COMPUTER
AIDED
GEOMETRIC
DESIGN

ELSEVIER Computer Aided Geometric Design 14 (1997) 13-30

Curve interpolation in recursively generated B-spline surfaces
over arbitrary topology

A. Nasri !

American University of Beirut, Department of Mathematics, P.O. Box 11-236, Beirut, Lebanon
Received May 1995; revised April 1996

Abstract

Recursive subdivision is receiving a great deal of attention in the definition of B-spline surfaces
over arbitrary topology. The technique has recently been extended to generate interpolating surfaces
with given normal vectors at the interpolated vertices. This paper describes an algorithm to generate
recursive subdivision surfaces that interpolate B-spline curves. The control polygon of each curve
is defined by a path of vertices of the polyhedral network describing the surface. The method
consists of applying a one-step subdivision of the initial network and modifying the topology in
the neighborhood of the vertices generated from the control polygons. Subsequent subdivisions
of the modified network generate sequences of polygons each of which converges to a curve
interpolated by the limit surface. In the case of regular networks, the method can be reduced to a
knot insertion process.
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1. Introduction

Recursive subdivision provides definition of surfaces over irregular networks. Research
is still ongoing to enhance the capability of such surfaces making them important tools
in Computer Aided Geometric Design for modeling complex surfaces. Recent results,
for instance, show that recursively generated surfaces, often called recursive subdivision
surfaces will have an essential role in establishing a theoretical basis for applying a
multiresolution analysis of surfaces of arbitrary topological nature (DeRose et al., 1993).
The two well known methods appeared in (Catmull and Clark, 1978; Doo and Sabin,
1978) based on an idea introduced by Chaikin (1974) to generate a curve from a polygon
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by successively cutting its corners. A surface is described by a polyhedral network P
which is refined by cutting its corners and its edges by a plane. This will result in a new
polyhedron P, with new vertices and faces which can be refined in a similar manner to
generate another polyhedron P,. By infinitely repeating this process, a surface S can be
generated at the limit as:

S = .lim P,;. (1)

1—00

DeRose et al. (1993) have nicely described the subdivision process in two main steps:
splitting and averaging. In the former, an intermediate polygon ﬁ is generated by in-
serting additional temporary vertices in the polyhedron P; to be subdivided. To generate
the vertices of P;;, the vertices of F; are then subject to an averaging process using
masks. Basically a mask m of weight m;, where m = (m;)_ngign. is applied to a set
of vertices (7;) of 131 to generate a new vertex v; of P;,. v; is given by:

Z?:—n m; .f)\i

e @)
Zj:—n m;

In Chaikin’s method, the temporary vertices are the midpoints of the edges of P;. The

mask {0, 1,1} is then applied to a sequence of 3 vertices {U;_1,;, V41 }. This process

will not only eliminate all midpoints inserted in the split process but also excludes the

corners or vertices of the original polygon.

Doo and Sabin extended Chaikin’s algorithm to generate quadratic surfaces. In their
method, for every vertex w; of the polyhedron P;, a new vertex is generated on each face
adjacent to w;. The new polyhedron P;;, is then obtained by connecting these generated
vertices giving an F-face for each face f; of P;, an E-face for each edge ¢; of P; and a
V-face for each vertex v; of F; (see Fig. 1).

Vi =

Fig. 1. Doo-Sabin’s subdivision. A polyhedron P; (solid vertices) and the generated one Piy,
(hollow vertices). The latter is made of three types of faces: a V-face (v), an E-face (e) and an
E-face (f).
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Fig. 2. An example of Doo-Sabin’s algorithm surface. A cube network (top left), its first subdivision
(top right), its second subdivision (bottom left) and its third subdivision (bottom right).

