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Single equation without inequalities to represent a composite curve
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Abstract

A scheme is proposed based on an extension of Analytic Geometry to represent a composite curve either with
a single equation or with two equations in the case of parametric representation, or three equations in the case
of parametric representation of 3D surfaces, without the use of inequalities and valid from minus infinity to plus
infinity. The general equations of the regular polygon, the polygonal cylinder as well as the equation of the main
view of the chain sprocket are established.
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1. Introduction

In the last few decades a new discipline known as Computational Geometry has arisen, which, among
other problems, deals with intersections of line segments and polygons and has been applied mainly to
Computer Graphics, Robotics, Geography and CAD/CAM (De Berg et al., 1998, pp. 1941; Preparata
and Shamos, 1985; Hakimi and Schmeichel, 1991; Milenkovic, 1993) and even to roadway geometry to
determine its current condition (Drakopoulos and Ornek, 2000). Since Computational Geometry is based
on Computer Science, particularly in Algorithmics, it has a great potential, but its use requires, at least, a
basic knowledge of these disciplines.

This paper also refers to the handling of finite line and curve segments, polygons and composite
curves as well as their intersections, but by different means, namely, an extension of Analytic Geometry
which makes use of conventional algebraic and transcendental functions so its application requires little
or no knowledge of either Computer Science or Algorithmics. Many problems require no more than
a hand-held graphics calculator. Resorting to a symbolic computer language sidresmatica,

Maple or Matlab permits to take full advantage of this methodology, but only to handle analytical
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expressions which often involve a considerable amount of computations. The user does not need to do
any programming.

Most of the mathematical devices that comprise the previously mentioned extension of Analytic
Geometry were proposed in Cartesian form (Chicurel-Uziel, 1999/2000, 2000, 2001a, 2001b), some
of them are presented in the present paper adapted to polar or parametric forms. In (Chicurel-Uziel,
1999/2000) a pure algebraic equation to represent the Heaviside unit step function, which does not
require any inequalities, was proposed. Also in (Chicurel-Uziel, 1999/2000) a concatenation procedure
for linking curve segments was proposed to facilitate the use in the computer of the Clebsch Method for
beam deflections. The periodizer and alternator functions introduced in (Chicurel-Uziel, 2000) make
possible the non-series, no transform, exact representation of periodic, non-harmonic, continuous or
discontinuous functions, and the reflect and repeat function introduced in (Chicurel-Uziel, 2001a) further
facilitates the representation of a large class of such functions. References (Chicurel-Uziel, 2000, 2001a,
2001b) illustrate the application of both the concatenation procedure and these special functions in
vibration problems.

As mentioned in the previous paragraph, this approach has been applied to engineering problems. The
purpose of the present work is to explore the possibilities resulting from the use of these techniques in
Analytic Geometry. This scheme permits the representation of composite curves in a manner similar to
the conventional manner used for the representation of plain, non-composite curves. A single Cartesian
equation may represent a single-valued, plane, composite curve which may be of finite or infinite
length. A multi-valued plane composite curve, open or closed, with or without polar symmetry, may
be represented either by a single polar equation or by two parametric equations. Three parametric
equations suffice for the representation of composite 3D surfaces. In no case are inequalities required.
This capability leads to the establishment of the general equation of the polygon as well as that of the
chain sprocket.

2. Mathematical devices
2.1. A useful representation of the Heaviside unit step function

The following representations of three well known functions were proposed in (Chicurel-Uziel,
1999/2000):
Absolute Value or “V” function:

V(x,a)=|x —a|l=+(x —a) @

“Jump” or Relay function:

Vix,a) (x—a)
(x—a) Vx,a)

Heaviside unit step function, Fig. 1(a):

J(x,a)=

)

H(x,a):%{l—i—J(x,a)}. (3
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(@) (b)

Fig. 1. Heaviside unit step function: (a) Cartesian version, plot of Eq. (3). (b) Polar version, plot of Eq. (4).

