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Abstract

This paper describes a simple and efficient non-stationary subdivision scheme of order 4.
This curve scheme unifies known subdivision rules for cubic B-splines, splines-in-tension and a
certain class of trigonometric splines capable of reproducing circles. The curves generated by
this unified subdivision scheme areC2 splines whose segments are either polynomial, hyperbolic
or trigonometric functions, depending on a single tension parameter. This curve scheme easily
generalizes to a surface scheme over quadrilateral meshes. The authors hypothesize that this surface
scheme produces limit surfaces that areC2 continuous everywhere except at extraordinary vertices
where the surfaces areC1 continuous. In the particular case where the tension parameters are all set
to 1, the scheme reproduces a variant of the Catmull–Clark subdivision scheme. As an application,
this scheme is used to generate surfaces of revolution from a given profile curve. 2001 Published
by Elsevier Science B.V.

1. The curve scheme

We begin by considering the three related curve schemes: cubic splines, splines-
in-tension and a certain class of trigonometric splines. Based on the description of
these splines in terms of their locally supported basis functions, we generate known
subdivision masks for each scheme. Finally, we derive a new, common subdivision mask
that unifies these three families of splines. More details on the study of these splines,
their characteristic differential equation, and the links between differential equations and
subdivision are given by Warren and Weimer (2001).
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1.1. The underlying spline spaces

The curve subdivision scheme proposed in this section converges to piecewise functions
whose segments are solutions to the differential equation

p(4)[x] − γp(2)[x] == 0. (1)

Depending on the sign ofγ , the solutions to this differential equation can be expressed as
follows:

• If γ == 0, then the solutionsp[x] to this equation are the polynomials 1,x,x2,x3.
• If γ > 0, then the solutionsp[x] to this equation are the functions 1,x, cosh[√γ x],

sinh[√γ x].
• If γ < 0, then the solutionsp[x] to this equation are the functions 1,x, cos[√−γ x],

sin[√−γ x].
(If γ < 0, then we assume that

√−γ β0 < π .)
Given a uniform knot sequenceTk of the form

βkZ = {. . . ,−2βk,−βk,0, βk,2βk, . . .},
we can consider the spaceVk of splines whose segments satisfy Eq. (1) and that are at least
C2 continuous at the knotsTk . These splines are instances of a general class of splines
known as L-splines (Schumaker, 1981). Due to the uniformity of the knot sequence, the
spaceVk can be expressed as the span of the translates of a singleC2 basis functionNk[x]
that is supported on the interval[−2βk,2βk]. (In the trigonometric caseγ < 0, we restrict
βk such that

√−γ βk < π .)
Due to the fact that the function 1 is in the solution space of Eq. (1), these basis functions

can be normalized such that the translates of the basis functionNk[x] form a partition of
unity, i.e.,∑

i

Nk[x − iβk] == 1. (2)

Forγ == 0, the spaceVk is the space of cubic splines and the basis functionNk[x] is the
cubic B-spline basis function. Forγ > 0, the spaceVk is the space of splines-in-tension
(Hoschek and Lasser, 1993). The parameterγ serves as a “tension” parameter that forces
the resulting spline to vary between a linear and cubic spline. Forγ < 0, the spaceVk is
a “mixed” space consisting of polynomial and trigonometric functions. This spline space
has been studied previously in (Zhang, 1996) and Koch and Lyche (1991). When used
parametrically, the functions of this mixed space are capable of reproducing circles.

1.2. The corresponding subdivision masks

Henceforth, we assume that the knot spacing between successive levels is related by a
factor of two, i.e.,βk = 1

2βk−1. Since the initial knot sequenceT0 is centered at the origin,
the knot sequenceTk−1 is now a subsequence ofTk . In particular, the functions inVk−1

are automaticallyC2 at the knots ofTk. Therefore, these spaces are nested, i.e.,Vk−1 ⊂ Vk

for all k, due to the fact that their segments satisfy Eq. (1) independent ofk. Thus, the
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basis functionNk−1[x] can be expressed as a linear combination of translates of the basis
functionNk[x]. In particular, there exists a unique subdivision masksk−1 such that