In light of the above, the new vertices of P;; are linear combinations of the vertices of
P;. Therefore the key idea in these methods lies in the rules by which the new vertices
are generated. In the Doo—Sabin technique, for instance, the following rules apply to
generate the new vertices v;, called images, on a face F having the vertices (w;)i1<ign:

n
Vi = Zaijwj, 3)
=1

where the o;;’s are given by:

5
o = nt , 4
4n
3 +2cos(2m(i — 5)/n
o @rti—5)/m) o

Fig. 2 shows the results of applying these rules to a cube network. The behavior of the
limit surfaces has been analyzed (Doo and Sabin, 1978; Ball and Storry, 1984). The tech-
nique was also extended to generate interpolating surfaces over irregular networks (Nasri,
1991; Halstead et al., 1993). Furthermore, equations for points on the limit surface and
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normals to the surface were also established. It was also shown that the surface generated
is a B-spline surface which is tangent plane continuous everywhere. Peters (1993), and
Loop and DeRose (1994) have extended the technique to generate smooth surfaces over
arbitrary topology by separating singular regions after a few steps of subdivision; these
regions were filled in by closed form patches.

In this paper we describe a method to force a recursively generated surface over
arbitrary topology to interpolate predefined quadratic B-spline curves. Curve interpolation
is an essential tool in CAGD. For instance, in car design a surface can be moved to
interpolate predefined curves such as feature lines. In our method, the control polygon of
each interpolated curve, called CP, is a sequence of edges and vertices of the polyhedral
network describing a surface. The method consists of modifying the topology in the
neighborhood of these vertices generated from CP. This is to ensure that subsequent
subdivisions of the network will subdivide CP according to Chaikin’s method. At the
limit the subdivided polygon converge to a curve on the limit surface. Section 2 discusses
the conditions to achieve this goal using the similarity between the two processes of knot
insertion and subdivision, in the case of regular networks. Section 3 describes the curve
interpolation method by considering first a control polygon whose vertices make a row
or a column path of a regular network. After that the method is generalized to a control
polygon defined by an arbitrary sequence of edges and vertices of the network. Section 4
discusses implementation issues and Section 5 draws conclusions and outlines future
work.

2. Knot insertion and recursive subdivision

In this section, we discuss the similarity between Chaikin’s subdivision and repeated
knot insertion. This helps us to establish the conditions under which a subdivided network
generates a Chaikin’s polygon from a given one.

2.1. Polygonal subdivision conditions

A piecewise polynomial B-spline curve is defined by:

L4+n—1

S™= " d:Ni(u), (6)
=0

where the vector valued coefficients (d;) form the de Boor control polygon and N;*(u)
are piecewise polynomials of degree n which form a basis for the linear space of the
piecewise polynomial of degree n. The N*(u) are defined over a knot sequence: - - <
ug < u; < up < ---. This knot sequence forms a partition of the real axis whereas the
N (u) form a partition of unity.

The de Boor polygon can be subdivided by inserting a knot in each domain intervals
of the parameter u. The process results in a refined polygon and a refined knot sequence,
however the curve remains unchanged. Riesenfeld (1975) has shown that by repeated
subdivision, the refined polygon will eventually converge to the underlying curve.
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In the quadratic case, inserting a knot % in the middle of an interval [u; u;4] results in
the two de Boor points P and Pil+1 replacing the old point P; of the original polygon.
These are given by the formula:

P = (1 = ag)Pe-1 + ax Py, %)
where
u — ug
o = ———. (8)
Uk4n — Uk

Chaikin’s method can be thought of as a repeated process of knot insertion in quadratic
B-spline curves defined over uniform knot sequence. The refined points P! are then
given by:

P, =3P+ 1Py, )
Py = %Pi + 1P, (10)

hence each leg, i.e., edge, of the de Boor polygon is divided into the ratio 1 : 3 and 3 : 1
which corresponds to the mask {0, 1, 1} mentioned in Section 1.