Notice that these are self contained, single equation representations that do not require any inequalities
and, furthermore, they are valid from= —o0 to x = 4+00. The following is a polar version of the
Heaviside unit step function, Fig. 1(b):

1
H(G,a):§{1+ J(©O,a)}. (4)
2.2. Equation of a finite curve segment
The Heaviside unit step function may be used as a “switch”, i.e., a function may be switched on when

multiplied by its positive value and switched off when multiplied by its negative value. So that the finite
segment of the curvg (x) fromx =a to x = b is represented as:

g(x) = fx){H(x,a)— H(x,b)}. (5)
2.3. Concatenation procedure

Eg. (5) leads immediately to the concatenation procedure (Chicurel-Uziel, 1999/2000, 2000, 2001a,
2001b). A composite function:

f(x) = fra(x), a1 < x < ay,
fx) = faz(x), az < x < agz,

f(x) = faax), az < x < aa,

f(x):fnfl,n(x)a ap—1 < X < 4y,

may be expressed as:

F(x) = fr2(x) + H(x, a2)(— fr2(x) + f23(x)) + H (x, az)(— f23(x) + faa(x)) + -
+ H()C, an—l)(_fn—Z,n—l(x) + fn—l,n (X)), ai < X < ap, (6)
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Fig. 2. Cartesian periodizer function, plot of Eq. (8).

or as the single equation:
f(x) = H(x,a1) fi2(x) + H(x, az)(— fr2(x) + f23(x)) + H(x, as)(— f23(x) + faa(x)) + -
+ H (x, anfl)(_fnflnfl(x) + fnfl,n (X)) + H (x, an)(_fnfl,n (X)) (7)
Clearly (7) is valid fromx = —oco to x = +00.

2.4. Cartesian periodizer function

This function was introduced in (Chicurel-Uziel, 2000) and is represented by the following equation,
Fig. 2:

T T T
pcx,T) = > = arcta cot?x . (8)

If in a function f(x), x is replaced by the resulting function is the segment 6fx) contained in the
interval 0< x < T repeated indefinitely.

2.5. Polar periodizer function

Replacingx by (0 — 6p) andT by 27 /N in (8) results in the polar periodizer function, introduced in
this paper and adapted for use in connection with figures with polar symmetry and a whole number of
lobesN, Fig. 3:

_x_2 N© —bo)
pO, N, b)) = NN arctar[cot{ > }] 9)

Fig. 3 illustrates (9) fotv =5 andfy = 0.

If in a function f(0), 6 is replaced byp(0, N, 0) the resulting functionf (p(@, N, 0)) is made up
of the initial segment off (6) from 6 =0 to 6 = T repeatedV times in the interval & 6 < 2r. The
function f(p(8, N, 6p)) is identical to the functionf (p(@, N, 0)) except that the former is rotated an
anglef, counter-clockwise with respect to the latter.

2.6. Stairs function

The single equation to represent the stairs funcfipRig. 4, which is introduced in this paper, may be
derived from the Cartesian periodizer function in the following manner. Consider the straight line:

y =mx + b. (20)
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Fig. 3. Polar periodizer function, plot of Eq. (9) fof =5 andég = 0.
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Fig. 4. Stairs function, plot of Eq. (18).

Suppose thas may be obtained thus:

S=pck+y, k=aconstant (11)
Substituting (10) into (11):
S=pck+mx+b (12)

m, b andk are to be determined. In order to simplify the procedure we consider the pseudo-stairs function
S" (a single step) as well as the pseudo-Cartesian periodizer fungti¢a single lobe ofp¢), Fig. 5.

S'= AH(x,T), (13)
pc=x—TH(x,T). (14)

Notice thatS’ = S and p. = p¢ in the interval 0< x < 2T, Fig. 5. Thus we now have the simpler
problem, i.e., to determine, b andk such that:

S'=pck+mx+b, 0<x<?2T. (15)
Substituting (13) and (14) into (15):
AH(x,T)=—kTHx,T)+ (k+m)x+b, 0<x <2T, (16)
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Fig. 5. (a) Pseudo-stairs function (a single step), plot of Eq. (13). (b) Pseudo-Cartesian periodizer function (a single lobe of the
periodizer function), plot of Eq. (14).

Y

Fig. 6. Polar reflecting and repeating function, plot of Eq. (21)No« 13.

consequently:
A A
k=——, m=—, b=0 a7
T T
substituting (17) and (8) into (12) yields the stairs function, Fig. 4:
1 x 1 T
Sx,A, T)=A{—=+ — + —arctar| cot— 18
(6 A.T) { il ( T)} (18)

where A is the magnitude of the riser (vertical distance between consecutive step¥) iarttie tread

or width of a single step (horizontal distance between two consecutive risers). For an application of this
function see Example 4.1.3.