Nk−1[x] ==
2∑

i=−2

si
k−1Nk[x − iβk], (3)

wheresi
k−1 is theith entry ofsk−1. Since the basis functionNk−1[x] is supported over the

interval [−2βk−1,2βk−1] == [−4βk,4βk], the masksk−1 has only five non-zero entries
si
k corresponding to the basis functionsNk[x + 2βk], Nk[x + βk], Nk[x], Nk[x − βk]

and Nk[x − 2βk]. For γ == 0, this subdivision mask, first introduced by Lane and
Reisenfeld (1980), has the form

sk−1 = 1

8
(1,4,6,4,1). (4)

For γ > 0, the subdivision masksk−1 for splines-in-tension can be expressed as an
exponential B-spline using imaginary exponents (Dyn and Ron, 1992). Using the definition
of hyperbolic cosine cosh, this mask can be reduced to the real form:

sk−1 = 1

4+ 4 cosh[√γ βk]
(
1,2+ 2 cosh

[√
γ βk

]
,2+ 4 cosh

[√
γ βk

]
,

2+ 2 cosh
[√

γ βk

]
,1
)
. (5)

Warren and Weimer (2001) give a full derivation of this mask starting from the original
differential equation. Finally, forγ < 0, Zhang (1996) expresses the subdivision mask for
“mixed” trigonometric splines (C-splines in his terminology) as:

sk−1 = 1

4+ 4 cos[√−γ βk]
(
1,2+ 2 cos

[√−γ βk

]
,2+ 4 cos

[√−γ βk

]
,

2+ 2 cos
[√−γ βk

]
,1
)
. (6)

Note that Zhang restricts the initial knot spacingβ0 to satisfy
√−γ β0 < π . (We will also

assume this restriction.) An order 3 variant of this subdivision scheme is presented by Dyn
and Levin (1999). As we shall see, Eqs. (4), (5), and (6) share enough common structure
that these three separate schemes can be expressed as a single common subdivision mask.

1.3. The unified subdivision scheme

The common thread linking all three of these subdivision schemes is that they can be
expressed in a single masksk of the form

sk−1 = 1

4+ 4αk

(1,2+ 2αk,2+ 4αk,2+ 2αk,1), (7)

where the value ofαk depends on the sign ofγ . Note that the masksk−1 uses the tension
parameterαk , notαk−1. The reason for this indexing choice is explained in the next section.
Here we distinguish three cases, based on the sign ofγ :

• If γ == 0, thenαk = 1.
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• If γ > 0, thenαk = cosh[√γ βk]. Note that for this caseαk > 1 for all k.
• If γ < 0, thenαk = cos[√−γ βk]. Given the restriction that

√−γ β0 < π , thenαk < 1
for all k in this case.

At first glance, this separation ofαk into three cases seems to provide little help.
However, the following theorem makes these three cases unnecessary once the initial
tensionα0 has been chosen.

Theorem 1. If the knot spacing satisfiesβk = 1
2βk−1, then, for all three of the cases above,

αk−1 andαk satisfy the recurrence

αk =
√

1+ αk−1

2
(8)

for all k > 0.

Proof. In the hyperbolic case (γ > 0), the initial tensionα0 is always greater than 1 and
the theorem follows directly from the hyperbolic identity cosh[θ ]2 == 1+cosh[2θ]

2 . In the
trigonometric case (γ < 0), the restriction

√−γ β0 < π implies thatαk � 0 for k > 0 and
the theorem follows directly from the trigonometric identity cos[θ ]2 == 1+cos[2θ]

2 . ✷
Given the tensionαk−1, the subdivision masksk−1 is derived by first computingαk using

Eq. (8) and by then substitutingαk into Eq. (7). This non-stationary subdivision scheme
combines the three previous schemes in a very elegant manner. Instead of choosingγ and
β0, the user simply chooses an initial “tension”α0. If the initial tension isα0 == 1, then
αk == 1 for all k and the subdivision scheme is the cubic B-spline subdivision algorithm
of Lane and Reisenfeld. Ifα0 > 1, then the scheme converges to a spline-in-tension. As
desired, larger initial tensionsα0 lead to curves that behave more like linear splines. If
−1� α0 < 1, then the scheme converges to a “mixed” trigonometric spline.