In light of the above, we can establish the following subdivision condition for a control
polygon (P?) to converge to its corresponding quadratic B-spline curve:

Condition (A)
The control vertices of each subdivided polygon (CP;) must be obtained from (CP;_;)
by applying the mask {0,1,1} to every sequence of three vertices; hence equation (9)
and (10) must be satisfied

It should be noted that the midpoint of each leg will be a point on the curve.
2.2. Polyhedral subdivision conditions

In the case of a regular mesh or network, where all vertices are 4-valent, the same
process of repeated subdivision can be applied to surfaces. A piecewise polynomial tensor
product B-spline S™™ is defined by:

St =" dip N (v)N] (). (11)
g

The d;, are the de Boor points which form a rectangular 4-sided control mesh of a
surface. The N;* and N* are the same B-spline basis functions given in Section 2.1.
These are defined over a rectangular grid of knot sequence forming the u, v domain.
Similar to the curve case, repeated knot insertion can be used to subdivide the control
mesh of the surface producing a refined mesh which will eventually converge to the
surface.

Chaikin’s algorithm has been extended to surfaces by inserting knots in the middle of
each u- and v-interval leading to the same rules (3)—(5) to generate a new network.

It is easy to show that by inserting a knot % at the middle of the interval [u; u;41]
a row of faces (f;), called a strip, is added to the network as will be discussed in the
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Fig. 3. Subdivision conditions: (a) Legs of a control polygon made of midface edges of 4-sided
faces. (b) A leg as a midface edge of an n-sided face (n # 4).

following section. These faces define the control polygon of a curve that corresponds
to the knot-line v = %. Each leg of this polygon is a midface edge of a face, where a
midface edge of f; joins the midpoints of two shared edges of f; with other faces of the
strip as depicted in Fig. 3(a). Two edges are nonadjacent if they do not share a common
vertex. Note that inserting a knot in a v-interval can be done in an analogous manner.

In the case of a regular network, a condition can now be established for a control
polygon to converge to a curve on the limit surface. For example, in the Doo—Sabin’s
subdivision, this condition is as follows: each leg of the polygon should be a midface
edge of a 4-sided face. This condition guarantees that in subsequent subdivisions, the legs
of the subdivided polygon will also be midface edges of the generated F-, E-, or V-faces.
The condition can be generalized to handle a leg which is a midface edge of an n-sided
face having an even number (n = 2k) of vertices (v; Jogign—1 (see Fig. 3(b)). Let mg and
my—1 be the midpoints of the edges vovy, - and vi_|vg, respectively. The corresponding
midface edge will be the leg moymy_ of the control polygon if the following condition
holds:
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Condition (B)
The midpoint n; of every couple of vertices v; and v; such that i + j = n — 1, called
opposite vertices, is the Chebyshev point defined on the interval [mgmy_1] as follows:

(1 + B;)mo + (1 — B;)my_,

i = 3 (12)
where j = 0,...,k — 1 and the 3; are given by
cos((25 + 1)n/2k
5, — (i + Drj2k) -

cos(m/2k)

Note that a similar condition was used to control the boundary curves of recursive
subdivision surfaces in (Nasri, 1987). It was also shown that subdivision of a face f;
having a midface edge e; and satisfying this condition will generate an F-face f; having
a midface edge e, where e; can be obtained from e; by condition (A). Furthermore, the
F-face f; satisfies the condition (B).

3. Curve interpolation method

Consider a polyhedral network defined by the triplet P = (V, E, F'), where

V = (vs)1<igm, (14)
E = (ei)1<igns (15)
F={(fiigigr- (16)

An edge e; has two vertices denoted by v? and v! and two common faces f? and f}.
Given: a control polygon on this network which is defined by

CP = (E,, Vp), a7

where E, and V}, are subsets of E and V, respectively. The method described here can
handle closed curves only. Other types of curves such as open and boundary curves are
the subject of a subsequent paper. For a closed curve, the control polygon, CP must define
a closed path from a vertex v; to vy, where k = Card(V},), as an alternating sequence
of interior vertices and edges as follows: v, e;,vp,€2,...,€k—1,Vk, €k, V1. Such a path
can be simply denoted by [vi,v2, ..., vk, v1). Accordingly an edge e; of E, is common
to vertex v; and V(4 1ymod k- Furthermore, no vertex v; can appear twice in the path of a
polygon and a vertex must not be used in two different control polygons.

Problem: how to generate a surface from the polyhedron P that interpolates the
quadratic B-spline curve having CP as a control polygon?

