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Abstract

A novel 4-point ternary interpolatory subdivision scheme with a tension parameter is analyzed. It
is shown that for a certain range of the tension parameter the resulting curve isC2. The role of the
tension parameter is demonstrated by a few examples. There is a brief discussion of computational
costs. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Subdivision schemes have become important in recent years because they provide a
uniform and efficient way to describe smooth curves and surfaces. Their beauty lies in
the elegant mathematical formulation and simple implementation. Our motivation here is
to explore the trade-offs between the degree of continuity of the limit function and the
template width for interpolating schemes.

Dubuc (1986), and independently Dyn, Levin and Gregory (1987), describe a 4-point
binary interpolating scheme, which they prove to beC1. Weissman (1990) describes a 6-
point binary interpolating scheme that isC2. Deslauriers and Dubuc (1989) analyseb-ary
2N -point schemes derived from polynomial interpolation.

Recently Kobbelt introduced a so-called
√

3 scheme (Kobbelt, 2000), which reproduces
a ternary scheme after two subdivision steps. The boundary of this class of schemes will
reproduce a ternary univariate scheme.
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Fig. 1. Ternary scheme. A polygonP i = (pi
j
) (solid lines) is mapped to a refined polygon

P i+1 = (pi+1
j

) (dashed lines). Note that this is an interpolatory scheme:pi+1
3j = pi

j
.

Here we present an interpolating 4-point ternary univariate stationary subdivision
scheme. A polygonP i = (pij ) (see Fig. 1) is mapped to a refined polygonP i+1 = (pi+1

j )

by applying the following three subdivision rules:

pi+1
3j = pij ,

pi+1
3j+1 = a0p

i
j−1 + a1p

i
j + a2p

i
j+1 + a3p

i
j+2, (1)

pi+1
3j+2 = a3p

i
j−1 + a2p

i
j + a1p

i
j+1 + a0p

i
j+2,

where the weights{ai} are given by

a0 = − 1

18
− 1

6
µ,

a1 = 13

18
+ 1

2
µ,

(2)
a2 = 7

18
− 1

2
µ,

a3 = − 1

18
+ 1

6
µ.

We can see immediately from this that

a0 + a1 + a2 + a3 = 1. (3)

These weights were the solutions of a constraint problem derived from the constant, linear,
and quadratic precision conditions, which are necessary forC2-continuity.

In the following section we look at the support for this scheme. In Sections 3 and 4,
we analyze the limit function and prove that it isC2 for 1

15 < µ < 1
9. Then we find the

precision set for this scheme and illustrate the effects ofµ using some specific examples.
A brief discussion of computational costs follow, and finally we suggest some further work.

2. Support

It is necessary to calculate the support for this scheme before we can do the analysis
that follows. First consider all the vertices lying on an axis. This means that all the new
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Fig. 2. Illustration of similarity of support at different subdivision levels. As we carry out the
subdivision we see that each boxed region is similar to the whole region.

vertices will also lie on this axis. Now we consider the consequences of moving one of
the vertices above the axis. At the first subdivision step, we see that the vertex at 5/3 is
the furthest non-zero new vertex. At the next step of the scheme this will propagate along
by 5/3 × 1/3, by similarity (see Fig. 2). Hence aftern subdivisions the furthest non-zero
vertex will be at

5
n∑

i=1

1

3i

and hence the total support is

2× 5
∞∑
i=1

1

3i
= 5.

This support compares favourably with the the 4-point binary scheme having a support
of 6 and the 6-point binary scheme having a support of 10.

Also, as the scheme has negative outer coefficients, it introduces a new zero-crossing,
that is a new point lying on the axis with its immediate neighbours above and below the
axis, at each step (again, see Fig. 2). As the scheme is also interpolatory, the basis function
will have an infinite number of zero-crossings, and hence cannot be described by a curve
with a finite number of polynomial pieces.