Fig. 1 shows the effect of varying initial tensionsα0 on the resulting splines. In
particular, the figure shows a diamond-shaped polygon and the corresponding splines for
α0 = {−1,0,1,10,100}. Varyingα0 control the distribution of the curvature of the spline.
Larger value ofα0 causes most of the curvature to be concentrated need the vertices of the
control polygon, i.e., the spline “clings” to the control polygon. Smaller values tends to
distributes more of the curvature along the edges of the control polygon. At the extreme
case ofα0 = −1, almost all of the curvature occurs near the midpoints of the control
polygon.

The second example from the left in this figure illustrates the main application of
the trigonometric case; reproducing a circle. Settingγ == −1 yields a spline that can
represent the functions sin[x] and cos[x] on the periodic domain[0,2π]. Splitting this

Fig. 1. The effect of varying the initial tensionα0 on the limit curve.
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Fig. 2. Subdivision of a regularm-gon using the initial tensionα0 = cos[2π/m] converges to a circle.

domain intom intervals by settingβ0 = 2π/m yields an initial tensionα0 == cos[2π/m].
For γ == −1, we requireβ0 > π , therefore we must takem > 2. Given a regularm-gon
as the initial shape, the resulting scheme converges to a circle. Fig. 2 shows an example of
this scheme applied to a diamond (m == 4).

Subdivision of a regularm-gon using the initial tensionα0 == cos[2π/m] converges to
a circle. We conclude this section by noting that the tensionsαk satisfying Eq. (8) converge
to 1 ask → ∞. In practice, this fact means that the subdivision masksk−1 of Eq. (7) is
converging to the subdivision mask for cubic B-splines ask → ∞. The following theorem
establishes a useful bound on this rate of convergence.

Theorem 2. Given an initial tensionα0 � −1 (α0 �= 1), the sequence of tensionsαk

satisfying Eq.(8) obeys, for allk > 0, the bound

0 � 1− αk

1− α0
� 1

2k
. (9)

Proof. It suffices to show that 0� 1−αk

1−αk−1
� 1

2. Define the functionσ as follows

σ [α] = 1

2+ √
2
√

1+ α
. (10)

Given Eq. (8), it is straightforward to verify thatσ [αk−1] == 1−αk

1−αk−1
using simple algebra.

For αk−1 � −1, 0� σ [αk−1] � 1/2 and the bound holds. Given Eq. (9), then theαk are
converging to 1 ask → ∞. Sinceσ [1] == 1/4, the bound of Eq. (9) can be tightened
to c/dk for any constantd in the range 2� d < 4 with the constantc depending onα0
andd . ✷

2. Practical considerations for the curve scheme

Since the thrust of this paper is to develop a subdivision scheme for surfaces that is
of practical interest, we next address several issues for the curve scheme that impact the
surface scheme. In this section, we first reformulate the curve scheme in terms of repeated
averaging. This reformulation leads directly to an analogous surfaces scheme. Next, we
modify the averaging method to allow for differing tensions on distinct curve segments.
Finally, we derive a simple subdivision rule for curve endpoints.
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2.1. The curve scheme as repeated averaging

Eq. (3) expresses a basis function at levelk − 1, Nk−1[x], as a linear combination of
translates of a basis function at levelk, Nk[x]. This relation can be applied to an arbitrary
function inVk−1 as follows. Given a functionp[x] in Vk−1, p[x] can be expressed as linear
combination of the translatesNk−1[x − iβk−1], i.e.,

p[x] =
∑

i

pi
k−1Nk−1[x − iβk−1],

wherepi
k−1 denotes theith entry of a vector of coefficientspk−1. (The entries ofpk−1 may

also be points defining a closed polygon.) Substituting Eq. (3) into this relation yields that
p[x] =∑

pi
kNk[x − iβk] where the entries of the vectorpk are given by the equations

p2i
k = 1

4+ 4αk

(
pi−1

k−1 + (2+ 4αk)p
i
k−1 + pi+1

k−1

)
,

p2i+1
k = 1

2

(
pi

k−1 + pi+1
k−1

)
.

These equations relatingpk−1 to pk can be written in matrix form aspk = Sk−1pk−1.
The matrixSk−1 is the subdivision matrix associated with the scheme. Given an initial
polygonp0, the matricesSk−1 define an increasingly dense collection of polygonspk that
converge to a smooth limit curvep∞. (In the functional case, this curvep∞ is simply the
graph of the functionp[x].) For this particular scheme,Sk−1 is a 2-slanted matrix of the
form below. For convenience, we have dropped the subscriptk from αk in the following
matrices.

