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Abstract

A novel 4-point ternary interpolatory subdivision scheme with a tension parameter is analyzed. It
is shown that for a certain range of the tension parameter the resulting cufge The role of the
tension parameter is demonstrated by a few examples. There is a brief discussion of computational
costs.00 2001 Elsevier Science B.V. All rights reserved.

Keywords:Subdivision; Interpolation; Curves; Ternary

1. Introduction

Subdivision schemes have become important in recent years because they provide a
uniform and efficient way to describe smooth curves and surfaces. Their beauty lies in
the elegant mathematical formulation and simple implementation. Our motivation here is
to explore the trade-offs between the degree of continuity of the limit function and the
template width for interpolating schemes.

Dubuc (1986), and independently Dyn, Levin and Gregory (1987), describe a 4-point
binary interpolating scheme, which they prove tode Weissman (1990) describes a 6-
point binary interpolating scheme thatd¥. Deslauriers and Dubuc (1989) analysary
2N-point schemes derived from polynomial interpolation.

Recently Kobbelt introduced a so-callef8 scheme (Kobbelt, 2000), which reproduces
a ternary scheme after two subdivision steps. The boundary of this class of schemes will
reproduce a ternary univariate scheme.
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Fig. 1. Ternary scheme. A polygo®’ = (p;) (solid lines) is mapped to a refined polygon
pitl= (pi/.+1) (dashed lines). Note that this is an interpolatory schqvé‘?'.l = pi/..

Here we present an interpolating 4-point ternary univariate stationary subdivision
scheme. A polygorP’ = (p') (see Fig. 1) is mapped to a refined polygei! = (p'j+1)
by applying the following tf]1ree subdivision rules:

i+1_
P3; =1DPj»
o 4 4 4 4
Psry1=dop_q +aiph +azp g +asph,, (1)

o ‘ ‘ ‘ ‘
P3jip=asp;_y+azpj +aipi . +aop,,,

where the weight$a; } are given by

11
@ ="18" 6"
13, 1
al = -5 2
701
92= 18" 2"
_ 1.1
=718 e

We can see immediately from this that
ag+a1+az+az=1. (3)

These weights were the solutions of a constraint problem derived from the constant, linear,
and quadratic precision conditions, which are necessarg4erontinuity.

In the following section we look at the support for this scheme. In Sections 3 and 4,
we analyze the limit function and prove that it@ for & < u < 3. Then we find the
precision set for this scheme and illustrate the effectg aking some specific examples.

A brief discussion of computational costs follow, and finally we suggest some further work.

2. Support

It is necessary to calculate the support for this scheme before we can do the analysis
that follows. First consider all the vertices lying on an axis. This means that all the new
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Fig. 2. lllustration of similarity of support at different subdivision levels. As we carry out the
subdivision we see that each boxed region is similar to the whole region.

vertices will also lie on this axis. Now we consider the consequences of moving one of
the vertices above the axis. At the first subdivision step, we see that the vert&Xiat 5

the furthest non-zero new vertex. At the next step of the scheme this will propagate along
by 5/3 x 1/3, by similarity (see Fig. 2). Hence aftersubdivisions the furthest non-zero
vertex will be at

1
5% 3
i=1
and hence the total support is

1
2x52§=5.
i=1

This support compares favourably with the the 4-point binary scheme having a support
of 6 and the 6-point binary scheme having a support of 10.

Also, as the scheme has negative outer coefficients, it introduces a new zero-crossing,
that is a new point lying on the axis with its immediate neighbours above and below the
axis, at each step (again, see Fig. 2). As the scheme is also interpolatory, the basis function
will have an infinite number of zero-crossings, and hence cannot be described by a curve
with a finite number of polynomial pieces.

3. Convergence analysis—necessary conditions

Matrix formalism allows us to derive necessary conditions for a scheme @3 based
on the eigenvalues of the subdivision matrices.
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Suppose the eigenvalues &kg}, whererg = 1 and|;| > |A;+1] Vi € N. Then we have
the following necessary conditions for the corresponding properties:

1] = |A2| < kink, i.e., notC?!