3. Convergence analysis—necessary conditions

Matrix formalism allows us to derive necessary conditions for a scheme to beCk based
on the eigenvalues of the subdivision matrices.
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Suppose the eigenvalues are{λi}, whereλ0 = 1 and|λi | � |λi+1| ∀i ∈ N. Then we have
the following necessary conditions for the corresponding properties:

|λ1| = |λ2| ⇐ kink, i.e., notC1

λ2
1 < λ2 ⇐ unbounded curvature

λ2
1 = |λ2| = |λ3| ⇐ mildly diverging curvature

λ2
1 = |λ2|> |λ3| ⇐ curvature bounded

λ2
1 > |λ2| ⇐ curvature→ 0

(4)

This analysis was first demonstrated in (Doo and Sabin, 1978), in which the terminology is
explained more fully. For the purposes of this paper we are interested in showing that
λ2

1 = |λ2| > |λ3|, i.e., that the curvature of the limit function is bounded, which is a
necessary condition if the limit function is to haveC2-continuity.

We shall perform the analysis for the mark points of this scheme. The mark points are
the points which are topologically invariant under the subdivision step. For this scheme,
the mark points are the mid-point between two vertices and the vertices themselves.

3.1. Mid-point

In this analysis we need consider only three vertices on either side of the mid-point,
because the support tells us that the vertices lying further than this have no effect at the
point we wish to analyze. So consider the original vertices{A,B,C,D,E,F } and the new
vertices{a, b, c, d, e, f } in Fig. 3. We have from (1)



a

b

c

d

e

f


 =




a3 a2 a1 a0 0 0
0 0 1 0 0 0
0 a0 a1 a2 a3 0
0 a3 a2 a1 a0 0
0 0 0 1 0 0
0 0 a0 a1 a2 a3







A

B

C

D

E

F


 . (5)

The eigenvalues for this are 1, 1
3,

1
9,µ,− 1

18 + 1
6µ (twice).

Fig. 3. Configuration around mid-point.
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Fig. 4. Configuration around vertex.

3.2. Vertex

We now wish to calculate the eigenvalues of the vertex subdivision matrix. This time we
need consider only the two vertices on each side of the vertex, because the support tells us
that the vertices lying further than this have no effect at the point we wish to analyze. So
consider the vertices{A,B,C,D,E} and the new vertices{a, b, c, d, e} in Fig. 4. We have
from (1)


a

b

c

d

e


 =



a0 a1 a2 a3 0
a3 a2 a1 a0 0
0 0 1 0 0
0 a0 a1 a2 a3
0 a3 a2 a1 a0






A

B

C

D

E


 . (6)

The eigenvalues are 1,1
3, 1

9, 1
18 − 1

2µ, 1
6 − 5

6µ.

3.3. Bounds onµ

The two subdivision matrices and (4) allow us to find bounds onµ which are necessary
for the limit function to beC2. The mid-point subdivision matrix satisfies the necessary
conditions forC2 iff

|µ|< 1

9
. (7)

Moreover the necessary conditions forC3 cannot be satisfied for this matrix. For the range
of µ in (7), |1

6 − 5
6µ|> | 1

18 − 1
2µ|. Hence we see that the necessary conditions forC2 are

satisfied by the vertex subdivision matrix iff∣∣∣∣1

6
− 5

6
µ

∣∣∣∣< 1

9
. (8)

(7) and (8) are both satisfied iff

1

15
<µ<

1

9
. (9)

This is illustrated by Fig. 5. From this we can also see that whenµ = 1
11 we get the

best trade-off in magnitude between the fourth largest eigenvalues of vertex and mid-point
subdivision matrices.
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Fig. 5. Plot of µ-dependant eigenvalues againstµ. µ and a3 are the eigenvalues of the
mid-point subdivision matrix, andν1 andν2 are the eigenvalues of the vertex subdivision matrix.
a3 = − 1

18 + 1
6µ, ν1 = 1

6 − 5
6µ, ν2 = 1

18 − 1
2µ.

Hence the necessary conditions for the limit function of the scheme to beC2 are satisfied
for both mark points forµ in the range above. ForC2 continuity there are other necessary
conditions on the eigenvectors (Warren, t.a.). One can verify from the appendices that these
conditions are also violated at the two extremes of the valueµ.

4. Convergence analysis—sufficient conditions

The generating function formalism lends itself well to deriving sufficient conditions for
subdivision schemes to beCk . For this scheme the subdivision step (2) can be compactly
written in a single equation

pi+1
j =

∑
k∈Z

α3k−jp
i
k, (10)

where

α = (αj )= [
. . . ,0,0, a3, a0,0, a2, a1,1, a1, a2,0, a0, a3,0,0, . . .