Sk−1 =




. . . . . . . . .

. 0 1
2

1
2 0 0 0 0 .

. 0 1
4+4α

1+2α
2+2α

1
4+4α

0 0 0 .

. 0 0 1
2

1
2 0 0 0 .

. 0 0 1
4+4α

1+2α
2+2α

1
4+4α

0 0 .

. 0 0 0 1
2

1
2 0 0 .

. 0 0 0 1
4+4α

1+2α
2+2α

1
4+4α

0 .

. 0 0 0 0 1
2

1
2 0 .

. . . . . . . . .




. (11)

The key to reformulating this scheme as repeated averaging is to observe that the
subdivision matrixSk−1 can be factored into three separate matrices. Eq. (12) shows this
factorization. (Note that only a small portion of the entire matrices is shown.)Sk−1, the
left-hand matrix in Eq. (12), can be expressed as linear subdivision (i.e., the right-most
matrix in Eq. (12)) followed by two rounds of averaging.
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Fig. 3. One round of subdivision can be composed into the three steps linear subdivision, weighted
averaging based onαk , and midpoint averaging.




1
4+4α

1+2α
2+2α

1
4+4α

0 0

0 1
2

1
2 0 0

0 1
4+4α

1+2α
2+2α

1
4+4α

0

0 0 1
2

1
2 0

0 0 1
4+4α

1+2α
2+2α

1
4+4α




==




1
2

1
2 0 0 0 0

0 1
2

1
2 0 0 0

0 0 1
2

1
2 0 0

0 0 0 1
2

1
2 0

0 0 0 0 1
2

1
2




·




1
1+α

α
1+α

0 0 0 0 0

0 α
1+α

1
1+α

0 0 0 0

0 0 1
1+α

α
1+α

0 0 0

0 0 0 α
1+α

1
1+α

0 0

0 0 0 0 1
1+α

α
1+α

0

0 0 0 0 0 α
1+α

1
1+α




·




1
2

1
2 0 0 0

0 1 0 0 0

0 1
2

1
2 0 0

0 0 1 0 0

0 0 1
2

1
2 0

0 0 0 1 0

0 0 0 1
2

1
2




.

(12)

Given a coarse polygonpk−1, let p̂k be the new polygon produced by linear subdivision.
The first round of averaging applies weighted combinations of the tensionαk to p̂k . This

weighted averaging computes new vertices of the form
αkp̂

i
k+p̂i+1

k

αk+1 or
p̂i

k+αkp̂
i+1
k

αk+1 depending
on whetheri is even or odd. Most notably, this rule orients the averaging mask such that
those vertices of̂pk lying at vertices ofpk−1 are weighted by αk

αk+1. Finally, the left-most
matrix on the right-hand side of Eq. (12) computes a second round of averaging and places
the vertices ofpk at the midpoint of these weighted averages.

For example, Fig. 3 shows the three separate transformation steps comprising the first
round of subdivision in Fig. 2. The left-most polygonp0 is a square whose initial tension is
α0 = cos[2π/4] == 0. The polygon immediately to its right,̂p0, is the result of applying
linear subdivision. The next polygon (a stop sign) is the result of weighted averaging using
the tensionα1 = √

1/2. Note that applying midpoint averaging here (i.e.,α1 == 1) would
not produce a regular octagon. The right-most polygonp1 is another regular octagon that
results from the final round of averaging using midpoints.
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2.2. Non-uniform tensions

One standard generalization for splines-in-tension is to allow distinct values ofγ for
each interval of the initial knot sequenceT0. On the interior of each interval ofT0, the de-
sired subdivision mask is exactly that of Eq. (5). However, at the knots ofT0, the subdivi-
sion mask depends the value ofγ on the two neighboring intervals. One possible approach
to this problem is to compute local,C2 basis functions by taking linear combinations of
solutions to Eq. (1) on each interval. From these basis functions, we could then derive ap-
propriate subdivision masks. Unfortunately, the resulting subdivision masks appear to be
extremely complicated functions depending on the respectiveγ ’s and the knot spacingβk .