2.7. Polar reflecting and repeating function

The following is the polar version of the reflecting and repeating function introduced in (Chicurel-
Uziel, 2001a), Fig. 6:

T 2
RO, T)= o arccos(cosTe). (29)
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To use Eq. (19) in connection with a figure with polar symmetry it is convenient to express the Period
as a function of the number of lobes:

2n
T =—. 20
N (20)
Substituting Eg. (20) into (19) yields:
1
R(@,N) = ~ arcco$cosnNGg). (22)

Fig. 6 is a direct plot of (21) fov = 13.

If in a function £(9), 6 is replaced byR (6, N) the resulting functionf (R(6, N)) is made up ofN
identical lobes in the interval € 6 < 2. The first lobe is made up of two symmetrical halves, i.e., the
first half is identical to the initial segment gf(6) from 6 =0 to 6 = T/2, and the second half is the
reflection of the first half with respect to the radiuvat 7/2.

3. Non-symmetrical closed composite figures
3.1. Irregular polygon

The parametric equations of the irregular polygon will now be established. Let the polygon vertices
be Py(xq, ¥0), Pr(x1, ¥1), P2(x2, ¥2), ..., P,(x,, ¥,). Since a polygon is a closed figu, = Py, x, = xg

andy, = yo. Lets be the variable distance along the perimeter of the polygon measured fromPpoint
ands; the specific distance from poi# to point P;:

j=i
NES Z\/(Xj —xj—)?+ -y i=0,12...,n (22)
j=1
Clearlys, # so sincesg = 0 ands,, = the full length of the perimeter of the polygon.
The double subscripted symbals ; andy; ;1 designate the dependent variables associated with the
parametric equations of line segmehip;  ;:

Xi41 — Xi XiSi+1 — Xi41Si
Xiji+l = s+ ;

Si — S S; —
+1 i i+1 (23)
_ i1 — i YiSi+1 — Yi+1Si
Vii+1= s+
Si+1 — Si Si+1 — Si
and in accordance with Eq. (7) the parametric equations of the regular polygon are:
x =xo1+ H(s, s1)(—xo01+ x12) + H (s, 52) (—X12+ X23) + - - -
+ H(S, Snfl)(_xnfznfl + xnfl,n) + H(S, Sn)(_xnfl,n)a
(24)

y =yo1+ H(s, s1)(—yo1+ y12) + H (s, 52)(—y12+ y23) + - -
+ H(S, sn—l)(_yn—Z,n—l + yn—l,n) + H(S, sn)(_yn—l,n)-

Since in Eqgs. (24) > 0, it was not necessary to multiply the first term in either one by the unit step
H(s, so).
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Fig. 7. Irregular polygon, plot of parametric Egs. (24), Example 3.1.1.

3.1.1. Example. The equation of the irregular pentagon with vertices at poifts4, 3), P1(8, 2),
P>(9,7), P3(7,9), P4(3,6), Ps5(4, 3), Fig. 7 will be obtained.

Solution. The distances along the perimeter of the polygon measured from the veRgaratcalculated
in accordance with (22):

s1=4.1231 52 =9.2221, s3=12.05086
s4=17.0506 s5 =20.2128

The parametric equations of each of the line segments comprising the pentagon are established in
accordance with (23):

(25)

x01(s) =0.97G + 4, yoi(s) = —0.243 + 3,

x1a(s) = 0.1965 + 7.191 Y1o(s) = 0.9815 — 2.043

x23(s) = —0.707s 4+ 15.521, v23(s) = 0.707s 4+ 0.479, (26)
x34(s) = —0.8s 4+ 16.640, v34(s) = —0.6s + 16.230

Xas(s) = 0.3165 — 2.392 Yas(s) = —0.94% + 22176

The parametric equations of this irregular pentagon are obtained substitutiigas well as values (25)
and Egs. (26) into Egs. (24). Fig. 7 is a direct plot of the resulting two parametric equations.

3.1.2. Example (Non-symmetric figure composed of various cuyv€éle equation of the curve, shown
in Fig. 8 will be obtained. It is composed of the following three segments:

— Circle: x? 4 y? = 4 from point P(4, 0) to point P»(0, 4).
— Straight line:y = 2x + 4 from point P»(0, 4) to point P3(—5, —6).
— Parabolay = —2+/4 — x from point P3(—5, —6) to point P1(4, 0).

The corresponding polar equations and end points are:

— Circle:ry» = 4 from point Py (4, 0) to point P>(4, t/2).
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Fig. 8. Closed composite curve, plot of Eq. (27).

