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Abstract

A scheme is proposed based on an extension of Analytic Geometry to represent a composite curve ei
a single equation or with two equations in the case of parametric representation, or three equations in
of parametric representation of 3D surfaces, without the use of inequalities and valid from minus infinity
infinity. The general equations of the regular polygon, the polygonal cylinder as well as the equation of th
view of the chain sprocket are established.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the last few decades a new discipline known as Computational Geometry has arisen, which
other problems, deals with intersections of line segments and polygons and has been applied m
Computer Graphics, Robotics, Geography and CAD/CAM (De Berg et al., 1998, pp. 1941; Pre
and Shamos, 1985; Hakimi and Schmeichel, 1991; Milenkovic, 1993) and even to roadway geom
determine its current condition (Drakopoulos and Örnek, 2000). Since Computational Geometry i
on Computer Science, particularly in Algorithmics, it has a great potential, but its use requires, at
basic knowledge of these disciplines.

This paper also refers to the handling of finite line and curve segments, polygons and com
curves as well as their intersections, but by different means, namely, an extension of Analytic Ge
which makes use of conventional algebraic and transcendental functions so its application requi
or no knowledge of either Computer Science or Algorithmics. Many problems require no mor
a hand-held graphics calculator. Resorting to a symbolic computer language such asMathematica,
Maple or Matlab permits to take full advantage of this methodology, but only to handle analy

E-mail address:ecu@pumas.iingen.unam.mx (E. Chicurel-Uziel).
0167-8396/$ – see front matter 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2003.07.011
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any programming.

Most of the mathematical devices that comprise the previously mentioned extension of A
Geometry were proposed in Cartesian form (Chicurel-Uziel, 1999/2000, 2000, 2001a, 2001b)
of them are presented in the present paper adapted to polar or parametric forms. In (Chicure
1999/2000) a pure algebraic equation to represent the Heaviside unit step function, which d
require any inequalities, was proposed. Also in (Chicurel-Uziel, 1999/2000) a concatenation pro
for linking curve segments was proposed to facilitate the use in the computer of the Clebsch Met
beam deflections. The periodizer and alternator functions introduced in (Chicurel-Uziel, 2000)
possible the non-series, no transform, exact representation of periodic, non-harmonic, contin
discontinuous functions, and the reflect and repeat function introduced in (Chicurel-Uziel, 2001a)
facilitates the representation of a large class of such functions. References (Chicurel-Uziel, 2000
2001b) illustrate the application of both the concatenation procedure and these special func
vibration problems.

As mentioned in the previous paragraph, this approach has been applied to engineering proble
purpose of the present work is to explore the possibilities resulting from the use of these techni
Analytic Geometry. This scheme permits the representation of composite curves in a manner si
the conventional manner used for the representation of plain, non-composite curves. A single C
equation may represent a single-valued, plane, composite curve which may be of finite or
length. A multi-valued plane composite curve, open or closed, with or without polar symmetry
be represented either by a single polar equation or by two parametric equations. Three pa
equations suffice for the representation of composite 3D surfaces. In no case are inequalities r
This capability leads to the establishment of the general equation of the polygon as well as tha
chain sprocket.

2. Mathematical devices

2.1. A useful representation of the Heaviside unit step function

The following representations of three well known functions were proposed in (Chicurel-U
1999/2000):

Absolute Value or “V” function:

V (x, a) = |x − a| =
√
(x − a)2. (1)

“Jump” or Relay function:

J (x, a) = V (x, a)

(x − a)
= (x − a)

V (x, a)
. (2)

Heaviside unit step function, Fig. 1(a):

H(x, a) = 1

2

{
1+ J (x, a)

}
. (3)
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Fig. 1. Heaviside unit step function: (a) Cartesian version, plot of Eq. (3). (b) Polar version, plot of Eq. (4).