A simpler alternative is to abandon the basis function approach and to simply generalize
the weighted averaging rule as follows. Each segment ofp0 is assigned an initial tension
α0. During linear subdivision, each segment is split into two new segments. These new
segments inherit a new tension via Eq. (8).

The resulting subdivision process is still remarkably simple. Given a vertex ofp0 sharing
segments with tensionsα0 and α̂0, respectively, the subdivision matrixSk−1 centered at
vertex 0 is a simple modification of the matrixSk−1 in Eq. (12). The only modification
is to replaceαk by α̂k in the last three rows of the weighted averaging matrix. This new
non-uniform subdivision matrixSk−1 has the form (with subscriptsk dropped),




1
4+4α

1+2α
2+2α

1
4+4α

0 0

0 1
2

1
2 0 0

0 1
4+4α

1− 1
4+4α

− 1
4+4α̂

1
4+4α̂

0

0 0 1
2

1
2 0

0 0 1
4+4α̂

1+2α̂
2+2α̂

1
4+4α̂




==




1
2

1
2 0 0 0 0

0 1
2

1
2 0 0 0

0 0 1
2

1
2 0 0

0 0 0 1
2

1
2 0

0 0 0 0 1
2

1
2




·




1
1+α

α
1+α

0 0 0 0 0

0 α
1+α

1
1+α

0 0 0 0

0 0 1
1+α

α
1+α

0 0 0

0 0 0 α̂
1+α̂

1
1+α̂

0 0

0 0 0 0 1
1+α̂

α̂
1+α̂

0

0 0 0 0 0 α̂
1+α̂

1
1+α̂




·




1
2

1
2 0 0 0

0 1 0 0 0

0 1
2

1
2 0 0

0 0 1 0 0

0 0 1
2

1
2 0

0 0 0 1 0

0 0 0 1
2

1
2




.

(13)
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Fig. 4. A basis function with tensionα0 = 0.2 on the left and with tensionα0 = 1.9 on the right,
together with the first and second divided differences.

Note that the resulting scheme has uniform rules everywhere except at the central vertex
in question where the subdivision rule is

p0
k = 1

4+ 4αk

p−1
k−1 +

(
1− 1

4+ 4αk

− 1

4+ 4α̂k

)
p0

k−1 + 1

4+ 4α̂k

p1
k−1.

One price for abandoning the basis function approach is that we must now explicitly
determine the smoothness of this new scheme at vertex 0. The left-most plot of Fig. 4 shows
the basis function associated with this vertex forα0 == 0.2 andα̂0 == 1.9. The middle
and right plots show the first and second divided differences associated with this basis
function after seven rounds of subdivision. Since the second divided differences appear to
be continuous, the basis function is most likely aC2 function.

The following theorem confirms the observation that the curve scheme producesC2

limit curves.

Theorem 3. Given a subdivision matrixSk−1 of the form in Eq.(13), the limit curvep∞
defined by the subdivision relationpk = Sk−1pk−1 is aC2 curve.

Proof. See Appendix A. ✷
2.3. An endpoint rule

Any practical subdivision scheme for curves should include a subdivision rule for the
endpoints of the curve. For our scheme, we suggest forcing interpolation at the endpoints
of the curve while leaving the subdivision rules on the interior of the curve unmodified.
If the endpoint has parameter valuex == 0, then this rule produces limit functionsp[x]
that areC2 continuous atx == 0 and satisfy the natural boundary conditionp(2)[0] == 0.
The reader can verify these facts by explicitly constructing the appropriately supportedC2

basis functions.
This approach has the main advantage of simplicity. In particular, there is no need to

modify the subdivision rules away from the endpoint. In the case of surfaces, this property
avoids the complication of rules that vary as a function of their distance from the boundary
and extraordinary vertices. Unfortunately, this rule also has a significant drawback. The
scheme for closed curves is capable of representing circles. However, the rule for endpoints
produces limit curves that are flat (i.e., have zero curvature) at the endpoints. Therefore,
the proposed scheme can not represent circular arcs.