— Straight lineryz = m from point P»(4, 7 /2) to point P3(7.810254.01765.
— Parabolars; = —2°¥ *2:";‘;329*45"?9 from point P3(7.81025 4.01765 to point Py (4, 0).

The equation of the composite figure is obtained by simply applying the concatenation rule (7):
r=rio+ H(0,0.57)(—rio+r) + H(O,4.01765(—ro3+ ra1) + H(O, 27)(—r31). 27)
Fig. 8 is a direct plot of (27).

4. Equationsof figureswith polar symmetry
4.1. Equation of the regular polygon
Consider a polygon oN sides centered at the origin with one vertex lying in thaxis. Consider

further the isosceles triangle limited by theaxis, the side of the polygon and the radius of the
circumscribed circle drawn from the center of the polygon to the next vertex, Fig. 9. In this triangle:

o= %, (28)
T —o
p=— (29)
Substituting (28) into (29) yields:
N-2

The Cartesian equation of the first side (adjacent toxtlais, in the first quadrant) of the polygon is
easily established:

y=(Rp —x)tang. (31)
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Y

Fig. 9. Regular polygon.

Converting (31) to polar coordinates results in the polar equation of the first side of the polygon:
RptanB(N)
r=—
sing 4 tangB(N) cost

replacingé by the periodizer functiom = p(@, N, 6p) yields the polar equation of a regular polygon of
N sides, with radiusk p centered at the origin and rotated an artigte

RptanB(N)
sinp(8, N, 6p) +tanB(N)cosp(@, N, )
Consequently the general parametric equations of a regular polyg@rsinfes, with radiusR, centered
at (xo, yo) and rotated an angle 6§ counter-clockwise follow immediately:
x(0,Rp, N, 0, x0) =x0+r (0, Rp, N, ) COSH, (34)
v, Rp, N, 6, yo) = yo+r(6, Rp, N, 6p) sing. (35)

(32)

r(e’RP,N590)= (33)

4.1.1. Example (Intersections of a polygon and a parabhldhe two intersections will be determined of
a polygon with:

N=11  Rp=4,  6=0, x=6, y=5 (36)

and the parabola
2

XB
=2 37
YB 10 (37)
See Fig. 10.

Solution. Substituting the values (36) into (9), (33), (34) and (35) yields:

T 2 11
P=11"T11 arctar{ cot(?e) } (38)
13.6229 co®
. A (39)
sinp 4+ 3.40573 cop

Xp =
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Fig. 10. Superimposed plots of parabola, Eq. (37), and polygon, parametric Egs. (39) and (40).

. 13.6229simp
sinp + 3.40573cop

Relations (39) and (40) are the parametric equations of the specified polygon. At the intersections:

(40)

Yp =

Xp=Xg, Yp =Y3. (42)
Since these equations are non-linear they will be substituted by the following:
Ex =Xp — XpB, &y =Yp — YB, S=8§+8§ (42)

S was minimized by use dflathematica(Wolfram, 1996) . For the intersection closest to the origin
and approximate initial values & = 57 /4 andx = 4 estimated from Fig. 10, the coordinates of the
intersection were found to be:

6=41894  x=407445 y=166011 (S=805x1079). (43)

For the intersection farthest from the origin and approximate initial valueés=otr /4 andx = 8, the
coordinates of the intersection were found to be:

§=0770257 x=876498  y=7.68249 (S=3.04x107%9). (44)

The polygon of Fig. 10 is a direct plot of (39) and (40). Incidentally, Figs. 1-10 may be easily obtained
on a hand-held graphics calculator.

4.1.2. Example (Intersection of a polygonal cylinder with a circular cylingeConsider the circular
cylinder with a radiusk = 2 and axis along the line:= 4+ x/+/3, y = 0 as well as the right hexagonal
cylinder with a radiusR» = 2 and axis along the linec = 6, y = 0. The equations for the intersections
of these two cylinders, Fig. 11(a), will be determined.
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Fig. 11. (a) Superimposed plots of circular cylinder, parametric Egs. (46), and hexagonal cylinder, parametric Egs. (52).
(b) Intersections of the two cylinders, plot of parametric Egs. (58).