]
. (11)

From this we can see immediately that∑
j∈Z

α3j = 1,
∑
j∈Z

α3j+1 = 1,
∑
j∈Z

α3j+2 = 1. (12)

After some computation (Dyn, 1992) we see that the subdivision step can be expressed in
the generating function formalism as a simple multiplication of the corresponding symbols:

P i+1(z)= α(z)P i
(
z3), (13)
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where

P i(z)=
∑
j

pij z
j , α(z)=

∑
j

αj z
j . (14)

4.1. Sufficient conditions forCk

Now we will go on to derive sufficient conditions for a ternary scheme to beCk and use
this to show that the scheme we have proposed is in factC2. The proof is very similar to
that given by Dyn (1992) for a binary scheme.

Proposition 4.1. Let S be a subdivision scheme defined by a mask satisfying(12). Then
there exists a subdivision schemeS1 with the property

dP i+1 = S1dP
i, (15)

whereP i = SiP 0, and(dP i)j = 3i (pij+1 − pij ).

Proof. Let Λ denote the set of all Laurent polynomials and define the characteristic
Λ-polynomial ofS by α(z). Then by (12)

α(1)= 3, α
(
e2iπ/3) = 0, α

(
e4iπ/3) = 0. (16)

Therefore

α′(z)= 3z2(1− z)α(z)

1− z3 ∈Λ. (17)

We now show that the mask determined byα′(z) defines a subdivision schemeS1 with the
required properties. DefiningHi(z) to be the symbol ofdP i , we get

Hi(z) =
∑
j∈Z

(
dP i

)
j
zj (definition)

= 3i
∑
j∈Z

(
pij+1 − pij

)
zj = 3i

(
z−1P i(z)− P i(z)

)
. (18)

Hence,

Hi(z)= 3iP i (z)
1− z

z
, (19)

and by application of (13) we get

Hi+1(z)= 3i+1P i+1(z)
1− z

z
= 3i+1α(z)P i

(
z3)1− z

z
. (20)

Thus, by (19)

Hi+1(z)= 3α(z)H i
(
z3) z3

1− z3

1− z

z
= α′(z)H i

(
z3), (21)
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a relation similar in form to (13). Recalling the definition ofHi(z), we conclude the
existence of a subdivision schemeS1 satisfying (17) with a mask determined by the
characteristicΛ-polynomial

α′(z)= 3z2(1− z)α(z)

(1− z3)
. ✷ (22)

We can now determine the convergence ofS by analyzing the subdivision scheme1
3S1.

Theorem 4.2. S is a uniformly convergent subdivision scheme, if and only if1
3S1 converges

uniformly to the zero function for all initial dataP 0.

Proof. See proof of Theorem 3.2 in (Dyn, 1992).✷
Theorem 4.2 indicates that for any given subdivision scheme,S, with a maskα

satisfying (12), we can prove the uniform convergence ofS by first deriving the mask
of 1

3S1 and then computing‖(1
3S1)

i‖∞ for i = 1,2,3, . . . ,L, whereL is the first integer
for which‖(1

3S1)
L‖∞ < 1. If such anL exists,S converges uniformly.

Theorem 4.3. If S is a uniformly convergent subdivision scheme, then it determines a
unique compactly supported continuous functionS∞P 0.

Proof. See proof of Theorem 2.5 in (Dyn, 1992).✷
HereSnP 0 is the scheme appliedn times to the initial polygonP 0, henceS∞P 0 is the

limit function. Once the uniform convergence ofS is established, we are then interested in
determining the smoothness of the limit functionS∞P 0.

Theorem 4.4. LetS be a subdivision scheme with a characteristicΛ-polynomial

α(z)=
(

1− z3

3z2(1− z)

)k

q(z), q ∈Λ. (23)

If the subdivision schemeSk , corresponding to theΛ-polynomialq(z), converges uniformly
thenS∞P 0 ∈ Ck for any initial control polygonP 0.

Proof. See proof of Theorem 3.4 in (Dyn, 1992).✷
Corollary 4.5. If S is a subdivision scheme of the form above and1

3Sk+1 converges
uniformly to the zero function for all initial dataP 0 thenS∞P 0 ∈ Ck for any initial control
polygonP 0.