Another solution, similar to the one used by Zhang (1996) for C-curves, is to extend the
control polygon by an extra segment and to use the standard, uniform rules. During each
round of subdivision, the new endpoint is placed at the midpoint of the last segment, i.e.,
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Fig. 5. Subdivision of a curve with boundary can model circular arcs.

the last segment of the refined curve is trimmed away. In our three phase implementation
of the subdivision scheme, this trimming occurs automatically during the two rounds of
weighted averaging after linear subdivision. If the original control polygon is chosen to be
a portion of a regularn-gon, then the limit under this scheme is a circular arc. Fig. 5 shows
an example of this technique used to represent a quarter circle.

As it is obvious from Fig. 5, this approach is still not an entirely satisfactory method for
modeling circular arcs. An third approach is to blossom the space of solutions to Eq. (1) and
to attempt to derive more general subdivision rules at the endpoint. Unfortunately, all of
the authors’ attempts in this direction have resulted in rules that vary on the interior of the
curve and that are extremely complicated. More research remains to be done in this area.

3. The surface scheme

In the previous section, the curve scheme was expressed as linear subdivision followed
by two rounds of averaging. In this section, we generalize this method to arbitrary
quadrilateral surfaces. Then, as an application of the scheme, we give an algorithm for
generating control polyhedra whose associated limit surfaces are surfaces of revolution.
We conclude the section by performing a preliminary analysis of the smoothness of the
surface scheme.

3.1. The basic scheme

A quadrilateral mesh{T0,p0} (short quad mesh) consists of a topological meshT0
of quadrilaterals and a vector of vertex positionsp0. We propose to develop a surface
subdivision scheme that is a generalization of the scheme of Catmull and Clark (1978).
Given a quad mesh{Tk−1,pk−1}, the Catmull–Clark scheme produces a new collection
of quadsTk by topologically subdividing each quad inTk−1 into four new quads and
a vector of new vertex positionspk . These vertex positions satisfy the matrix relation
pk−1 = Sk−1pk−1 where the subdivision matrixSk−1 depends on the topologyTk−1.

Our proposed surface scheme is essentially a generalization of the curve scheme in the
previous section. To perform this generalization, we must determine surface analogs for
the two key components of the curve scheme: linear subdivision and weighted averaging.
The analog of linear subdivision is simply bi-linear subdivision. Each quad is split into four
new quads with new vertices placed at the midpoints of edges and at the centroid of each
face. Given a mesh{Tk−1,pk−1}, bi-linear subdivision produces a refined mesh{Tk, p̂k}
with the desired topologyTk.
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All that remains is to determine an analog of the two rounds of averaging used to produce
the final vertex positionspk . In the curve case, the first round is a weighted averaging using
the tensionαk , assigned to each edge ofTk, to compute a weighted midpoint for that edge.
Recall that this tensionαk was computed via Eq. (8) from the tensionαk−1 associated with
the parent of this edge inTk−1. In the surface case, we assign two tensionsα0

0 andα1
0, one

for each local coordinate direction, to each quad ofT0. Now, given a quad inTk−1 with
tensionsα0

k−1 andα1
k−1, each of these tensions is updated using Eq. (8) and assigned to the

children of this quad inTk during linear subdivision.
Consider a quad inTk with indices

(
i0 i1
i10 i11

)
where vertexi0 is also a vertex ofTk, vertices

i1 and i10 lie on edges ofTk−1 parallel to coordinate directions 0 and 1, respectively,
and vertexi11 lies on the center of a face inTk−1. (Note that the coordinate directions
correspond to the superscripts ofα0

k andα1
k .) The centroid associated with this quad has

the form

cent= 1

(α0
k + 1)(α1

k + 1)

(
α0

kα
1
k p̂

i0
k + α1

k p̂
i1
k + α0

k p̂
i10
k + p̂

i11
k

)
. (14)

In the curve case, the second round of averaging computed the midpoint of the weighted
averages. For quad meshes, the first round of averaging may produce meshes that are no
longer quad meshes. However, the second round of averaging always restores the topology
Tk of the mesh. For non-quad meshes, this second averaging step can be viewed as simply
taking the center of all of those weighted averages lying on a common face. In practice,
these two averaging steps can be expressed directly as a single composite averaging rule
of the form:

Weighted quad averaging.Given a vertexv of Tk , compute the centroids of those quads
in Tk containingv using Eq. (14) and repositionv at the center of these points.