The solution can be devised by considering first the case of regular networks as follows.

3.1. The regular case: row or column

Consider the case of a regular network where the set V), forms a row or a column of
the network. The problem can be easily solved by knot insertion.
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Fig. 4. Curve interpolation in the regular case where a polygon forms a row of vertices. Shaded
faces are added by knot insertion in the middle of the corresponding u-interval.

Assume that the two arrays of faces common to the edges of E, are given by (f°) and
(f}) which define two knot-lines, called u = U and u = @y, respectively (see Fig. 4).
The idea is to insert a knot % in the middle of the interval [i, %] which defines a new
knot-line that will eventually correspond to the B-spline curve of CP. The knot insertion
process will generate a 4-sided face f°! for each edge e; in E,. A strip of faces is
therefore added to the network. These faces should be modified in order to have CP as
the control polygon of their corresponding knot-line u = %. Each face f2! of this strip
is made up of the four vertices v?’o, v?’l, v; ! and v}’o as depicted in Fig. 4. Assume
that Jy and I; are the midpoints of the new edges v? ’ng’l and vg ’Ovz-l 1, respectively. By
shifting these edges by a vector I;0) and Lv}, respectively, their midpoints become v
and v!. Each edge e; will be a midface edge of f°', hence a leg of the polygon which
converges to a curve on the surface associated with the knot-line u = %.

Note that similar modification can be applied when V;, forms a column instead of a

Tow.
3.2. The general case

For irregular meshes, the situation is more complicated as the notion of a row or
a column is not valid. Furthermore, even in the regular case, the definition of control
polygons should not be restricted to rows or columns. In order to release this restriction,
a network is thought of as a polyhedron and a control polygon CP is defined according
to Egs. (14)-(16).

Initially, the method consists of applying a one-step division of the polyhedron Fp
resulting in a polyhedron P, with a set of faces associated with CP; namely the E-faces
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and V-faces generated from its edges and vertices respectively. These faces will play
a similar role to that of the faces generated by knot insertion in the regular case. For
instance, the E-faces are subject to a linear transformation to cut the legs of CPy = CP
in the ratio proposed in condition (A). This modification, however, may create additional
vertices which will disturb the topology of the network. Furthermore, the V-faces must
be modified to satisfy condition (B). The following algorithm provides an outline of the
proposed solution:

For each edge e; in CP Do

Begin

Fe := E-face(e;);

Modify Fe by shifting its shared edges as suggested in Section 3.2.1;
{its midface edge is then obtained from e; by condition (A)}

Modify the adjacent faces to Fe accordingly

End;

For each vertex v; in CP Do

Begin

Fv := V-face(v;),

Modify Fv by moving its vertices as suggested in Section 3.2.2;
{its midface edge is then obtained by condition (B)}

Modify the adjacent faces to Fv accordingly

End;

Note that the adjacent F-faces to the E- and V-faces are not involved directly in
the modification process, but are adjusted according to the outcome of the modification
process. The following sections discuss this modification.

3.2.1. Modification of E-faces

Consider Fig. 5 which shows an edge e; and its E-face F'. As all E-faces are 4-sided,
F is made of v%, v, v!! and v}° which are the images of v and v} on the faces
common to e;. The segments vXv?! and v}%!! must be shifted so that their midpoints
I and I, will coincide with the points J; and J; respectively. J; and J; are obtained

by applying the masks given in condition (A) as follows:

Fig. 5. Modification of an E-face (hollow vertices). Ji.J2 is a leg of the subdivided polygon.
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300 + o)

Si=—7 (18)
3v) 40

Jy = _T_ (19)

Thus the two edges v¥v?! and v}%!! are shifted by T(11 Ji) and T(Isz) respectively.

T(V) is a translation in the direction of the vector V As a result, the segment J;.J; will
be a leg of the polygon CP; and a midface edge of F.

3.2.2. Modification of V-faces

For each edge e; of CPy the subdivision process creates a 4-sided E-face which deter-
mines a leg of CP;. The remaining problem is embodied in the generation of the legs of
the CP; which correspond to the V-faces. This can be achieved by modifying the latter
according to condition (B).