Proof. Apply Theorem 4.2 to Theorem 4.4.✷
Corollary 4.5 indicates that for any given ternary subdivision scheme,S, we can prove

S∞P 0 ∈ Ck by first deriving the mask of13Sk+1 and then computing‖(1
3Sk+1)

i‖∞ for
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i = 1,2,3, . . . ,L, whereL is the first integer for which‖(1
3Sk+1)

L‖∞ < 1. If such anL
exists,S∞P 0 ∈Ck .

4.2. Proof ofC2

For our scheme we have

α = 1

18

[
. . . ,0,0,3µ− 1,−3µ− 1,0,−9µ+ 7,9µ+ 13,18,

9µ+ 13,−9µ+ 7,0,−3µ− 1,3µ− 1,0,0, . . .
]
, (24)

α(1) = 1

6

[
. . . ,0,0,3µ− 1,−6µ,3µ+ 1,−6µ+ 6,12µ+ 6,

− 6µ+ 6,3µ+ 1,−6µ,3µ− 1,0,0, . . .
]
, (25)

α(2) = 1

2

[
. . . ,0,0,3µ− 1,−9µ+ 1,9µ+ 1,−6µ+ 4,

9µ+ 1,−9µ+ 1,3µ− 1,0,0, . . .
]
, (26)

α(3) = 3

2

[
. . . ,0,0,3µ− 1,−12µ+ 2,18µ,−12µ+ 2,3µ− 1,0,0, . . .

]
. (27)

The calculation ofα(4) does not give us a Laurent polynomial. It is easy to verify that
α,α(1), α(2), all satisfy (12). Using∥∥∥∥1

3
Sk+1

∥∥∥∥∞
= 1

3
max

(∑
j∈Z

∣∣α(k+1)
3j

∣∣,∑
j∈Z

∣∣α(k+1)
3j+1

∣∣,∑
j∈Z

∣∣α(k+1)
3j+2

∣∣) (28)

for 1
15 <µ< 1

9, we have∥∥∥∥1

3
S1

∥∥∥∥∞
= 4µ+ 1

3
< 1, (29)

∥∥∥∥1

3
S2

∥∥∥∥∞
= −2µ+ 1< 1, (30)

∥∥∥∥1

3
S3

∥∥∥∥∞
= max

(
9µ,

−15µ+ 3

2

)
< 1. (31)

Hence all the sufficient conditions are satisfied for this scheme to beC2. ✷
We note that the same range ofµ occurs both in the sufficient and necessary conditions

and so cannot be improved.
Now that we have derived the continuity and smoothness properties of this scheme we

can look at other properties. First we look at the precision set.

5. Precision set

If we have three points,p0,p1,p2, we can fit a quadratic through them, as follows:

P(t)= t

2
(t − 1)p0 + (

1− t2
)
p1 + t

2
(t + 1)p2 (32)
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such that

P(−1)= p0, P (0)= p1, P (1)= p2. (33)

Now, if we define

p3 = P(2)= p0 − 3p1 + 3p2 (34)

we have four vertices with which to carry out a subdivision step using this scheme. The
new vertices are

p1
1 =

(
− 1

18
− 1

6
µ

)
p0 +

(
13

18
+ 1

2
µ

)
p1 +

(
7

18
− 1

2
µ

)
p2 +

(
− 1

18
+ 1

6
µ

)
p3

= −1

9
p0 + 8

9
p1 + 2

9
p2

= P

(
1

3

)
, (35)

p1
2 =

(
− 1

18
+ 1

6
µ

)
p0 +

(
7

18
− 1

2
µ

)
p1 +

(
13

18
+ 1

2
µ

)
p2 +

(
− 1

18
− 1

6
µ

)
p3

= −1

9
p0 + 5

9
p1 + 5

9
p2

= P

(
2

3

)
. (36)

Hence the new vertices lie on the original quadratic.
This means that if we define a set of vertices{pj }, wherepj = P(j), j ∈ Z, all the new

vertices calculated by this scheme will also lie on this quadratic. Hence the limit function
will be this quadratic.

We cannot do the same for a cubic. Hence the precision set for this scheme is the
quadratics.