A2 < < unbounded curvature

A2 = |r2] = |a3| < mildly diverging curvature (4)
A2 = |A2] > |A3] < curvature bounded

A2 > | < curvature— 0

This analysis was first demonstrated in (Doo and Sabin, 1978), in which the terminology is
explained more fully. For the purposes of this paper we are interested in showing that
A% = |A2| > |A3|, i.e., that the curvature of the limit function is bounded, which is a
necessary condition if the limit function is to hagé-continuity.

We shall perform the analysis for the mark points of this scheme. The mark points are
the points which are topologically invariant under the subdivision step. For this scheme,
the mark points are the mid-point between two vertices and the vertices themselves.

3.1. Mid-point

In this analysis we need consider only three vertices on either side of the mid-point,
because the support tells us that the vertices lying further than this have no effect at the
point we wish to analyze. So consider the original verticesB, C, D, E, F} and the new
vertices{a, b, ¢, d, e, f} in Fig. 3. We have from (1)

a a3 a2 a1 ag 0 O A
b 0O 0 1 0 0 O B
c|_ O a9 a1 a2 a3 O C )
d O a3 ap a1 ag O D
e 0O 0 0 1 0 O E
f 0 O a9 a1 a2 a3 F

The eigenvalues for this are 4, 3, i, — 75 + Zu (twice).

Fig. 3. Configuration around mid-point.



M.F Hassan et al. / Computer Aided Geometric Design 19 (2002) 1-18 5

Fig. 4. Configuration around vertex.

3.2. Vertex

We now wish to calculate the eigenvalues of the vertex subdivision matrix. This time we
need consider only the two vertices on each side of the vertex, because the support tells us
that the vertices lying further than this have no effect at the point we wish to analyze. So
consider the verticesA, B, C, D, E} and the new verticeg, b, ¢, d, e} in Fig. 4. We have
from (1)

ap ay a2 a3z O

a3 a2 ay ap O
=0 0 1 0 O
O agp a1 az2 a3

O a3z a2 a1 aop

(6)

SN N
O Q™™

The eigenvaluesare 4, 3, L — 2, 1 — 21
3.3. Bounds om

The two subdivision matrices and (4) allow us to find boundg avhich are necessary
for the limit function to beC2. The mid-point subdivision matrix satisfies the necessary
conditions forC? iff

W< ©

Moreover the necessary conditions &t cannot be satisfied for this matrix. For the range
of 1 in (7),13 — 21l > |5 — 3ul. Hence we see that the necessary conditiongfoare
satisfied by the vertex subdivision matrix iff

1 5 1

6 6" 9 ®
(7) and (8) are both satisfied iff
1 1

This is illustrated by Fig. 5. From this we can also see that when lil we get the
best trade-off in magnitude between the fourth largest eigenvalues of vertex and mid-point
subdivision matrices.
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Fig. 5. Plot of u-dependant eigenvalues against u and a3 are the eigenvalues of the
mid-point subdivision matrix, and; and v, are the eigenvalues of the vertex subdivision matrix.

a3=—1—18+%u,V1=%—gu,vz=1—8—§w

Hence the necessary conditions for the limit function of the schemeds laee satisfied
for both mark points foy. in the range above. Far? continuity there are other necessary
conditions on the eigenvectors (Warren, t.a.). One can verify from the appendices that these
conditions are also violated at the two extremes of the value

4. Convergence analysis—sufficient conditions
The generating function formalism lends itself well to deriving sufficient conditions for

subdivision schemes to . For this scheme the subdivision step (2) can be compactly
written in a single equation

Pit=Y anpp (10)
keZ
where
a=(aj)=[...,0,0,a3,a0,0, a2 a1,1,a1,a2,0,a0,a3,0,0, ...]. (11)

From this we can see immediately that
Zagjzl, Za3j+1=1, Za3j+2=1. (12)
JEL JEL jez
After some computation (Dyn, 1992) we see that the subdivision step can be expressed in
the generating function formalism as a simple multiplication of the corresponding symbols:

Pi+1(z) — oz(z)P" (23), (13)
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where

Pi(z)=2pjzj, a(z)=zajzj. (14)
J J

4.1. Sufficient conditions far*

Now we will go on to derive sufficient conditions for a ternary scheme t6band use
this to show that the scheme we have proposed is ind4cfThe proof is very similar to
that given by Dyn (1992) for a binary scheme.