Using the notation:

¢ = polar angle of the circular cylinder

u = axial displacement parameter that generates the surface of the circular cylinder
y = angle of rotation of the circular cylinder with respect to thexis,

zco = z intercept of the circular cylinder axis

From the given data:

T
Rc=2, Zco=4, =3 (45)

The parametric equations that define the circular cylinder, in terms of the paragpeteds, are:
Xxc = Rc COSy 0S¢ + u siny,
yc = Rc¢sing, (46)
Zc = Zco+ u CoSy — Rc Siny cosep.
Using the notation:
v = axial displacement parameter that generates the surface of the polygonal ¢ylinder
xpo, ypo = coordinates of the axis of the polygonal cylinder
From the given data:
N=6, RPIZ, XPOIG, ypo=0, 9020 (47)
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Substituting values (47) into (28), (29), (30), (9) and (33) yields:

a:%, (48)
T
p6) = % — %arctar(cot39), (50)
23
6)) = . 51
7(p®) sinp(9) + v/3cosp(6) 1)

Using (34) and (35) and introducing the paramaetefields the parametric equations of the polygonal
cylinder in terms of the parametetsandv:
xp(8) = xpo +r(p(6)) cosb,
yp(0) =)’P0+V(P(9)) sing, (52)
zp(v) =v.
Fig. 11(a) is the superposition of the direct plot of (52) referring to the hexagonal cylinder and the direct
plot of (46) referring to the circular cylinder.
The intersections must comply with the following conditions:
Xc=Xp, Yc=Yyp, Zc =2p- (53)
Substituting (46) and (52) into (53):
Rc cosy cosg + usiny = xp(0),
Resing = yp(6), (54)
Zco+ u COSy — R Siny cosg = v.

There are four parameters involved in this system of equations, nametyu andv. Of these four
the most difficult to eliminate i8 thus the other three will be expressed in terms of it:

J RE — (vp(6))?
$©0) = arcsiny;(f), and consequently:  cgs= Y RCP , (55)

0
u@)zJZﬁ;:tJRé—wypw»Zcmy, (56)
VRE = (yp(6))?
. (57)

siny
Therefore the parametric equations of the intersections are:
x1(0) =xpo+r(p(®))coss,
y1(0)=ypo+ ”(P(e)) sing, (58)

V RE — (1(6))?

siny

v(0) = zco+ xp () COty &

71(0) = zco + x7(0) coty +
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The plus sign of the last equation is associated with the upper intersection while the minus sign is
associated with the lower intersection. Fig. 11(b) is a superposition of the direct plots of each of these
two systems of equations.

4.1.3. Developable intersections. Example
When intersecting surfaces are developable so are their intersections, of course, and thus their
equations may be obtained. The equations of the developed intersections of Example 4.1.2. will be
obtained presently. Using the notation:
sc = distance along the perimeter of the cross section of the circular cylinder
sp = distance along the perimeter of the cross section of the polygonal (in this case, hexagonal)
cylinder.

The parametric equations of the intersections after developing the surfaces may be represented thus:

u = M(Q) . '
s¢ = s¢(0) } for the circular cylinder 59)
;)P::v 529) } for the hexagonal cylinder. 0)

The explicit functional relations are: (56) foK9) and (57) forv(9). The explicit functional relations
sc(0) andsp(0) will be established presently. Obviously:
sc(0) = Rcp(9), (61)
where the explicit functional relatiog (0) is (55). To establish the explicit relation (6) we consider,
for the present, only the first side of the polygon, i.e., the one adjacent iodkis in the first quadrant:
r(6)sing
Spr=———"—
i sing
the relation is the same for each side of the polygon and ¢hosust be replaced by the Cartesian
periodizer function (8) witl' =« = 7/3:

(62)

1
pc(0) = % ~3 arctar{cotd) (63)
carrying out the replacement in (62):
spr = r(pc(é’)_)slnpc(@)’ (64)
sing

wheresp; is measured from the start of each side of the polygon. In other wegdgrows from zero
until it reaches:, the length of one side of the polygon, and then its value drops to zero and starts growing
again until it reaches the end of the next side and again drops to zero and so on.

The length of one side of the polygon is:

a=2Rp sin% =2 (65)
The stairs function (18) with the rise¥ = a = 2 and the tread” = « = /3 becomes:

6 2
S@)=—-1+ —6 + — arctanicot ¥). (66)
T T
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Fig. 12. (a) Developed intersections on the circular cylinder, plot of parametric equations (59). (b) Developed intersections on
the hexagonal cylinder, plot of parametric equations (60).