We find that if we put a cubic through the general pointsA,B,C,D, such thatQ(−1)=
A, Q(0)= B, Q(1)= C, Q(2)= D

Q(t) = t (1− t)(t − 2)

6
A+ (t + 1)(t − 1)(t − 2)

2
B

+ t (t + 1)(2− t)

2
C + t (t + 1)(t − 1)

3
D (37)

and calculateQ(1/3),Q(2/3) we recover the coefficients for the ternary 4-pt Dubuc–
Deslaurier scheme (Deslauriers and Dubuc, 1989). If we calculateQ(1/2) we recover the
coefficients for the 4-pt binary scheme. Hence both these schemes have cubic precision.
However, eigenanalysis shows that both these schemes can have unbounded curvature1

and hence are onlyC1.

1 At the vertex, Dubuc’s ternary scheme has eigenvalues 1,1/3,11/81,1/9,1/27, where the third eigenvalue
is greater than 1/32, and the 4-pt binary scheme has eigenvalues 1,1/2,1/4,1/4,1/8, where the repeated
eigenvalue causes mildly divergent curvature.
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6. Examples

In order to investigate how the parameterµ affects the limit function, we need to
diagonalize the subdivision matrices and look at some specific examples. Diagonalization
of the subdivision matrices allows us to raise the matrices to thenth power and we can
deduce properties of the limit function by taking the limit asn→ ∞. The diagonalizations
can be seen in Appendices A and B. The first two examples show, in a sense, the worst-case
behaviour of the scheme.

6.1. Basis function

Let us first look at the basis function. This is the limit function of the scheme
when applied to the vertices{Pi} wherePi = (i,0), i ∈ Z \ {0}, andP0 = (0,1). An
approximation to this can be seen in Fig. 6 forµ = 1

11. The support tells us that all the
points beyond two and a half units from the origin will be on the axis.

We can define an approximation to the discrete curvature at a vertex, for a given
subdivision step, by calculating the circumcircle of the triangle formed by the vertex and
its immediate neighbours. This has been used to produce the curvature plot in Fig. 7.

Fig. 6. Result of the scheme for the basis function after 4 subdivision steps withµ= 1
11.

Fig. 7. Curvature plot of Fig. 6. The curvature peaks at the non-zero vertex, but is bounded. Vertical
lines are at integer locations, the central line is ati = 0.
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We observe that the curvature peaks at the non-zero vertex. We can calculate the
curvature of the limit function at this point from (A.3). Aftern subdivision steps the
configuration around this vertex will be

Mn
v




−2 0
−1 0
0 1
1 0
2 0


 =




− 2
3n 1− 8(1+3µ)

−1+15µ

( 1
9

)n + 9(1+µ)
−1+15µ

(1
6 − 5

6µ
)n

− 1
3n 1− 2(1+3µ)

−1+15µ

( 1
9

)n + 3(1−3µ)
−1+15µ

(1
6 − 5

6µ
)n

0 1
1
3n 1− 2(1+3µ)

−1+15µ

( 1
9

)n + 3(1−3µ)
−1+15µ

(1
6 − 5

6µ
)n

2
3n 1− 8(1+3µ)

−1+15µ

( 1
9

)n + 9(1+µ)
−1+15µ

(1
6 − 5

6µ
)n



. (38)

Calculating the curvature as the inverse of the radius of the circumcircle through the middle
3 points, we get

1

r
= 2( 2(1+3µ)

−1+15µ(
1
9)

n − 3(1−3µ)
−1+15µ(

1
6 − 5

6µ)
n)

( 1
3n )

2 + (
2(1+3µ)
−1+15µ(

1
9)

n − 3(1−3µ)
−1+15µ(

1
6 − 5

6µ)
n)2

(39)

and the curvature of the limit function at the peak is given by

lim
n→∞

1

r
=

{
4 1+3µ

−1+15µ, µ > 1
15,

∞ otherwise.
(40)

Fig. 8 plots the peak curvature againstµ and from this we can see that the curvature
becomes very large as we nearµ = 1

15. Forµ = 1
11 the peak curvature is 14. This is the

same order of magnitude as that for the basis functions of the overhauser cubic and the
cubic spline.

Fig. 8. Peak curvature againstµ for the basis function.
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Fig. 9. Result of the scheme for the step function after 4 subdivision steps withµ= 1
11.

Fig. 10. Curvature plot of Fig. 9.