Proposition 4.1. Let S be a subdivision scheme defined by a mask satisf{lifg Then
there exists a subdivision schesiewith the property

dP = $1dP", (15)
whereP’ = §' P%, and(d P"); =3 (p', ;1 — p}).

Proof. Let A denote the set of all Laurent polynomials and define the characteristic
A-polynomial of S by «(z). Then by (12)

a(l) =3, a(eZir[/.?)) =0, a(e4i”/3) =0. (16)
Therefore
21 _
o (g = L D) @ 4. (17)
1—z

We now show that the mask determinedddyz) defines a _subdivision schemse with the
required properties. Defining’ (z) to be the symbol ofl P!, we get

Hi(z) = Z(dp")jzf (definition)

JEZ
=33 (PP =3 (P @)~ P(2). (18)
JEL
Hence,
) o 1—
Hi(z) =3P ()=, o

Z
and by application of (13) we get

Hi+l(Z) — 3i+lPi+l(Z)£ — 3i+la(Z)Pi (23) 1 —<Z (20)
Z
Thus, by (19)
i+1 i (.3 21—z / i(,3
H'™(2) =3(z)H' (2°) =o' (2)H'(2°), (21)

1-73 2
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a relation similar in form to (13). Recalling the definition &f (z), we conclude the
existence of a subdivision schensg satisfying (17) with a mask determined by the
characteristicA-polynomial

_ 321 -2e@)

o (z) = 1= (22)

We can now determine the convergence dify analyzing the subdivision scheréél.

Theorem 4.2. S is a uniformly convergent subdivision scheme, if and oréys‘ifconverges
uniformly to the zero function for all initial dat&°.

Proof. See proof of Theorem 3.2 in (Dyn, 1992)0

Theorem 4.2 indicates that for any given subdivision schefyewith a masko
satisfying (12), we can prove the uniform convergence diy first deriving the mask
of 51 and then computing(351)' [l for i =1,2,3, ..., L, whereL is the first integer
for which ||(%51)L||OO < 1. If such anL exists,S converges uniformly.

Theorem 4.3.If S is a uniformly convergent subdivision scheme, then it determines a
unique compactly supported continuous funct6nPC.

Proof. See proof of Theorem 2.5 in (Dyn, 1992)0
Heres” PV is the scheme appliedtimes to the initial polygorP?, hences™ PP is the
limit function. Once the uniform convergence®fs established, we are then interested in

determining the smoothness of the limit functigt P°.

Theorem 4.4. Let S be a subdivision scheme with a characteristigpolynomial

1-73 k
a(z) = (m) q(2), gqe€A. (23)

If the subdivision schen®, corresponding to thel-polynomialg (z), converges uniformly
thens> PO e C* for any initial control polygonP®.

Proof. See proof of Theorem 3.4 in (Dyn, 1992)0

Corollary 4.5. If S is a subdivision scheme of the form above al-tﬁﬂ converges
uniformly to the zero function for all initial dat&® thens> PO € C* for any initial control
polygonP?.

Proof. Apply Theorem 4.2 to Theorem 4.40

Corollary 4.5 indicates that for any given ternary subdivision scheinee can prove
5% PO e C* by first deriving the mask o& ;1 and then computing| (3 S+1)/ [l for
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i=123,...,L, whereL is the first integer for whichﬂ(%SkH)LHw < 1. If such anL
exists, s> PO e C*.

4.2. Proof ofC?

For our scheme we have

o= ,0,0,3u—1,—3u—1,0,—9u+7,9u + 13,18,

18[
9u +13, —9u+7,0,—3u—1,3u—1,0, 0,...], (24)

oz(l)=%[...,O,O,&L—1,—6;L,3u+1,—6u+6, 12u + 6,

—6u+6,3u+1,—6u1,3u—1,0,0,...], (25)
1
a® =5[...,0,0,3u—1,—9u+1,9u+1, —6u + 4,
9+1,-9u+1,34-1,00,...] (26)
3
a® = E[""O’ 0,3u—1,—12u+2,18u, —12u+ 2,34 —1,0,0,...]. (27)

The calculation ofx® does not give us a Laurent polynomial. It is easy to verify that
o, 0D «@ all satisfy (12). Using

1
35| =3 max(Z]a ag i 7 > Jag s > (28)
JjEZ jeZ JEZL
for 75 < u < §, we have

1 4p+1

AN “3+ <1, (29)
o

1

éSz = 2u+l<1, (30)
o

1 —151 43

S| = ma><<9u, #) <1 (31)
o

Hence all the sufficient conditions are satisfied for this scheme @be O

We note that the same rangewobccurs both in the sufficient and necessary conditions
and so cannot be improved.