To begin, let us discuss how a 3-sided face can be modified before generalizing to
n-sided faces.

Modification of 3-sided faces. Consider the case of a 3-valent vertex of the control
polygon which is depicted in Fig. 6(a) where the control polygon has two edges e;—;
and e; incident to v; and lying on the same face. The two generated E-faces from e;_;
and e; will have a common vertex v]. However after carrying out the two necessary
transformations of these E-faces, the vertex vf will generate two vertices v”' and v)2—
one from each transformation. Consequently the 3-sided face will become a 4-sided one.
This topological modification must be reflected in the neighborhood of v7. Thus the F-
face and V-face meeting at this vertex must be modified resulting in a new vertex and a
new edge added to both of them. Assuming that M, and M, define the matrices of the
necessary translations applied to the two E-faces involved, respectively, the following
algorithm summarizes this modification:

For each vertex v; of CP Do
IF v; is 3-valent then
Begin
Ff := F-face adjacent to v;;
Fv := V-face adjacent to v;;
Fe, := First E-face adjacent to v;;
Fe; = Second E-face adjacent to v;;
{ M is the matrix of the translation on Fe; }
vl = ShiftVertex (v;, M));
{ShiftVertex applies the transformation defined by M to v; }
UZ’z = ShiftVertex (v;, M>);
Assign to v;, which is common to Fey, Fv and Ff, the coordinates of v{ ’1;
Assign to v; of Fe, the coordinates of v';' ’2;
Add vertex vg 2 to Ff and Fv;
Add edge v}'v}? to Ff and Fv
End
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b

Fig. 6. Modification of a 3-sided face. (a) A 3-sided face (shaded vertices) generated after one-step
of subdivision. (b) The corresponding 4-sided face after modification. v{ generates two vertices

1 J:2
v} and v;”.

Fig. 6(b) shows the results of modifying the V-face of Fig. 6(a).

Modification of n-sided faces (n > 4). Consider the configuration of Fig. 7 where the
following sequence:

Vi—1, €i—1, Vi, €4, Uiyl (20)
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Fig. 7. Modification of an n-sided face. The midface edge m;_1m; is a leg of the subdivided
polygon.

1,0

is part of the control polygon CP and v; is an n-valent vertex. Assume that vf_ and
i1

v, I are the images of v; on the faces f?_l and f-l_1 common to edge e;_|, respectively.

Similarly let vf’o, vf’l be the images of v; on the faces f? and f} common to edge e;,
respectively. Furthermore assume that these vertices have already been shifted in the
E-face modification process as suggested in Section 3.2.1, Because of this modification
the edge m;_1m; will be a leg of the new go}ygon. The points m;_; and m; are the

=10yi=b and vy’ v:’l, respectively. Therefore, the problem

midpoints of the edges v; i
reduces to making that leg a midface edge of a V-face of P;. The method consists of
adjusting the topology of the V-face VE; of v; in order to satisfy condition (B). This is
accomplished in two steps: spatial modification and split modification. First, the spatial
location of some of the vertices of VF; may need to be altered; second the face VF; itself
may have to be split into two faces. Basically, the idea consists of comparing the number
of vertices of VF; on either side of m;_1m; (call them k; and k;), excluding v;_l'o,
vf""l, vf’o and vf’l. Without loss of generality, assume that k; < k. The following

algorithm summarizes the remaining steps:
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Fig. 8(a)

Fig, 8(b)
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©

Fig. 8. The cube surface of Fig. 2 interpolating various B-spline curves. (a) A polygon path of the
top vertices [1,2,3,4,1], (b) A polygon path of vertices [2,1,5,8,7,3,2] and (c) A polygon path of
vertices [4,1,2,6,7,3,4]. In all figures, the original network (top left), its modified first subdivision
(top right), first subdivision (bottom left) and second subdivision (bottom right) of the modified
network are shown.