Notice that these are self contained, single equation representations that do not require any ine
and, furthermore, they are valid fromx = −∞ to x = +∞. The following is a polar version of th
Heaviside unit step function, Fig. 1(b):

H(θ,α)= 1

2

{
1+ J (θ,α)

}
. (4)

2.2. Equation of a finite curve segment

The Heaviside unit step function may be used as a “switch”, i.e., a function may be switched on
multiplied by its positive value and switched off when multiplied by its negative value. So that the
segment of the curvef (x) from x = a to x = b is represented as:

g(x) = f (x)
{
H(x, a) − H(x, b)

}
. (5)

2.3. Concatenation procedure

Eq. (5) leads immediately to the concatenation procedure (Chicurel-Uziel, 1999/2000, 2000,
2001b). A composite function:

f (x) = f12(x), a1 � x � a2,

f (x) = f23(x), a2 � x � a3,

f (x) = f34(x), a3 � x � a4,
...

...

f (x) = fn−1,n(x), an−1 � x � an,

may be expressed as:

f (x) = f12(x) +H(x, a2)
(−f12(x) + f23(x)

) +H(x, a3)
(−f23(x) + f34(x)

) + · · ·
+ H(x, an−1)

(−fn−2,n−1(x) + fn−1,n(x)
)
, a1 � x � an, (6)
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Fig. 2. Cartesian periodizer function, plot of Eq. (8).

or as the single equation:

f (x) = H(x, a1)f12(x) +H(x, a2)
(−f12(x) + f23(x)

) + H(x, a3)
(−f23(x) + f34(x)

) + · · ·
+ H(x, an−1)

(−fn−2,n−1(x) + fn−1,n(x)
) + H(x, an)

(−fn−1,n(x)
)
. (7)

Clearly (7) is valid fromx = −∞ to x = +∞.

2.4. Cartesian periodizer function

This function was introduced in (Chicurel-Uziel, 2000) and is represented by the following equ
Fig. 2:

pC(x, T ) = T

2
− T

π
arctan

(
cot

π

T
x

)
. (8)

If in a functionf (x), x is replaced bypC the resulting function is the segment off (x) contained in the
interval 0� x � T repeated indefinitely.

2.5. Polar periodizer function

Replacingx by (θ − θ0) andT by 2π/N in (8) results in the polar periodizer function, introduced
this paper and adapted for use in connection with figures with polar symmetry and a whole num
lobesN , Fig. 3:

p(θ,N, θ0) = π

N
− 2

N
arctan

[
cot

{
N(θ − θ0)

2

}]
. (9)

Fig. 3 illustrates (9) forN = 5 andθ0 = 0.
If in a function f (θ), θ is replaced byp(θ,N,0) the resulting functionf (p(θ,N,0)) is made up

of the initial segment off (θ) from θ = 0 to θ = T repeatedN times in the interval 0� θ � 2π . The
function f (p(θ,N, θ0)) is identical to the functionf (p(θ,N,0)) except that the former is rotated a
angleθ0 counter-clockwise with respect to the latter.

2.6. Stairs function

The single equation to represent the stairs functionS, Fig. 4, which is introduced in this paper, may
derived from the Cartesian periodizer function in the following manner. Consider the straight line:

y = mx + b. (10)
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Fig. 3. Polar periodizer function, plot of Eq. (9) forN = 5 andθ0 = 0.

Fig. 4. Stairs function, plot of Eq. (18).

Suppose thatS may be obtained thus:

S = pCk + y, k = a constant. (11)

Substituting (10) into (11):

S = pCk +mx + b (12)

m, b andk are to be determined. In order to simplify the procedure we consider the pseudo-stairs fu
S ′ (a single step) as well as the pseudo-Cartesian periodizer functionp′

C (a single lobe ofpC), Fig. 5.

S ′ = AH(x,T ), (13)

p′
C = x − TH(x,T ). (14)

Notice thatS ′ = S andp′
C = pC in the interval 0� x < 2T , Fig. 5. Thus we now have the simpl

problem, i.e., to determinem, b andk such that:

S ′ = p′
Ck +mx + b, 0 � x < 2T . (15)

Substituting (13) and (14) into (15):

AH(x,T ) = −kTH(x,T )+ (k + m)x + b, 0� x < 2T , (16)
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Fig. 5. (a) Pseudo-stairs function (a single step), plot of Eq. (13). (b) Pseudo-Cartesian periodizer function (a single lo
periodizer function), plot of Eq. (14).