Now that we have derived the continuity and smoothness properties of this scheme we
can look at other properties. First we look at the precision set.

5. Precision set

If we have three pointgyo, p1, p2, we can fit a quadratic through them, as follows:

P() =5~ Dpo-+ (1= ) pr+ St + Do (32)
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such that
P(=1)=po, PO)=p1, PQ)=p2. (33)
Now, if we define
p3=P(2)=po—3p1+3p2 (34)

we have four vertices with which to carry out a subdivision step using this scheme. The
new vertices are

1 1 1 + 13+1 + 7 1 + 1+1
p1 = 18 6# po 18 2# p1 18 2# p2 18 6,U~ P3

_t .8 2
= 9P0 9171 9]92

_ p@ (35)
1 1 n 1 n 7 1 n 13+ 1 n 1 1
Py = 18 6# Po 18 2# P1 18 2# D2 18 6” P3

_t .5 5
= 9P0 9171 9]92

(2) 0

Hence the new vertices lie on the original quadratic.

This means that if we define a set of verti¢ps}, wherep; = P(j), j € Z, all the new
vertices calculated by this scheme will also lie on this quadratic. Hence the limit function
will be this quadratic.

We cannot do the same for a cubic. Hence the precision set for this scheme is the
quadratics.

We find that if we put a cubic through the general poitis3, C, D, such thatD(—1) =
A, Q0)=B, 0H=C, 0@ =D

t(l—t)(t—Z)A+ (t+1)(t—l)(t—2)B

o) = 6 2
+t(t+1;(2—f)c+t(t+1:)g(t—1)D (37)

and calculateQ(1/3), 0(2/3) we recover the coefficients for the ternary 4-pt Dubuc—
Deslaurier scheme (Deslauriers and Dubuc, 1989). If we calc@létg?) we recover the
coefficients for the 4-pt binary scheme. Hence both these schemes have cubic precision.
However, eigenanalysis shows that both these schemes can have unbounded durvature
and hence are onlg?.

1 At the vertex, Dubuc’s ternary scheme has eigenvaludg3111/81, 1/9, 1/27, where the third eigenvalue
is greater than /32, and the 4-pt binary scheme has eigenvalue$/2, 1/4, 1/4,1/8, where the repeated
eigenvalue causes mildly divergent curvature.
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6. Examples

In order to investigate how the parameteraffects the limit function, we need to
diagonalize the subdivision matrices and look at some specific examples. Diagonalization
of the subdivision matrices allows us to raise the matrices taithgpower and we can
deduce properties of the limit function by taking the limitas> oc. The diagonalizations
can be seen in Appendices A and B. The first two examples show, in a sense, the worst-case
behaviour of the scheme.

6.1. Basis function

Let us first look at the basis function. This is the limit function of the scheme
when applied to the verticegP;} where P, = (i,0), i € Z \ {0}, and Pp = (0,1). An
approximation to this can be seen in Fig. 6 foe= lil The support tells us that all the
points beyond two and a half units from the origin will be on the axis.

We can define an approximation to the discrete curvature at a vertex, for a given
subdivision step, by calculating the circumcircle of the triangle formed by the vertex and
its immediate neighbours. This has been used to produce the curvature plotin Fig. 7.

Fig. 6. Result of the scheme for the basis function after 4 subdivision stepawit%.