Fig. 6 illustrates weighted quad averaging in action. The bold lines denote the mesh
{Tk, p̂k} produced by bi-linear subdivision. To compute the new vertex position of the
central black vertex, weighted quad averaging computes the gray centroids for each quad
in Tk . Note that the weightα0

kα1
k is always attached to the vertex of the quad that is also

a vertex ofTk−1. Finally, the central black vertex is repositioned at the center of the gray
vertices.

Fig. 6. Weighted quad averaging.
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Note that weighted quad averaging is equivalent to two rounds of averaging in the previ-
ous sense; the first weighted, the second unweighted. Due to its simplicity, weighted quad
averaging can be implemented in a very straightforward manner with a minimal amount
of topological computation: Given a mesh{Tk, p̂k} produced by bi-linear subdivision of
{Tk−1,pk−1}, first compute val[i], the number of quads inTk that contain the vertexi.
This quantity can easily be computed during a single pass throughTk (or maintained dur-
ing topological subdivision). Next, initialize a table of new vertex positionspk to be all
zero. Finally, make a second pass throughTk . For each quad inTk, compute the centroid
cent of its vertices in̂pk using Eq. (14) and update the position of vertexi of the quad via

pi
k+ = cent

val[i] . (15)

Since there are exactly val[i] quads containing vertexi, pi
k accumulates the center of the

val[i] centroids.
Combing bi-linear subdivision with weighted quad averaging yields a subdivision

scheme for quad meshes. In general, factoring a subdivision scheme into several simpler
steps is a concept that is increasingly in popularity. For example, the idea of expressing a
surface subdivision scheme in terms of repeated averaging has also appeared in two recent
papers by Zorin and Schröder (2001) and Stam (2001). However, these papers use only
uniform averaging and thus produce piecewise polynomial limit surfaces.

Fig. 7 shows the effect of applying this subdivision scheme to an initial quad mesh
consisting of six squares forming a cube. The top row shows the effect of bi-linear
subdivision. The bottom row shows the effect of weighted quad averaging, in this case
with tensionsα0

0 == α1
0 == 1 for all quads. Note that the resulting mesh has a tensor

product structure everywhere except at the extraordinary points. Since bi-linear subdivision
together with weighted quad averaging (withα0

0 == α1
0 == 1) reproduces the subdivision

Fig. 7. Bi-linear subdivision (top row) followed by weighted quad averaging (bottom row).
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rule for bi-cubic B-splines on tensor product meshes, the limit surfaces areC2 everywhere
except at extraordinary points. Later in this section, we perform a more general analysis
that considers the structure of the resulting subdivision rules at extraordinary vertices and
examines the effect of non-uniform tensions on the smoothness of the limit surfaces.

3.2. Surfaces of revolution via the surface scheme

As a useful application of the previous scheme, we describe a simple construction
for generating surface meshes whose limit surfaces are surfaces of revolution. Given a
control polygonp0 (and a list of tensions of its segments) in thexz-plane, we construct a
tensor product surface mesh{T0, q0} (and associated tensions) inxyz-space whose limit
{T∞, q∞} is the surface formed by revolvingp∞ around thez-axis. We constructq0
by makingm copies ofp0 and by revolving theith copy around thez-axis by 2πi/m

radians. If we decomposep0 into its components inx andz, i.e.,p0 = (px
0 pz

0), then the
components ofq0 have the form

q0 = (
c cos

[2πi
m

]
px

0 , c sin
[2πi

m

]
px

0 , pz
0

)
(16)

for i = 0, . . . ,m − 1, wherec = 2π
m

csc
[2π

m

]
.

Given thatT0 is a uniform tensor product mesh, we next assign tensions to each quad
in T0 that are compatible with the tensor product structure. Tensionsα0

0 in the direction
parallel top0 are inherited from the tension associated with the appropriate segment of
p0. Tensionsα1

0 in the direction orthogonal top0 (i.e., around thez-axis) are initialized to
cos[2π/m]. Consequently, cross-sections of the limit surface{T∞, q∞} perpendicular to
thez-axis are circles. The constantc is chosen as to stretch{T∞,q∞} in thexy-direction
and to force{T∞,q∞} to interpolatep∞ in thexz-plane.