Fig. 6. Polar reflecting and repeating function, plot of Eq. (21) forN = 13.

consequently:

k = −A

T
, m = A

T
, b = 0 (17)

substituting (17) and (8) into (12) yields the stairs function, Fig. 4:

S(x,A,T ) = A

{
−1

2
+ x

T
+ 1

π
arctan

(
cot

π

T
x

)}
, (18)

whereA is the magnitude of the riser (vertical distance between consecutive steps) andT is the tread
or width of a single step (horizontal distance between two consecutive risers). For an application
function see Example 4.1.3.

2.7. Polar reflecting and repeating function

The following is the polar version of the reflecting and repeating function introduced in (Chic
Uziel, 2001a), Fig. 6:

R(θ,T ) = T

2π
arccos

(
cos

2π

T
θ

)
. (19)
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To use Eq. (19) in connection with a figure with polar symmetry it is convenient to express the peT

as a function of the number of lobes:

T = 2π

N
. (20)

Substituting Eq. (20) into (19) yields:

R(θ,N) = 1

N
arccos(cosNθ). (21)

Fig. 6 is a direct plot of (21) forN = 13.
If in a function f (θ), θ is replaced byR(θ,N) the resulting functionf (R(θ,N)) is made up ofN

identical lobes in the interval 0� θ � 2π . The first lobe is made up of two symmetrical halves, i.e.,
first half is identical to the initial segment off (θ) from θ = 0 to θ = T /2, and the second half is th
reflection of the first half with respect to the radius atθ = T /2.

3. Non-symmetrical closed composite figures

3.1. Irregular polygon

The parametric equations of the irregular polygon will now be established. Let the polygon v
beP0(x0, y0),P1(x1, y1),P2(x2, y2), . . . , Pn(xn, yn). Since a polygon is a closed figure,Pn = P0, xn = x0

andyn = y0. Let s be the variable distance along the perimeter of the polygon measured from poP0

andsi the specific distance from pointP0 to pointPi :

si =
j=i∑
j=1

√
(xj − xj−1)2 + (yj − yj−1)2, i = 0,1,2, . . . , n. (22)

Clearlysn �= s0 sinces0 = 0 andsn = the full length of the perimeter of the polygon.
The double subscripted symbolsxi,i+1 andyi,i+1 designate the dependent variables associated wit

parametric equations of line segmentPiPi+1:

xi,i+1 = xi+1 − xi

si+1 − si
s + xisi+1 − xi+1si

si+1 − si
,

(23)
yi,i+1 = yi+1 − yi

si+1 − si
s + yisi+1 − yi+1si

si+1 − si

and in accordance with Eq. (7) the parametric equations of the regular polygon are:

x = x01 +H(s, s1)(−x01 + x12)+ H(s, s2)(−x12 + x23)+ · · ·
+ H(s, sn−1)(−xn−2,n−1 + xn−1,n) +H(s, sn)(−xn−1,n),

(24)
y = y01 +H(s, s1)(−y01 + y12)+ H(s, s2)(−y12 + y23)+ · · ·

+ H(s, sn−1)(−yn−2,n−1 + yn−1,n) +H(s, sn)(−yn−1,n).

Since in Eqs. (24)s � 0, it was not necessary to multiply the first term in either one by the unit
H(s, s0).
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Fig. 7. Irregular polygon, plot of parametric Eqs. (24), Example 3.1.1.

3.1.1. Example. The equation of the irregular pentagon with vertices at points:P0(4,3), P1(8,2),
P2(9,7), P3(7,9), P4(3,6), P5(4,3), Fig. 7 will be obtained.

Solution. The distances along the perimeter of the polygon measured from the vertex atP0 are calculated
in accordance with (22):

s1 = 4.1231, s2 = 9.2221, s3 = 12.0506,
s4 = 17.0506, s5 = 20.2128.

