direction over a polygonal
domainΩ in thex0, x1 plane. Here we will outline a very simple but effective subdivision scheme as a
first model case, which can actually be interpreted as a variational subdivision scheme. We denote byu

the corresponding graph function. Given an initial graphu0—which will later be our coarse polygonal
mesh—we can ask for a solutionu∗ of the elliptic partial differential equation

(1− a�)u∗ = u0

with natural boundary conditions on∂Ω . This problem corresponds to a single approximate timestep
for the heat equation with timestep sizeτ = a or the approximation of a Gaussian filter of width

√
2τ ,

respectively. For Lipschitz continuous initial datau0 it is known (Giaquinta, 1993) that the solution
is unique andC2,α regular for anyα ∈ [0,1). Now we approximateu∗ by a sequence of linear finite
element solutions{Uk}k=0,... on successively refined regular gridsΩk for the parameter domainΩ . Due
to the convergence properties of linear finite elements (Ciarlet and Lions, 1997) we know that fork→ ∞
and corresponding vanishing grid sizehk onΩk the sequenceUk converges tou∗ in the energy as well as
in theL∞ norm. In each step of this procedure we have to solve a linear system of equations of the type

(M + aL)�Uk =MĪhku0
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whereM , L are the mass and stiffness matrix, respectively, andĪhku
0 is the linear interpolation ofu0 on

Ωk . The solutionUk minimizes the energy

E(U) :=
∫
Ω

(
U − u0

)2 + a |∇U |2

over all admissible functionsU in thekth finite element space. Hence, ifu0 is the function corresponding
to a polygonal surface graph overΩ , we can interpret this approach as a variational subdivision approach.
As usual the linear systems of equations are solved applying iterative solvers. If we consider a cascadic
multigrid method, we can reduce the required number of iterations enormously without effecting the
convergence properties (cf. Section 4). Given a final level of resolutionkmax we a priori fix the required
number of smoothing steps within the cascadic algorithm on all levels following the recipe given by
Bornemann and Deuflhard (1996). Then we consider an interpolation of the solution on the previous
coarse level as our initial data for the iterative solver on the next level. Finally we end up with a
subdivision scheme of optimal complexity. I.e., the cost is proportional to the number of vertices on the
finest grid level. Still we know that the resulting sequence of solutions{Ukmax} convergences tou∗. Thus,
our simple iteration leads toC2,α regularity in the limit, independent of the grid type and the applied
refinement scheme. Let us briefly summarize the bricks which build up this regularity result for the limit
surface. We reference elliptic regularity (Giaquinta, 1993) to check for the regularity of the limit graph,
convergence results from basic finite element calculus (Ciarlet and Lions, 1997) to prove convergence of
the exact finite element solutions to this limit graph, and finally convergence results for the cascadic
multigrid to verify that the algebraic error for the multigrid solution of the involved linear systems
is of the order of the already controlled finite element error. Hence, applying these well established
theories we get nice smoothness properties in this simple case for granted. Unfortunately, most surfaces
in computational geometry are not graphs, except from a local perspective. Furthermore, the selection
of a parameter domain introduces the metric on that domain as the valid metric for the smoothing
process. Thus subdivision results significantly depend on this metric and thereby on the proper choice
of the parameter domain. It would be much more natural to apply the same concept based on a single
diffusion time step but taking into account the metric on the limit surface or suitable approximations of
it, respectively. This will be what we are going to investigate in the following sections.

6. The actual geometric filter process

In Section 3 and 4 we reviewed mean curvature motion and cascadic numerical solvers, respectively.
We will now integrate this methodology to derive a new class of subdivision methods. Hence curvature
motion and its time discretization will be regarded as appropriate geometric filters and cascadic iterations
will serve as suitable solvers. As initial surface we consider any discrete, typically triangulated surface
M0 and denote its parameterization byx0. To underline the geometric origin and to straighten the
presentation we derive our final method in several steps:

Step 1. As it has already been mentioned mean curvature motion is the geometric counterpart
of Gaussian filtering and solving the heat equation, respectively. Singularities may arise in MCM
of two dimensional surfaces (Huisken, 1987), but starting with proper piecewise polygonal surfaces
and considering relatively small timest we can assume the evolving surfaces to stay away from the
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singularities. Then for short times a unique solution exists and it isC∞-regular. Thus we apply the mean
curvature motion semigroup (MCM) as a geometric filter of widthσ to M0 and obtain for a time step
τ = σ2

2

M := MCM(τ )M0,

where the corresponding parametrization is defined byx := x(τ). A suitable choice for the filter width
on a polygonal surface with grid sizeh0 appears to beσ ≈ h0. At first, we assume the triangulation of
our initial surfaces to be uniform. In Section 8 we will generalize our method to nonuniform filter width.
Alternatively to the correspondence of the filter width and the timestep of MCM, we can incorporate
the filter width in the diffusion coefficient and confine to a time stepτ = 1. That is, we consider for a
spatially fixed filter widthσ

∂tx(t)− a�M(t)x(t)= 0,

with a := σ2

2 and evaluate the evolution at timet = 1. As one advantage of this rewriting we can now
consider a spatially varying filter widthσ (cf. Fig. 1).

Step2. We can replace the continuous nonlinear semigroup by a time discrete evolution and focus on
the first step. In the resulting implicit scheme we have to select a metric (cf. Section 3). We approximate
a fully implicit scheme, where the metric is evaluated on the unknown surface, by a sequence of semi
implicit schemes. Hence, in each iteration we consider the metric from the previous step and calculate
parameterizationsxk of surfacesMk for k > 0 solving the linear problem(

xk − x0
) − a�Mk−1xk = 0.

Let us emphasize that the indexk does not indicate a curvature motion timestep but only successively
improved approximations of the fully implicit scheme(

x∗ − x0
) − a�M∗x∗ = 0.

Because of the identity�M∗x∗ = −H ∗N∗, we have|H ∗| = a dist(x∗, x0)whereH ∗ andN∗ are the mean
curvature and the surface normals ofM∗ and dist(x∗, x0) denotes the one sided distance betweenM∗
andM0. Hence, an alternative geometric interpretation of the mean curvature diffusion is that after a
timestepa the mean curvature on the resulting surface will be proportional to its distance from the initial
surface. Thus, one expects a non-uniform curvature distribution in the final surface, cf. Fig. 10.

For k → ∞ we expect the above iteration to be a fix point iteration with a convergence of the
parametrizationsxk at least pointwise to a parametrizationx∗ of a unique fix point surfaceM∗. Our
numerical results give a strong indication for this convergence. In Section 5 we have already mentioned
that a regularity result holds in the simplified case. Given Lipschitz continuous initial datau0 the
solutionu∗ of (Id − a�)u∗ = u0 is C2,α-continuous for anyα ∈ [0,1) (cf. Section 5). Our conjecture
is that an analogous regularity result holds for the implicit MCM timestep problem and the Laplace–
Beltrami operator. Thus, we expect our limit surface to beC2,α-continuous for a triangular initial surface
(cf. Fig. 6). Experimentally we have verified at least bounded discrete second derivatives (cf. Fig. 2).
Rigorous proofs for both the convergence and the smoothness of the limit surface are still missing. We
abbreviate the notation and write

Mk = S
(
Mk−1)M0

where the argument of the time step operatorS(·) indicates the corresponding metric. The limit surfaces
M∗ turns out to be a fix point of the mappingS(·)M0, i.e.,M∗ = S(M∗)M0. So far we have derived a
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geometrically natural smoothing method, which results in solving a sequence of spatially continuous and
linear problems.

Step3. Now we discretize in space, considering triangular surfacesM0 of different grid sizeh and
corresponding linear finite element spacesV h and ask for parametrizationsX ∈ (V h)3 of surfacesMh

(cf. Section 3). Thus, we consider

Mk
h = Sh

(
Mk−1

h

)
M0

whereSh(·) denotes the corresponding spatially discrete time step operator. I.e., for the parameterization
Xk of Mk

h we get(
Xk − Ihx0

) − a�Mk−1
h
Xk = 0.