6.2. Step function

We will now use the step function to illustrate the effect of the upper bound ofµ. The
step function is the limit function of the scheme when applied to the vertices{Pi} where

Pi =
{
(2i + 1,−1), i < 0,

i ∈ Z.
(2i + 1,1), i � 0,

(41)

An approximation to this can be seen in Fig. 9 forµ = 1
11, and the curvature2 plot of

this can be seen in Fig. 10. We are interested in what happens at the mid-point. It is clear,
by symmetry, that the curvature here should be zero. Using (B.3), aftern subdivision steps
the configuration around the mid-point will be

Mn
m




−5 −1
−3 −1
−1 −1
1 1
3 1
5 1


 =




− 5
3n −c

− 3
3n −31−n(µ−1)+2µn

3µ−1

− 1
3n −3−n(µ−1)+2µ1+n

3µ−1

1
3n

3−n(µ−1)+2µ1+n

3µ−1

3
3n

31−n(µ−1)+2µn

3µ−1

5
3n c



, (42)

wherec is an expression that is superfluous to the following analysis.

2 The curvature is calculated as in the previous section.



14 M.F Hassan et al. / Computer Aided Geometric Design 19 (2002) 1–18

Fig. 11. Curvature at the vertex nearest the mid-point aftern subdivision steps as a function ofµ.

We can now calculate the curvature at the vertex nearest the mid-point as the inverse of
the radius of the circumcircle through the points(− 1

3n ,−3−n(µ−1)+2µ1+n

3µ−1

)
,( 1

3n ,
3−n(µ−1)+2µ1+n

3µ−1

)
, (43)( 3

3n ,
31−n(µ−1)+2µn

3µ−1

)
.

This can be seen in Fig. 11. Taking the limit asn→ ∞

lim
n→∞

1

r
=

{
0, µ < 1

9,

27
250, µ= 1

9 .
(44)

This implies that the curvature of the step function becomes discontinuous atµ= 1
9. We

have now illustrated how both bounds onµ affect the limit function.

6.3. Other examples

For most examples it is very difficult for the naked eye to distinguish how the limit
function changes asµ is changed within the allowed range. In Fig. 12 we have used a
simple example to illustrate howµ affects the limit function.

7. Computational costs

To produce a curve withC2 continuity using binary subdivision requires a 6-point
scheme (Weissman, 1990).
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Fig. 12. The result of the scheme after 4 subdivision steps. The solid line is produced by setting
µ= 1

9. The dashed line is produced by settingµ= 1
15.

Each new point generated by the 6-point binary scheme requires 6 multiplies and 5 adds:
a total of 11 floating point operations. Each new point generated by a 4-point ternary
scheme requires 4 multiplies and 3 adds: a total of 7 floating point operations. However,
a ternary subdivision step introduces twice as many new vertices as a binary subdivision
step.

After some calculation we have that the number of floating point operations required
to produce a discrete approximation withk times as many vertices as an original
approximation withn vertices is

11
(
2�log2 k� − 1

)
n (45)

for a 6-point binary scheme and

7
(
3�log3 k� − 1

)
n (46)

for a 4-point ternary scheme.
The two schemes are thus roughly equal in computational cost, with the ternary scheme

having an advantage on average, because

7(3log3 k − 1)n

11(2log2 k − 1)n
= 7

11
. (47)

We can see from the graph ofcost
n

againstk for the ternary and binary schemes (Fig. 13)
that the ternary scheme has a lower cost than that of the binary scheme for a greater range
of k.

8. Further work

We have shown that in univariate interpolating subdivision we can achieve greater
smoothness with the same number of control points by using a ternary rather than a binary
subdivision scheme. Also, for the same smoothness, the ternary scheme presented in this



16 M.F Hassan et al. / Computer Aided Geometric Design 19 (2002) 1–18

Fig. 13. Graph ofcost
n againstk for the ternary and binary schemes.n is the number of original

vertices andkn is the number of new vertices.

paper has a much smaller support and slightly lower computational cost than the equivalent
binary scheme.3

We have presented a 4-pointC2 scheme in this paper and (Hassan and Dodgson, 2001)
shows that we can achieveC1 with a 3-point scheme. It is yet to be investigated whether
we can keep increasing the number of new points introduced in each subdivision step
to achieve even greater smoothness, i.e., whether a quinary 4-point scheme can yield a
C3 curve, and so on.