(25)

The parametric equations of each of the line segments comprising the pentagon are establ
accordance with (23):

x01(s) = 0.970s + 4, y01(s) = −0.243s + 3,
x12(s) = 0.196s + 7.191, y12(s) = 0.981s − 2.043,
x23(s) = −0.707s + 15.521, y23(s) = 0.707s + 0.479,
x34(s) = −0.8s + 16.640, y34(s) = −0.6s + 16.230,
x45(s) = 0.316s − 2.392, y45(s) = −0.949s + 22.176.

(26)

The parametric equations of this irregular pentagon are obtained substitutingn = 5 as well as values (25
and Eqs. (26) into Eqs. (24). Fig. 7 is a direct plot of the resulting two parametric equations.

3.1.2. Example (Non-symmetric figure composed of various curves). The equation of the curve, show
in Fig. 8 will be obtained. It is composed of the following three segments:

– Circle:x2 + y2 = 4 from pointP1(4,0) to pointP2(0,4).
– Straight line:y = 2x + 4 from pointP2(0,4) to pointP3(−5,−6).
– Parabola:y = −2

√
4− x from pointP3(−5,−6) to pointP1(4,0).

The corresponding polar equations and end points are:

– Circle:r12 = 4 from pointP1(4,0) to pointP2(4, π/2).
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Fig. 8. Closed composite curve, plot of Eq. (27).

– Straight line:r23 = 4
sinθ−2 cosθ from pointP2(4, π/2) to pointP3(7.81025,4.01765).

– Parabola:r31 = −2 cosθ+2
√

cos2 θ+4 sin2θ

sin2 θ
from pointP3(7.81025,4.01765) to pointP1(4,0).

The equation of the composite figure is obtained by simply applying the concatenation rule (7):

r = r12 + H(θ,0.5π)(−r12 + r23)+ H(θ,4.01765)(−r23 + r31)+ H(θ,2π)(−r31). (27)

Fig. 8 is a direct plot of (27).

4. Equations of figures with polar symmetry

4.1. Equation of the regular polygon

Consider a polygon ofN sides centered at the origin with one vertex lying in thex axis. Consider
further the isosceles triangle limited by thex axis, the side of the polygon and the radius of
circumscribed circle drawn from the center of the polygon to the next vertex, Fig. 9. In this triangl

α = 2π

N
, (28)

β = π − α

2
. (29)

Substituting (28) into (29) yields:

β(N) = π

(
N − 2

2N

)
. (30)

The Cartesian equation of the first side (adjacent to thex axis, in the first quadrant) of the polygon
easily established:

y = (RP − x) tanβ. (31)
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Fig. 9. Regular polygon.

Converting (31) to polar coordinates results in the polar equation of the first side of the polygon:

r = RP tanβ(N)

sinθ + tanβ(N)cosθ
(32)

replacingθ by the periodizer functionp = p(θ,N, θ0) yields the polar equation of a regular polygon
N sides, with radiusRP centered at the origin and rotated an angleθ0:

r(θ,RP ,N, θ0) = RP tanβ(N)

sinp(θ,N, θ0)+ tanβ(N)cosp(θ,N, θ0)
. (33)

Consequently the general parametric equations of a regular polygon ofN sides, with radiusR, centered
at (x0, y0) and rotated an angle ofθ0 counter-clockwise follow immediately:

x(θ,RP ,N, θ0, x0) = x0 + r(θ,RP ,N, θ0)cosθ, (34)

y(θ,RP ,N, θ0, y0) = y0 + r(θ,RP ,N, θ0)sinθ. (35)

4.1.1. Example (Intersections of a polygon and a parabola). The two intersections will be determined
a polygon with:

N = 11, RP = 4, θ0 = 0, x0 = 6, y0 = 5 (36)

and the parabola

yB = x2
B

10
. (37)

See Fig. 10.