HereIh again indicates the nodal projection ontoV h. We expectMk
h to converge toM∗ for h→ 0

(cf. the convergence result by Deckelnick and Dziuk (1999)).
Step4. Furthermore, we consider sequences of nested grids generated by any recursive and regular

refinement rule and apply a diagonalization argument with respect to the grid level and the above iteration.
After each iteration we refine the grid once and obtain the following subdivision scheme:

Mk
hk

= Shk
(
Mk−1

hk−1

)
M0. (1)

This corresponds to the operator equation(
Xkhk − Ihkx0

) − a�Mk−1
hk−1
Xkhk = 0

for the parameterizationsXkhk of Mk
hk

. For the sake of simplicity we writeXkk , Sk , andMk
k instead

of xkhk , Shk , andMk
hk

, respectively. We suppose geometric decay of the sequence of grid sizeshk, i.e.,
β−hk � hk+1 � β+hk. In case of a standard butterfly like refinement rule without smoothing, which
results in the splitting of each triangle into four up to scaling identical children, we obtainβ+ = β− = 1

2.
Step5. In each step of the above subdivision scheme the solution of a system of linear equations

(cf. Section 3) is required. As usual in finite element calculus this system is sparse and iterative solvers can
be applied. In each subdivision step we modify the metric and refine the underlying grid. This obviously is
a cascadic strategy (cf. Section 4) and we know that for increasing iteration indices a decreasing number
of smoothing stepsnk in the linear solver has to be performed if we consider appropriately prolongated
solutions from the previous level as initial data. Let us indicate the number of smoothing stepsnk on grid
levelk by an upper index. Bornemann and Deuflhard proved that the required number of iterations decays
geometrically, i.e., in case of conjugate gradient iterations (CG)nk = nkmax2

3
2 (kmax−k) and for the damped

Jacobi iterationnk = nkmax2
2(kmax−k). Given an error tolerance for the algebraic error we can preset the

required number of smoothing stepsnkmax on the finest grid levelkmax. In our application we always set
nkmax = 1. Thus given a final level of refinementkmax up to which we want to iterate the overall cost
of the resulting algorithm has optimal complexity for CG in case of a quartering type refinement and
nearly optimal complexity for the damped Jacobi iterations. Optimal here means the cost is proportional
to the number of fine grid nodes. If the goal is only to ensure appropriate smoothing results, based on our
experience one can further reduce the number of iterationsnk especially on fine grid levelsk and confine
to a fixed number of iterationsn. Thus we obtain a suitable approximation of our original model by the
iteration

Mk
k = Snkk

(
Mk−1

k−1

)
M0.
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Fig. 3. Comparison of different subdivision results. From left to right the images correspond to exact solution of the linear
systems in each subdivision step, cascadic cg-iterations, and cascadic Jacobi-iterations. Visually there is more or less no
difference except close to the boundary in the neck region. This clearly reflects the convergence properties of the cascadic
scheme.

Fig. 4. A triangulated cube is undergoing two steps of “refine and smooth” following the proposed subdivision scheme.

Fig. 5. A sequence of flat shaded subdivision surfaces subdividing each triangle into four children in each refinement step.

HereSnkk represents any iterative solver restricted tonk iterations in our original subdivision scheme (1)
above. Fig. 4 shows a sketch of the general procedure for a very simple example (cf. Figs. 3 and 5).
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As initial data and for the evaluation of the metric we consider the coordinate vector ofMk−1
k−1

prolongated to levelk by trivial interpolation. Let us remark that the number of considered smoothing
steps will correspond to the stencil width of our scheme measured in cells (cf. Section 7).

To be more precise about the linear finite element problems to be solved in the iteration let us first
reformulate the implicit definition of the sequence{Mk

k}k=0,.... In discrete variational form we obtain the
following problem:

Find a sequence of discrete coordinate maps{Xkk}k=0,... with Xkk ∈ (V hk )3, which defines a family of
triangular surfaces{Mk

k}k=0,... such that
(
Xkk −Xk0,Θ

)h
Mk−1

k−1
+ (
a∇Mk−1

k−1
Xkk,∇Mk−1

k−1
Θ

)
T Mk−1

k−1
= 0

for all discrete test functionsΘ ∈ (V hk )3.