1. Label the vertices of the face VF; so that the two paths from m;_; to m; are the

following:
i-1,1 1 1 [N
[Mio1,v; 01,0,y Uy, U, M), 2D
i-1,0 .0 .0 0 .40
(Mo 1,0; 501,09,y Uy, U, M) (22)

2. On m;_m; construct k; Chebyshev points n; as given in Eqgs. (12)—(13) after
replacing k by ;.
3. For r := 1 to k; Do adjust vertex v} so that n, is the midpoint of the segment

0,1
Up Up.
4. Modify VF; so that it is made of the following vertices which make a path:
i~1,1 1 1 1,41 40 0 0 0 ,i-1,0
(v VUL U2y e ey Uy U U Up s Uy - U, Y0 23)

5. Construct an additional face whose vertices make the following path:

1 1 1 I 1,1
[Uk1’vk|+1’vk]+2>""vk27vi ] (24)
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Fig. 9. Curve interpolation illustrating the case of k1 > 0. A cube network with a polygon path
through an 8-valent vertex (solid lines) (top left), its modified first subdivision (top right), first
subdivision (bottom left) and second subdivision (bottom right) of the modified network are shown.
The 8-sided V-face becomes 6-sided and one additional 4-sided face is constructed.

After this modification, the leg m;_1m; is a midface edge of VF, which satisfies
condition (B); thus a proper subsequent subdivision of this leg is guaranteed. It should
be mentioned however that in case of a control polygon where the two edges e;_; and
e; belong to the same face, we have k& = —1 and hence VF; will be a 4-sided face.
Clearly, for a 3-sided valent vertex, we have also k) or k; = —1.

4. Implementation

The above results were implemented where Figs. 8 and 9 were produced. In Fig. 8,
the cube of Fig. 2 was considered with various control polygons. Fig. 8(a), for instance,
illustrates the interpolation of the curve that corresponds to the control polygon made
up of the top 4 vertices. Notice that each 3-sided face becomes a 4-sided face after
applying the necessary modification. The first and second subdivisions of the modified
network are also provided. On the same cube, more complicated polygons are consid-
ered in Figs. 8(b) and 8(c) where the corresponding first modification and subsequent
subdivisions are depicted. The case of a control polygon having an 8-valent vertex on
its path and illustrating the case of k; > 0 is considered in Fig. 9. The 8-sided V-face is
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Fig. 10(a). Interpolation of various curves: a network with three control polygons (solid lines) (top
left), its modified first subdivision (top right), first subdivision (bottom left) and second subdivision
(bottom right) of the modified network are shown.

split into two faces: a 6-sided face which satisfies condition (B) and an additional 4-sided
face. Finally, a network with three control polygons is given in Fig. 10(a). The 5-valent
vertex on the path of the middle control polygon illustrates the case of k; = 0 where the
additional face is 3-sided. Two successive subdivisions of the modified network are also
shown. Different views of the resulting surface interpolating the corresponding curves
are shown in Fig. 10(b).

5. Conclusions

In this paper, a method that extends the capability of the recursive subdivision technique
to generate surfaces that interpolate predefined curves is described. The technique consists
of a one-step division of the initial network and a topological modification of the E-faces
and V-faces generated from the edges and vertices of the given control polygon. It should
be noted that there are different types of transformation that can be used to adjust these
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Fig. 10(b). Different views of the resulting surface interpolating the three curves: a bottom view
(top left), a front view (top right), a side view (bottom left) and a back view (bottom right).

faces to satisfy the Conditions established in this paper. These degrees of freedom can
be used to optimize the shape of the resulting surface and a solution is currently under
implementation.

Curve interpolation will make recursively generated surfaces much more attractive
in CAGD. As a result, the surface of a car body, for example, can be moved to in-
terpolate specific curves such as feature lines. Furthermore, the generation of surfaces
through irregular meshes of curves can also be considered. This however requires the
interpolation of open and intersecting meshes of curves, which are the subject of sub-
sequent papers. Open curves present the problem of how and whether to interpolate
their endpoints which may lie on the interior or on the boundary curves of the sur-
face. Finally, the extension of the algorithm to higher order curves and surfaces can be
inspired.
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