Solution. Substituting the values (36) into (9), (33), (34) and (35) yields:

p = π

11
− 2

11
arctan

{
cot

(
11

2
θ

)}
, (38)

xP = 6+ 13.6229cosθ

sinp + 3.40573cosp
, (39)
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Fig. 10. Superimposed plots of parabola, Eq. (37), and polygon, parametric Eqs. (39) and (40).

yP = 5+ 13.6229sinθ

sinp + 3.40573cosp
. (40)

Relations (39) and (40) are the parametric equations of the specified polygon. At the intersection

xP = xB, yP = yB. (41)

Since these equations are non-linear they will be substituted by the following:

εx = xP − xB, εy = yP − yB, S = ε2
x + ε2

y. (42)

S was minimized by use ofMathematica(Wolfram, 1996) . For the intersection closest to the ori
and approximate initial values ofθ = 5π/4 andx = 4 estimated from Fig. 10, the coordinates of
intersection were found to be:

θ = 4.1894, x = 4.07445, y = 1.66011
(
S = 8.05× 10−16

)
. (43)

For the intersection farthest from the origin and approximate initial values ofθ = π/4 andx = 8, the
coordinates of the intersection were found to be:

θ = 0.770257, x = 8.76498, y = 7.68249
(
S = 3.04× 10−19). (44)

The polygon of Fig. 10 is a direct plot of (39) and (40). Incidentally, Figs. 1–10 may be easily ob
on a hand-held graphics calculator.

4.1.2. Example (Intersection of a polygonal cylinder with a circular cylinder). Consider the circula
cylinder with a radiusRC = 2 and axis along the line:z = 4+x/

√
3,y = 0 as well as the right hexagon

cylinder with a radiusRP = 2 and axis along the line:x = 6, y = 0. The equations for the intersectio
of these two cylinders, Fig. 11(a), will be determined.
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Fig. 11. (a) Superimposed plots of circular cylinder, parametric Eqs. (46), and hexagonal cylinder, parametric E
(b) Intersections of the two cylinders, plot of parametric Eqs. (58).

Using the notation:

φ = polar angle of the circular cylinder,

u = axial displacement parameter that generates the surface of the circular cylinder,

γ = angle of rotation of the circular cylinder with respect to thez axis,

zC0 = z intercept of the circular cylinder axis.

From the given data:

RC = 2, zC0 = 4, γ = π

3
. (45)

The parametric equations that define the circular cylinder, in terms of the parametersφ andu are:

xC = RC cosγ cosφ + usinγ,

yC = RC sinφ, (46)

zC = zC0 + ucosγ − RC sinγ cosφ.

Using the notation:

v = axial displacement parameter that generates the surface of the polygonal cylinder,

xP0, yP0 = coordinates of the axis of the polygonal cylinder.

From the given data:

N = 6, RP = 2, xP0 = 6, yP0 = 0, θ0 = 0. (47)
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Substituting values (47) into (28), (29), (30), (9) and (33) yields:

α = π

3
, (48)

β = π

3
, (49)

p(θ) = π

6
− 1

3
arctan(cot 3θ), (50)

r
(
p(θ)

) = 2
√

3

sinp(θ)+ √
3 cosp(θ)

. (51)

Using (34) and (35) and introducing the parameterv yields the parametric equations of the polygo
cylinder in terms of the parametersθ andv:

xP (θ) = xP0 + r
(
p(θ)

)
cosθ,

yP (θ) = yP0 + r
(
p(θ)

)
sinθ, (52)

zP (v) = v.

Fig. 11(a) is the superposition of the direct plot of (52) referring to the hexagonal cylinder and the
plot of (46) referring to the circular cylinder.

The intersections must comply with the following conditions:

xC = xP , yC = yP , zC = zP . (53)

Substituting (46) and (52) into (53):

RC cosγ cosφ + usinγ = xP (θ),

RC sinφ = yP (θ), (54)

zC0 + ucosγ − RC sinγ cosφ = v.