Hence, in each iteration step we have to solve the linear system(
Mk−1 +Lk−1

)�Xkk =Mk−1�Xk0, (2)

where �Xkk denotes the nodal vector corresponding to the coordinate functionXkk and �Xk0 is the nodal
vector corresponding to the trivial interpolation of nodes during the recursive refinement of the initial
surfaceM0 on grid levelk. For the sake of completeness we give precise definitions of the involved
lumped mass matrix

Mk−1
ij = (

Φki ,Φ
k
j

)h
Mk−1

k−1

and the stiffness matrix

Lk−1
ij = (

a∇Mk−1
k−1
Φki ,∇Mk−1

k−1
Φkj

)
T Mk−1

k−1

which are again simultaneously applied to each of the three coordinate components. These definitions
implicitly involve a straightforward prolongation from grid levelk−1 on which the corresponding metric
is given to grid levelk on which the basis functions are defined. Here{Φki }i denotes the nodal basis of
the linear finite element spaceV hk onMk

k .

7. Algorithmical aspects

In the preceding sections we have introduced evolutionary subdivision schemes in a rather abstract
frame. Now we will discuss concrete implementation issues.

Let us give some details on the non exact solution of the linear system in each step of our subdivision
scheme at least in case of damped Jacobi iterations. In fact, we confine to a few smoothing steps. We
define �Xs := Snk (�X) whereS is a suitable smoothing operator defined on coordinate vectors, and the
exponentnk indicates the number of considered smoothing steps, i.e.,Sn+1(�X) := S ◦Sn(�X). The damped
Jacobi iterationSJ is defined by

SJ�X := �X− θ D−1
(
Mk−1

(�X− �Xk0
) +Lk−1�X )
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Fig. 6. A coarse torus (top left) is processed by our subdivision method leading to a smooth limit surface (bottom left). We have
used a quartering scheme (top) and a bisection refinement strategy (bottom).

Fig. 7. A sequence of flatshaded subdivision surfaces is generated using the local filter width algorithm. The starting surface
comes along with a very irregular triangular grid (different valences of the nodes, thin triangles, nonhomogeneous grid size),
which we keep without changes. The proposed method is able to effectively deal with such surfaces.

whereD is the matrix representing the diagonal part of(Mk−1 +Lk−1) andθ is the damping factor. We
always have setθ = 3

4.
So far we have not specified the refinement method to be applied in every iteration of the presented

subdivision schemes. As long as a regular refinement rule is considered which guarantees suitable upper
and lower bounds for the angles of the generated triangles our approach in principle is independent of the
concrete scheme. Fig 6 depicts two frequently used refinement schemes, the quartering scheme and the
recursive bisection scheme. Let us now consider the computation of the involved matrices. The assembly
of each matrixMk−1, Lk−1—here denoted byB—is based on the standard Finite Element procedure.
It consists of an initializationB = 0 followed by a traversal of all surface trianglesT . On eachT with
nodesP 0,P 1,P 2, a corresponding local matrixbTij is computed first. It corresponds to all pairings of
local nodal basis functions. Then the matrix entries are added to the matching entries in the global matrix
B, i.e., for every pairi, j we updateBα(i),α(j) = Bα(i),α(j)+bTij . Hereα(i) is defined as the global index of
the node with local indexi. Thus we can concentrate on the computation of the local mass matrixmT and
the local stiffness matrixlT , respectively. Due to the applied lumped mass integration we immediately
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Fig. 8. A sketch of the local mesh configuration aroundxI .

verify mTij = 1
3δij |T | where|T | is the area of the triangleT andδij the usual Kronecker symbol. For the

local stiffness matrix we obtain

lTij = a

∫
T

∇T φi · ∇T φj = a|T | νi
hi

· νj
hj

= a |T | ei

hi ‖ei‖ · ej

hj ‖ej‖ = a ei · ej
4|T | ,

whereφi denotes the nodal base function corresponding to the nodexi for any local indexi, ∇T the
gradient onT , andνi the outer normal to the edgeei opposite ofxi . Finallyhi is the height of the triangle
over the edgeei . By construction, these weights coincide with those derived by Pinkall and Polthier,
(1993).