Adding this stairs function tep; of Eq. (64) yields
sp(0) =spi(0) + S(0), (67)

wheresp is measured from the single starting poiitp, 0) .

Substituting (56) and (61) into (59) yields the explicit parametric equations of the developed
intersections in the circular cylinder, the upper intersection resulting from the use of the plus sign of (56)
and the lower from the use of the minus sign, Fig. 12(a) is a direct plot of these equations. Likewise
substituting (57) and (67) into (60) yields the explicit parametric equations of the developed intersections
in the hexagonal cylinder and, here too, the upper intersection results from the use of the plus sign of (57)
and the lower from the use of the minus sign. Fig. 12(b) is a direct plot of these equations.

4.2. Derivation of the sprocket equation

The sprocket equation will be established in polar coordinates and it will be made up of the equations
of: the toothed contour from = 0 to 6 = 2, the hub contour fron® = 27 to 6 = 4z, and the bore
and keyway contour fromd = 47 to 6 = 6. Once these equations are obtained they will simply be
concatenated into a single equation. The following notation will be used:

D = pitch diameter of the sprocket
d = diameter of the chain roller

N = number of teeth in the roller
P = pitch.

4.2.1. Toothed contour

Fig. 13 shows the profil®, P, P; P, Ps of one half of a tooth of a roller chain sprocket. The origin of
the coordinate syster@ is not shown but it coincides with the center of the sprocket which lies to the
left of the figure, the lineD C Ps is the axis of symmetry of the tooth. The ANSI tooth form is generated
by the three circular arc$, P», P, P; and P, Ps and the straight line segmeri; P, (Oberg et al., 1988).
01 is the center of the chain roller as well as of the seating curveP@rg, R, is the radius of the seating
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Fig. 13. ANSI tooth form, plot of Eq. (78).

curve; O is the center an®; the radius of ard®, P; . Straight line segmen®s P, is tangent to ard, P3

at point P3. 04 is the center and®, the radius of araP, Ps which is tangent to the straight line segment
P3P, at point P4. Line O,C O, is the center line of the chain link. The following relations define the
dimensions of the tooth as a function @fandd:

R, =0.502% 4 0.0015

010, =0.84,
0104=1.4d,
v
_ 68
- (68)
_ v
180
T
Y= 180
The distance),C in Fig. 13 is equal to one half of the pitch:
P
D=——. (69)

Sina
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Referring to Fig. 13
D
Xo1= 7 yo1=0,

1
Xp1= E(D_d)’ yp1=0, 0p1 =0,

D .
Xoo = > + 0.8d sing, voz = —0.8d cosg,

D .
xpp= —RiSINf.  ypp=RiCOSP.  Opp= arctar’ -2, (70)
Xp2
R,=R1+ 08d,
. ypr3
xp3 =Xx02 — Rosin( —y), yp3 = Yyo2+ R2Cc08B —y), fp3 = arcta Ix ;
P3

x0a=0.5D — 1.4d sinc, vosa = 1.4d cosu.

P4 is the intersection of linesP3P, and O4P4. The slopes and intercepts of these two lines are,
respectively:

m, = tal’(ﬂ — J/), ba = Yp3 — MyXp3, (71)
my =tan(B —y + 0.57), by = yo4 — mpXoa.
The coordinates oP, are:
b,—b
Xpg= ——, Yp4 = mpXps+ by, Ops= arctani2? (72)
mg —myp Xp4
Also:
Ra=+/(xps — x00)2 + (Ypa — yoa)?. (73)
The Cartesian equation of each arc is:
(x—x0)’+(y—ya)’=R, i=124 (74)

Converting the previous equation, and using the appropriate sign for the radical in each case, yields the
polar equations of each arc:

r12(6) = x91COSH + yg1 Sin6 — \/()Co]_ CcosH + yOlsin9)2 — (xgl + ygl — R%),

r23(0) = x02C0S0 + yo2SiNG — \/(xoz cos + y028in0)2 — (x&, + ¥§, — R3), (75)

ra5(0) = x04COSH + yp4SING + \/(xo4cose + y04SiN0)2 — (x5, + y5, — R2).
The Cartesian equation for the straight lifgP, is:

y=m,x +b,. (76)
Converting to polar coordinates:
b,
ras(0) = (77)