There are four parameters involved in this system of equations, namely:φ, θ , u andv. Of these four
the most difficult to eliminate isθ thus the other three will be expressed in terms of it:

φ(θ) = arcsin
yP (θ)

RC

, and consequently: cosφ = ±
√
R2

C − (yP (θ))
2

RC

, (55)

u(θ) = xP (θ)

sinγ
±

√
R2

C − (yP (θ))
2 cotγ, (56)

v(θ) = zC0 + xP (θ)cotγ ±
√
R2

C − (yP (θ))
2

sinγ
. (57)

Therefore the parametric equations of the intersections are:

xI (θ) = xP0 + r
(
p(θ)

)
cosθ,

yI (θ) = yP0 + r
(
p(θ)

)
sinθ, (58)

zI (θ) = zC0 + xI (θ)cotγ ±
√
R2

C − (yI (θ))2

sinγ
.
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The plus sign of the last equation is associated with the upper intersection while the minus
associated with the lower intersection. Fig. 11(b) is a superposition of the direct plots of each o
two systems of equations.

4.1.3. Developable intersections. Example
When intersecting surfaces are developable so are their intersections, of course, and th

equations may be obtained. The equations of the developed intersections of Example 4.1.2.
obtained presently. Using the notation:

sC = distance along the perimeter of the cross section of the circular cylinder,

sP = distance along the perimeter of the cross section of the polygonal (in this case, hexago

cylinder.

The parametric equations of the intersections after developing the surfaces may be represented

u = u(θ)

sC = sC(θ)

}
for the circular cylinder, (59)

v = v(θ)

sP = sP (θ)

}
for the hexagonal cylinder. (60

The explicit functional relations are: (56) foru(θ) and (57) forv(θ). The explicit functional relations
sC(θ) andsP (θ) will be established presently. Obviously:

sC(θ) = RCφ(θ), (61)

where the explicit functional relationφ(θ) is (55). To establish the explicit relationsP (θ) we consider,
for the present, only the first side of the polygon, i.e., the one adjacent to thex axis in the first quadrant

sP1 = r(θ)sinθ

sinβ
(62)

the relation is the same for each side of the polygon and thusθ must be replaced by the Cartesi
periodizer function (8) withT = α = π/3:

pC(θ) = π

6
− 1

3
arctan(cot 3θ) (63)

carrying out the replacement in (62):

sP i = r(pC(θ))sinpC(θ)

sinβ
, (64)

wheresP i is measured from the start of each side of the polygon. In other words,sP i grows from zero
until it reachesa, the length of one side of the polygon, and then its value drops to zero and starts g
again until it reaches the end of the next side and again drops to zero and so on.

The length of one side of the polygon is:

a = 2RP sin
α

2
= 2. (65)

The stairs function (18) with the riserA = a = 2 and the treadT = α = π/3 becomes:

S(θ) = −1+ 6

π
θ + 2

π
arctan(cot 3θ). (66)
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Fig. 12. (a) Developed intersections on the circular cylinder, plot of parametric equations (59). (b) Developed intersec
the hexagonal cylinder, plot of parametric equations (60).

Adding this stairs function tosP i of Eq. (64) yields

sP (θ) = sP i(θ) + S(θ), (67)

wheresP is measured from the single starting point(RP ,0) .
Substituting (56) and (61) into (59) yields the explicit parametric equations of the deve

intersections in the circular cylinder, the upper intersection resulting from the use of the plus sign
and the lower from the use of the minus sign, Fig. 12(a) is a direct plot of these equations. Li
substituting (57) and (67) into (60) yields the explicit parametric equations of the developed inters
in the hexagonal cylinder and, here too, the upper intersection results from the use of the plus sign
and the lower from the use of the minus sign. Fig. 12(b) is a direct plot of these equations.

4.2. Derivation of the sprocket equation

The sprocket equation will be established in polar coordinates and it will be made up of the eq
of: the toothed contour fromθ = 0 to θ = 2π , the hub contour fromθ = 2π to θ = 4π , and the bore
and keyway contour fromθ = 4π to θ = 6π . Once these equations are obtained they will simply
concatenated into a single equation. The following notation will be used:

D = pitch diameter of the sprocket,

d = diameter of the chain roller,

N = number of teeth in the roller,

P = pitch.