10.5

-10.5 -

Fig. 7. Curvature plot of Fig. 6. The curvature peaks at the non-zero vertex, but is bounded. Vertical
lines are at integer locations, the central line is &t0.
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We observe that the curvature peaks at the non-zero vertex. We can calculate the
curvature of the limit function at this point from (A.3). After subdivision steps the
configuration around this vertex will be

-3 1-SG) + G- 3
Do) | -d -y Msea -ty

Ml o 1]=] o 1 . (38)
10) | a ammay s gy
7 1-MEELG) + e (G- "

Calculating the curvature as the inverse of the radius of the circumcircle through the middle
3 points, we get

2(1+3u) (1 313w 1 _ 5
1 2(Z5,(9)" — Zias (5 — s (39)
ERY. 2(14+3w) (1 31-3w,1 5 2
TP+ (a9 — s (5 — 3w
and the curvature of the limit function at the peak is given by
1+3u 1
lim = ={ s M7 (40)
nmeer 00 otherwise
Fig. 8 plots the peak curvature agaipsiand from this we can see that the curvature
becomes very large as we nqae= %5 Foru = lil the peak curvature is 14. This is the

same order of magnitude as that for the basis functions of the overhauser cubic and the
cubic spline.

100 T T T T T

T
Peak Curvature

80

60

40

20 -

0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11

Fig. 8. Peak curvature againstfor the basis function.
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Fig. 9. Result of the scheme for the step function after 4 subdivision stepw#itlf—l.

2.85 -

Fig. 10. Curvature plot of Fig. 9.

6.2. Step function

We will now use the step function to illustrate the effect of the upper bound dhe
step function is the limit function of the scheme when applied to the vertiggésvhere
2i+1,-1), i<0,
P = { ieZ. (41)
2i+11), >0,
An approximation to this can be seen in Fig. 9 foe= %1 and the curvatureplot of
this can be seen in Fig. 10. We are interested in what happens at the mid-point. It is clear,
by symmetry, that the curvature here should be zero. Using (B.3) jaft@lndivision steps
the configuration around the mid-point will be
5

- —c
3 3 (u—1+2u"
-5 -1 B =
—3 -1 _i _37”(M71)+2M1+n
M?” -1 -1 _ 3" 3u—1 ’ (42)
mil 1 1 1 3 (pu—1)+2ult"
3 1 3 3u—1
5 1 3 STueDb+2
3 3u—1
> c

wherec is an expression that is superfluous to the following analysis.

2The curvature is calculated as in the previous section.



14 M.F Hassan et al. / Computer Aided Geometric Design 19 (2002) 1-18

0.18 T T T T T T T T T

0.16 - b

0.14 4

0.121

0.1

curvature

0.04

n=20

0.08
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0.065 0.07

0.075

—— L I I I
0.09 0.095 0.1 0.105 0.11 0.115
mu

0.085

Fig. 11. Curvature at the vertex nearest the mid-point afsrbdivision steps as a function pf

We can now calculate the curvature at the vertex nearest the mid-point as the inverse of

the radius of the circumcircle through the points

(_i _3—n(u_1)+zul+n)

k) 3u—1 P

1 3" (u=142 1+n
(3. U522 ), (43)
(2, Do)

3 3u—1 .

This can be seen in Fig. 11. Taking the limitzas> oo

1
1_ 07 IU/<§’

n—oo r 27 =1
2500 M =g-

This implies that the curvature of the step function becomes discontinum&s%t We
have now illustrated how both bounds graffect the limit function.

(44)

6.3. Other examples

For most examples it is very difficult for the naked eye to distinguish how the limit
function changes ag is changed within the allowed range. In Fig. 12 we have used a
simple example to illustrate how affects the limit function.

7. Computational costs

To produce a curve withC2 continuity using binary subdivision requires a 6-point
scheme (Weissman, 1990).
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Fig. 12. The result of the scheme after 4 subdivision steps. The solid line is produced by setting
w= 5—19. The dashed line is produced by settjng= 1—15

Each new point generated by the 6-point binary scheme requires 6 multiplies and 5 adds:
a total of 11 floating point operations. Each new point generated by a 4-point ternary
scheme requires 4 multiplies and 3 adds: a total of 7 floating point operations. However,
a ternary subdivision step introduces twice as many new vertices as a binary subdivision
step.