Appendix A. Vertex subdivision matrix diagonalization

The subdivision matrix for the vertex (6) can be written

Mv =




− 1
18 − 1

6µ
13
18 + 1

2µ
7
18 − 1

2µ − 1
18 + 1

6µ 0

− 1
18 + 1

6µ
7
18 − 1

2µ
13
18 + 1

2µ − 1
18 − 1

6µ 0

0 0 1 0 0

0 − 1
18 − 1

6µ
13
18 + 1

2µ
7
18 − 1

2µ − 1
18 + 1

6µ

0 − 1
18 + 1

6µ
7
18 − 1

2µ
13
18 + 1

2µ − 1
18 − 1

6µ




= VvDvUv, (A.1)

where

3 This is the 6-point scheme presented in (Weissman, 1990).
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Vv =




1 2 4 3
2

1+µ
−1+15µ

1
2

7+3µ
5+9µ

1 1 1 −1
2

−1+3µ
−1+15µ −1

2
−1+3µ
5+9µ

1 0 0 0 0

1 −1 1 −1
2

−1+3µ
−1+15µ

1
2

−1+3µ
5+9µ

1 −2 4 3
2

1+µ
−1+15µ −1

2
7+3µ
5+9µ



,

Dv =




1 0 0 0 0

0 1
3 0 0 0

0 0 1
9 0 0

0 0 0 1
6 − 5

6µ 0

0 0 0 0 1
18 − 1

2µ



,

Uv =




0 0 1 0 0
1
2

−1+3µ
5+9µ

1
2

7+3µ
5+9µ 0 −1

2
7+3µ
5+9µ −1

2
−1+3µ
5+9µ

1
2

−1+3µ
−1+15µ

3
2

1+µ
−1+15µ −2 1+3µ

−1+15µ
3
2

1+µ
−1+15µ

1
2

−1+3µ
−1+15µ

1 −4 6 −4 1

1 −2 0 2 −1



, (A.2)

andUvVv = I . Hence

Mn
v = VvDn

vUv. (A.3)

Appendix B. Mid-point subdivision matrix diagonalization

The subdivision matrix for the mid-point (5) can be written

Mm =




− 1
18 + 1

6µ
7
18 − 1

2µ
13
18 + 1

2µ − 1
18 − 1

6µ 0 0

0 0 1 0 0 0

0 − 1
18 − 1

6µ
13
18 + 1

2µ
7
18 − 1

2µ − 1
18 + 1

6µ 0

0 − 1
18 + 1

6µ
7
18 − 1

2µ
13
18 + 1

2µ − 1
18 − 1

6µ 0

0 0 0 1 0 0

0 0 − 1
18 − 1

6µ
13
18 + 1

2µ
7
18 − 1

2µ − 1
18 + 1

6µ




= VmDmUm, (B.1)

where
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Vm =




1 5 25 12µ2 + 5µ+ 7 1
2

1
2

1 3 9 15µ+ 1 0 0

1 1 1 µ(15µ+ 1) 0 0

1 −1 1 −µ(15µ+ 1) 0 0

1 −3 9 −15µ− 1 0 0

1 −5 25 −12µ2 − 5µ− 7 1
2 −1

2



,

Dm =




1 0 0 0 0 0

0 1
3 0 0 0 0

0 0 1
9 0 0 0

0 0 0 µ 0 0

0 0 0 0 − 1
18 + 1

6µ 0

0 0 0 0 0 − 1
18 + 1

6µ



,

Um =




0 − 1
16

9
16

9
16 − 1

16 0

0 µ
2(3µ−1) − 1

2(3µ−1)
1

2(3µ−1) − µ
2(3µ−1) 0

0 1
16 − 1

16 − 1
16

1
16 0

0 − 1
2(45µ2−12µ−1)

3
2(45µ2−12µ−1)

− 3
2(45µ2−12µ−1)

1
2(45µ2−12µ−1)

0

1 −3 2 2 −3 1
15µ+1
15µ+1

−21µ−7
15µ+1

−12µ+16
15µ+1

12µ−16
15µ+1

21µ+7
15µ+1

−15µ−1
15µ+1




(B.2)

andUmVm = I . Hence

Mn
m = VmDn

mUm. (B.3)
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