4.2.1. Toothed contour
Fig. 13 shows the profileP1P2P3P4P5 of one half of a tooth of a roller chain sprocket. The origin

the coordinate systemO is not shown but it coincides with the center of the sprocket which lies to
left of the figure, the lineOCP5 is the axis of symmetry of the tooth. The ANSI tooth form is genera
by the three circular arcs,P1P2, P2P3 andP4P5 and the straight line segment,P3P4 (Oberg et al., 1988)
O1 is the center of the chain roller as well as of the seating curve, arcP1P2; R1 is the radius of the seatin
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nt
the
Fig. 13. ANSI tooth form, plot of Eq. (78).

curve;O2 is the center andR2 the radius of arcP2P3 . Straight line segmentP3P4 is tangent to arcP2P3

at pointP3. O4 is the center andR4 the radius of arcP4P5 which is tangent to the straight line segme
P3P4 at pointP4. Line O1CO4 is the center line of the chain link. The following relations define
dimensions of the tooth as a function ofN andd:

R1 = 0.5025d + 0.0015,

O1O2 = 0.8d,

O1O4 = 1.4d,

α = π

N
, (68)

β = π

180

(
35+ 60

N

)
,

γ = π

180

(
18− 56

N

)
.

The distanceO1C in Fig. 13 is equal to one half of the pitch:

D = P

sinα
. (69)
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are,

ields the
Referring to Fig. 13

x01 = D

2
, y01 = 0,

xP1 = 1

2
(D − d), yP1 = 0, θP1 = 0,

x02 = D

2
+ 0.8d sinβ, y02 = −0.8d cosβ,

xP2 = D

2
−R1 sinβ, yP2 = R1 cosβ, θP2 = arctan

yP2

xP2
, (70)

R2 = R1 + 0.8d,

xP3 = x02 − R2 sin(β − γ ), yP3 = y02 + R2 cos(β − γ ), θP3 = arctan
yP3

xP3
,

x04 = 0.5D − 1.4d sinα, y04 = 1.4d cosα.

P4 is the intersection of linesP3P4 and O4P4. The slopes and intercepts of these two lines
respectively:

ma = tan(β − γ ), ba = yP3 − maxP3,

mb = tan(β − γ + 0.5π), bb = y04 −mbx04.
(71)

The coordinates ofP4 are:

xP4 = bb − ba

ma − mb

, yP4 = mbxP4 + bb, θP4 = arctan
yP4

xP4
. (72)

Also:

R4 =
√
(xP4 − x04)2 + (yP4 − y04)2. (73)

The Cartesian equation of each arc is:

(x − x0i)
2 + (y − y0i)

2 = R2
i , i = 1,2,4. (74)

Converting the previous equation, and using the appropriate sign for the radical in each case, y
polar equations of each arc:

r12(θ) = x01cosθ + y01sinθ −
√
(x01cosθ + y01sinθ)2 − (

x2
01 + y2

01 −R2
1

)
,

r23(θ) = x02cosθ + y02sinθ −
√
(x02cosθ + y02sinθ)2 − (

x2
02 + y2

02 −R2
2

)
, (75)

r45(θ) = x04cosθ + y04sinθ +
√
(x04cosθ + y04sinθ)2 − (

x2
04 + y2

04 −R2
4

)
.

The Cartesian equation for the straight lineP3P4 is:

y = max + ba. (76)

Converting to polar coordinates:

r34(θ) = ba

sinθ − ma cosθ
. (77)
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tooth is

not (7)
e

By use of the concatenation procedure (6) the equation representing one half of the sprocket
obtained:

rHT(θ) = r12(θ) +H(θ, θP2)
{−r12(θ)+ r23(θ)

} + H(θ, θP3)
{−r23(θ) + r34(θ)

}
+ H(θ, θP4)

{−r34(θ) + r45(θ)
}
. (78)

The equation of the full sprocket toothed contour is obtained by simply replacingθ by the reflecting and
repeating function,R(N, θ):

rT (N, θ) = r12
(
R(N, θ)