After some calculation we have that the number of floating point operations required
to produce a discrete approximation with times as many vertices as an original
approximation withm vertices is

11(2M0%kT — 1) (45)
for a 6-point binary scheme and
7(3M0%K1 — 1), (46)

for a 4-point ternary scheme.
The two schemes are thus roughly equal in computational cost, with the ternary scheme
having an advantage on average, because
7(3°%k — 1 7
L VI )
11(20%K —1)n 11
We can see from the graph 63?‘ againstk for the ternary and binary schemes (Fig. 13)
that the ternary scheme has a lower cost than that of the binary scheme for a greater range
of k.

8. Further work
We have shown that in univariate interpolating subdivision we can achieve greater

smoothness with the same number of control points by using a ternary rather than a binary
subdivision scheme. Also, for the same smoothness, the ternary scheme presented in this
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6000
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3000 -

cost/n

2000 -

1000
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k

Fig. 13. Graph of%t againstk for the ternary and binary schemesis the number of original
vertices andn is the number of new vertices.

paper has a much smaller support and slightly lower computational cost than the equivalent
binary schemé

We have presented a 4-poifif scheme in this paper and (Hassan and Dodgson, 2001)
shows that we can achiev&! with a 3-point scheme. It is yet to be investigated whether
we can keep increasing the number of new points introduced in each subdivision step
to achieve even greater smoothness, i.e., whether a quinary 4-point scheme can yield a
€2 curve, and so on.

Appendix A. Vertex subdivision matrix diagonalization

The subdivision matrix for the vertex (6) can be written

~fs— 8k TataM 13— 3k —1gtgH 0
~ftEn o34 Ttar —fg—gr O
M, = 0 0 1 0 0
0 —fg—fr Tt o34 etk
0 —E+in - B+in L-iu
= V,D,U,. (A1)

where

3 This is the 6-point scheme presented in (Weissman, 1990).
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3 1+u 17+3u
1 2 4 33515 2570
1 1 1143 1-143
2 —1+15u 2 54+9u
V,=]1 0 O 0 0 ,
1 —1+3u 1-143u
1 -11 T 2-1+15u 2 5+9u
3 1+u 17+3u
1 -2 4 2 —1+15u T 25+9u
1 00 0 0
1
0 5 0 0 0
D,=|0 0 3 O o |.
1_5
11
0 0 1 0 0
1-1+3u 174+3u 0 _ 1743w 1-143u
2 5+9%u 25+9u 25+9u 2 5+9%u
U, = 1 —14+3u 3 _14+u ) 14+3u 3 _1+u 1 —143u (A.2)
2 —1+15u 2 —1+15u —1+150 2 —1+15u 2 —1+15u ’
1 —4 6 —4 1
1 -2 0 2 -1
andU,V, =1. Hence
M? =V,D}U,. (A.3)
Appendix B. Mid-point subdivision matrix diagonalization
The subdivision matrix for the mid-point (5) can be written
1,1 7 _1 13,1 1_1
—fgtst M4 Tt —ig B 0 0
0 0 1 0 0 0
11 13,1 7 1,1
M 0 “fgT§M TTIH 14 —igt sk 0
m o 1,1 71 13,1 11
0 —ftsh 14 Tt i B 0
0 0 0 1 0 0
11 13,1 71 1,1
0 0 “fg~§M T4 1334 —igt sk
= V;,DnUp, (B.1)

where
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2 1 1
1 9 1% +1 0 O
Vv 1 1 1 w(15u + 1) 0 O
"7 l1 -1 1 —pasw+1 o o |’
1 -3 9 —15u -1 0 O
2 1 1
1 -5 25 —-12uc—-5u—7 5 —3
1 0 0 O 0 0
1
0 3 0 0 0 0
003 0 0 0
Dm - s
0O 0 0 pu 0 0
000 0 —%+iu 0
0000 0  —fHtiu
0 ~ 4 1 1 ~15 0
0 ”w _ 1 1 M 0
2@u—1) 2@u—10) 2@u—10) 2@u—10)
o | o % -4 -4 s 0
" 0 _ 1 3 B 3 1 0
2(45u2—12u—1)  2(45u2—12u—1) 2(45u2—12u—1)  2(45u2—12u—1)

1 -3 2 2 -3 1
15u+1 —21u—7 —12u+16 124—16 2147 —15u—1
15u+1 15u+1 15u+1 15u+1 15u+1 15u+1

(B.2)
andU,,V,, =1. Hence
M =V,,D%U,,. (B.3)
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