Let us emphasize thatlij is scale invariant on 2D simplices. After the assembly we obtain the global
mass matrixMk−1 given byMk−1

IJ and the stiffness matrixLk−1 given byLk−1
IJ . Here uppercase indices

are considered as global indices. We immediately getMk−1
IJ =MIδIJ whereMk−1

I = ∑
T ,XInode ofT

|T |
3 . In

case of anm-valence nodeLk−1 hasm+ 1 non vanishing entries, which correspond to the nodexI itself
and all nodesxβ(I,j) which are connected toxI by an edgerIj (cf. Fig. 8). Hereβ(I, j) for j = 1, . . . ,m
are the global indices corresponding to local indicesj of points cyclically ordered aroundxI .

Let us denote byT Ij the triangle spanned byrIj andrIj+1 and supposeeIj to be the edge ofT Ij opposite
to xI . Then we get

Lk−1
I,β(I,j) = a

(
eIj · rIj+1

4|T Ij | − eIj−1 · rIj−1

4|T Ij−1|
)
,

Lk−1
II = a

∑
1�j�m

‖eIj‖2

4|T Ij | .

Now we have collected all required building blocks of our subdivision scheme. The matrix coefficients
turn out to be based on simple geometric calculations. Thus, we can write our subdivision scheme in
pseudo code notation as follows:
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DefineM := M0 as the initial mesh;k = 0;
do {
k := k+ 1;
M := Refinement(M);
Compute M := MassMatrix(M)
and L := StiffnessMatrix(M);
�X := nodal vector ofM;
�X0 := IMM0;
for (n= 0;n < nk;n= n+ 1) {

�X := S(�X0,M,L)�X;
}
M := surfaceM with updated nodes�X;

} while (k � kmax);

Here the operatorRefinement(·) denotes any regular refinement scheme, whereasMassMatrix(·) and
StiffnessMatrix(·) compute the corresponding matrices on a given surface andIM represents the trivial
interpolation of the nodal positions ofM0 onM. By trivial interpolation we mean the build in recursive
interpolation due to the applied refinement rules without any smoothing operations. Furthermore,
S(�X0,M,L) is a single smoothing step of an iterative solver for the linear system (2), e.g.,

S
(�X0,M,L

) = SJ .
Finally we have to discuss the stencils of dependency during our subdivision iteration. Hence, we

call the set of nodes which are connected by at mostj edges with a nodex the j -neighborhood of
x. Multiplying the stiffness matrixLk−1 with the vector consisting of the coordinates of the nodes, we
obtain a new vector, where each coordinate entry depends on the corresponding old coordinate entry and
the coordinate entries of a 1-neighbourhood of the specific vertex, due to the above explained sparsity
pattern ofLk−1. Hence, we straightforwardly verify that in each iteration of our subdivision scheme
with nk involved smoothing steps the new position of a node depends on the coordinates of nodes in its
nk-neighborhood.

We tested the method with respect to stability. Thus, we considered the crucial case of a valence 3 node.
We found that the method succeeds if the valence 3 node does not form a too sharp corner. However, if the
tetrahedron spanned by the node and its adjacent nodes is very thin, numerical instabilities may develop
during the evolution process leading to local degeneration of the triangulation, cf. Fig. 9.

8. A local filter width expansion

In many applications the initially coarse mesh will be characterized by considerable variations in the
local grid size. We can take care of this by adaptation of the filter width in our implicit time step scheme to
the local grid size (cf. Fig. 7). Here the idea is to consider a smoothed local grid size of the initial grid as
a local filter width and modify the diffusion coefficient with respect to this filter width. Let us emphasize
that this grid size function enters our model solely as a filter width. Hence close correspondence to the
local edge length is not required. Fig. 10 shows a comparison between the expanded model incorporating
a smooth local filter width function and the fixed filter width problem studied so far.
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Fig. 9. The results of the subdivision algorithm applied to a valence 3 node. The base triangle formed by the adjacent nodes has
uniform edge lengthl, whereas the height of the valence 3 node over this triangle is1

2
√

2/3 l (on the left) and 2
√

2/3 l (on the
right). On the left a significant higher refinement level is depicted than on the right due to limitations caused by the instability
for sharp corners at the valence 3 node on the right.