) +H
(
R(N, θ), θP2

){−r12
(
R(N, θ)

) + r23
(
R(N, θ)

)}
+H

(
R(N, θ), θP3

){−r23
(
R(N, θ)

) + r34
(
R(N, θ)

)}
+H

(
R(N, θ), θP4

){−r34
(
R(N, θ)

) + r45
(
R(N, θ)

)}
. (79)

It is pertinent to point out that (78) was established resorting to concatenation procedure (6) and
because the subsequent insertion ofR(N, θ) instead ofθ in (79) automatically limits the half tooth, to b
reflected and repeated, to the angle starting atθ = 0 and ending atθ = T /2= π/N .

4.2.2. Hub
The equation for the hub contour is simply:

rH = DH

2
(80)

and the extreme points of the hub contour are considered to be:

θP6 = 2π, θP7 = 4π. (81)

4.2.3. Bore and keyway
Fig. 14 shows the top half of both the keyway and the bore. The coordinates of pointsP8, P9 andP10

are as follows (in a sequence appropriate for numerical evaluation):

ψP10 = arcsin
k

DB

,

Fig. 14. One half of the bore and keyway, plot of Eq. (84).
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ich
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values

e size of

86) into

finite
s. Also,
le curve
xP10 = DB

2
cosψP10, yP10 = k

2
, θP10 = 4π + ψP10,

(82)
xP8 = DB

2
cosψP10 + k

2
, yP8 = 0, ψP8 = 0, θP8 = 4π + ψP8,

xP9 = DB

2
cosψP10 + k

2
, yP9 = k

2
, ψP9 = arctan

yP9

xP9
, θP9 = 4π +ψP9.

The equations of the curves that make up one half of the keyway and the bore, Fig. 14 are:

r89 = xP8

cosθ
, r9,10 = yP9

sinθ
, r10,11 = DB

2
. (83)

Concatenating these equations yields the equation for one half of the bore and the keyway:

rHBK = r8,11(θ) = r89 +H(θ, θP9)(−r89 + r9,10)+ H(θ, θP10)(−r9,10 + r10,11). (84)

To obtain the full bore and keyway equationθ is now replaced by the reflect and repeat function wh
for N = 1 now simply reflects and does not repeat:

rBK = r8,11
(
R(θ,1)

)
. (85)

4.2.4. General equation of the sprocket
Thus the general equation for the main (side) view of the sprocket including the toothed conto

hub, the bore and the keyway is:

r = rT + H(θ,2π)(−rT + rH ) +H(θ,4π)(−rH + rBK) +H(θ,6π)(−rBK). (86)

4.3. Example: a specific sprocket

Consider an ASA, No. 80 sprocket, i.e., 1′′ (0.0254 m) pitch with 13 teeth:

P = 1′′ (0.0254 m), N = 13, (87)

which according to (Oberg et al., 1988; Dodge Engineering Catalog, 1993), have the following
for the roller diameter and the hub diameter:

d = 0.625′′ (0.0159 m), DH = 3′′ (0.0762 m), (88)

choosing the maximum permissible bore diameter, Dodge Engineering Catalog, and an adequat
square key:

DB = 2′′ (0.0508 m), k = 0.5′′ (0.0127 m). (89)

Substituting values (87)–(89) into Eqs. (68)–(86) converts the general equation of the sprocket (
the equation of this specific sprocket. Fig. 15 is a direct plot of this specialized equation.

5. Conclusions

A methodology, referring to an extension of Analytic Geometry, has been presented by which
segments of lines and curves may be represented by equations without requiring any inequalitie
it has been illustrated how any number of these finite segments may be concatenated into a sing
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Fig. 15. Sprocket, plot of Eq. (86) for values (87)–(89).

represented by a single equation valid from−∞ to +∞. The curves may be open, closed, with
without polar symmetry. The general equation of a polygon and even that of the chain sprock
been established, the latter including toothed profile, hub, bore and keyway.

This has been accomplished by use of algebraic and transcendental functions exclusively. The
is simple and straightforward and its use merely requires a working knowledge of Analytic Geom
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