sing — m, cosh



40 E. Chicurel-Uziel / Computer Aided Geometric Design 21 (2004) 23-42

By use of the concatenation procedure (6) the equation representing one half of the sprocket tooth is
obtained:
ruT(0) =r12(0) + H (0, 0p2) { —r12(0) + ra3(0) } + H (6, 0p3){ —r23(0) + r34(6)}
+ H (6, 0pa){—rza(0) + ras(0)}. (78)
The equation of the full sprocket toothed contour is obtained by simply repladiyghe reflecting and
repeating functionR (N, 6):
rr(N,0) =r12(R(N,6)) + H(R(N,6),6p2){—r12(R(N,0)) + ras(R(N,6))}
+ H(R(N’ 9)’ 9P3){_r23(R(N’ 0)) + }"34(R(N, 9))}
+ H(R(N,0),0pa){—rsa(R(N,0)) + ras(R(N,6))}. (79)

It is pertinent to point out that (78) was established resorting to concatenation procedure (6) and not (7)
because the subsequent insertiolRON, 0) instead o in (79) automatically limits the half tooth, to be
reflected and repeated, to the angle starting-at0 and ending s =T7/2=7/N.

4.2.2. Hub
The equation for the hub contour is simply:
D
= 0
and the extreme points of the hub contour are considered to be:
9p6=27'[, 0p7=47'[. (81)

4.2.3. Bore and keyway
Fig. 14 shows the top half of both the keyway and the bore. The coordinates of Pgirits and Py
are as follows (in a sequence appropriate for numerical evaluation):

.k
p10= arcsin—,
Y10 D,

0.5 ¢

Pg
P10

P11 . . ‘ Pg
-1 -0.5 0.5 1 1.5

X

Fig. 14. One half of the bore and keyway, plot of Eq. (84).
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Dp k
Xp10= — COSY p10, YP10= %, Op10 =41 + Vp10,
) ) 2 (82)
Xpg = 73 COSY p10+ > yrs =0, Vpg =0, Opg =41 + Yps,
D k k
Xpg = —BcosvfploJr -, Ypo = =, wpgzarctanw, Opg =41 + Ypo.
2 2 2 Xpg
The equations of the curves that make up one half of the keyway and the bore, Fig. 14 are:
Xpsg Yp9 Dp
= s = — s — 83
r'sg cosH r910 sing ri10,11 2 ( )
Concatenating these equations yields the equation for one half of the bore and the keyway:
rupk = r8,11(0) =rgg+ H (0, 0pg)(—rsg+ re.10) + H (0, 0p10)(—r9 10+ r1011)- (84)

To obtain the full bore and keyway equatiéris now replaced by the reflect and repeat function which
for N = 1 now simply reflects and does not repeat:

rek =rg11(R(6, 1)). (85)
4.2.4. General equation of the sprocket

Thus the general equation for the main (side) view of the sprocket including the toothed contour, the
hub, the bore and the keyway is:

r=rr+H(O,2r)(—rr +rg) + H@®,4m)(—ry +rex) + H(O, 6m)(—rgk). (86)
4.3. Example: a specific sprocket

Consider an ASA, No. 80 sprocket, i.e”, (0.0254 m) pitch with 13 teeth:
P=1" (0.0254 m, N =13, (87)

which according to (Oberg et al., 1988; Dodge Engineering Catalog, 1993), have the following values
for the roller diameter and the hub diameter:

d =0.625" (0.0159 m, Dy =3" (0.0762 m, (88)

choosing the maximum permissible bore diameter, Dodge Engineering Catalog, and an adequate size of
square key:

Dp=2" (0.0508 m, k=05" (0.0127 m. (89)

Substituting values (87)—(89) into Egs. (68)—(86) converts the general equation of the sprocket (86) into
the equation of this specific sprocket. Fig. 15 is a direct plot of this specialized equation.

5. Conclusions
A methodology, referring to an extension of Analytic Geometry, has been presented by which finite

segments of lines and curves may be represented by equations without requiring any inequalities. Also,
it has been illustrated how any number of these finite segments may be concatenated into a single curve
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Y

2

/a

=

Fig. 15. Sprocket, plot of Eq. (86) for values (87)—(89).

represented by a single equation valid frerao to +o0. The curves may be open, closed, with or
without polar symmetry. The general equation of a polygon and even that of the chain sprocket have
been established, the latter including toothed profile, hub, bore and keyway.

This has been accomplished by use of algebraic and transcendental functions exclusively. The scheme
is simple and straightforward and its use merely requires a working knowledge of Analytic Geometry.
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