Fig. 10. A comparison of limit surfaces based on a small and spatially fixed filter width (left) and the local filter width expansion
(middle) for a coarse initial grid with considerable variation in the grid size. On the right the color coded modulus of the mean
curvature of the surface shown in the middle is depicted.

In our iterative scheme we apply the same smoothing operators in every step to this local filter width
function to ensure stillC2,α-smoothness of the limit surface. Hence, we consider the following continuous
problem:

(
xk − x0

) − divMk−1

(
ak−1∇Mk−1xk

) = 0,(
hk − h0

) − divMk−1

(
ak−1∇Mk−1hk

) = 0,
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whereak := C2 (hk)2

2 andh0 is the initial grid size function. We expect the sequence{xk, hk}k to converge
to a solutionx∗, h∗ of the fully implicit problem:(

x∗ − x0
) − divM∗

(
a∗∇M∗x∗) = 0,(

h∗ − h0
) − divM∗

(
a∗∇M∗h∗) = 0,

wherea∗ := C2 (h∗)2
2 andM∗ is the resulting mesh with parameterizationx∗. Furthermore, we expect the

same regularity result as in the case of fixed filter width, i.e.,C2,α-smoothness of the limit surfaceM∗
and of the smoothed filter width functionh∗.

We discretize this expanded model following the above guidelines and obtain the following scheme:

Find a sequence of discrete coordinate maps{Xkk}k=0,... with Xkk ∈ (V hk )3 and discrete functions
{Hk

k }k=0,... with Hk
k ∈ V hk , which defines a family of triangular surfaces{Mk

k}k=0,... such that(
Xkk −X0

k,Θ
)h
Mk−1

k−1
+ (
Ak−1∇Mk−1

k−1
Xkk,∇Mk−1

k−1
Θ

)
T Mk−1

k−1
= 0,

(
Hk
k −H 0

k ,Ψ
)h
Mk−1

k−1
+ (
Ak−1∇Mk−1

k−1
Hk
k ,∇Mk−1

k−1
Ψ

)
T Mk−1

k−1
= 0

for all discrete test functionsΘ ∈ (V hk )3 andΨ ∈ V hk .
Here we defineAk := C2 (H

k
k )

2

2 and takeH 0
k ∈ V 0 as the nodal interpolation of the grid size onM0,

that is we define the local filter width functionH(x) for any nodex onM0 as the average edge length of
all edges formx to adjacent nodes. Thus in each step of our subdivision method we solve the same type
of elliptic finite element problem for the coordinate and the filter width function. Besides the additional
smoothing of the filter width function the only change concerning the implementation is in the stiffness
matrix, which now contains the local weightAk−1 instead of the global weighta.

9. Conclusions

We have reviewed subdivision methods on the background of surface evolution problems. Thereby,
successive smoothing of the discrete surface under consideration is linked to the probably most natural
smoothing process on continuous surfaces, which is the motion by mean curvature. The presented method
has been embedded in the framework of continuous surface evolution, and corresponding time/space
discrete models, respectively. The simultaneous refinement in between the smoothing steps can be
performed by any type of regular mesh refinement rule. Furthermore, incomplete linear solvers in the
fully discrete schemes lead to the structure of typical subdivision methods. This classifies the methods in
terms of finite element calculus as an incomplete cascadic iteration approach in curvature motion. Our
interpretation closely relates subdivision methodology and surface fairing. Future work may focus on

– closing the theoretical convergence and smoothness gap,
– comparing the new method with other recent subdivision approaches,
– incorporating anisotropic diffusion and considering additional forcing terms on the right hand side to

enable a flexible fine level surface modeling,
– constraints or average constraints in order to, e.g., prescribe sharp edges on the limit surface or to

preserve the volume enclosed by the surface during the subdivision process (let us emphasize that
point constraints are not allowed in our setting of a second order evolution problem),
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– considering adaptive meshes and corresponding adaptive smoothness control to reduce the mesh
complexity significantly,

– replacing the current setting of a 2nd order diffusion model by some 4th order diffusion, either surface
diffusion or Willmore flow.

As we used an experimental code for computing the numerical examples in this paper, we do not include
any performance measurements for the proposed subdivision methods and confine to a discussion of the
method’s complexity.
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