If c = 2π
m

csc
[2π

m

]
in Eq. (16), then the limit surface{T∞,q∞} associated with the

polyhedron{T0, q0} interpolates the limit curvep∞ associated with the control polygonp0.
Recalling the curve case, we choseγ = −1 andβ0 = 2π/m to reproduce the functions

cos and sin on the periodic domain[0,2π] split into m segments. Each basis function for
this scheme was supported over four segments. Form � 4, the values at the three interior
knots are, respectively,

{
csc

[β0
2

]2
(β0 − sin[β0])
4β0

,−csc
[β0

2

]2
(β0 cos[β0] − sin[β0])

2β0
,

csc
[β0

2

]2
(β0 − sin[β0])
4β0

}
. (17)

The key to determinec is to observe that the intersection of{T∞,q∞} with the xz-
plane depends only on the portion of{T0, q0} for which i = −1,0,1. Specifically, the
x-coordinate of{T∞, q∞} is the linear combination of the three vectorsc ∗ cos[β0]px

0 ,
c∗px

0 , andc∗cos[−β0]px
0 weighted by the corresponding values of Eq. (17). Given that we

wish to reproducepx
0 , we can useMathematicato solve forc; the result isc = β0 csc[β0]

whereβ0 = 2π/m.
Fig. 8 shows an example of this process used to construct a vase. The upper left-most

polygon is the control polygonp0. The polygons to its right are refined polygonsp1, p2,
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Fig. 8. Subdivision for the design of a vase.

Fig. 9. A sphere, a cylinder and a torus generated via subdivision for surfaces of revolution.

andp3. The lower left-most portion of the figure is the tensor product surface meshesq0
formed by revolvingp0 around thez-axis. Note that a vertical cross-section ofq0 is “fatter”
thanp0 due to the constantc. Subsequent meshesq1, q2 andq3 appearing to the right are
the result of subdivision using weighted averaging. Note that vertical cross-sections of
these meshesqk are converging topk.

Many fundamental surface primitives such as spheres, cylinders and tori are surfaces of
revolution. Traditionally, these primitives had either been modeled as implicit surfaces or
through the use of rational surface schemes. For example, Sederberg et al. (1998) describes
a subdivision scheme based on an extension of NURBS that is capable of representing these
primitives. However, due to the fact that the rational parameterizations for these surfaces
are non-uniform, the resulting scheme cannot represent these surfaces in their natural arc-
length parameterization. Fig. 9 shows a sphere, a cylinder and a torus created using our
scheme. Note that the grid lines in the direction of revolution are uniformly spaced, since
the scheme we propose use a uniform parameterization. (The grid lines orthogonal to the
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Fig. 10. Subdividing a degenerate quad mesh around a pole.

direction of revolution on the cylinder are spaced non-uniformly due to the use of repeated
control points to interpolate the corners of the generating square.)

A sphere, a cylinder and a torus generated via subdivision for surfaces of revolution.
In the cases of both the sphere and torus, the original profile curvesp∞ were circles. In
the case of the torus, the profile curve did not intersect thez-axis and, thus, the surface of
revolution was a smooth, single-sheeted surface. In the case of the sphere, the profile curve
was a circle symmetrically positioned on thez-axis. Due to this positioning, the resulting
surface of revolution is a smooth,double-sheetedsurface. More generally, revolving any
profile curve that is symmetric with respect to thez-axis through 2π radians results in a
double-sheeted surface.

In practice, we wish to avoid this behavior when the profile curvep∞ is symmetric
with respect to thez-axis. The solution to this problem is to revolve the initial symmetric
polygonp0 through onlyπ radians. Since the polygonp0 is symmetric with respect to
thez-axis, the new polyhedron̄q0 is closed (and single-sheeted). If the intersection of the
z-axis and polygonp0 occurs at vertices ofp0, then this quad mesh̄q0 has poles at these
vertices. These poles consist of a ring of degenerate quads (triangles) surrounding the pole
(as shown by the dark lines in Fig. 10).

Remarkably, applying the scheme described in the previous subsection to this polyhe-
dronq̄0 yields a single-sheeted limit surfaceq̄∞ that agrees with the double-sheeted surface
of revolutionq∞. The key to this observation is to note that applying bi-linear subdivision
to q0 and q̄0 yield the same surface (single-sheeted and double-sheeted, respectively) as
long as the degenerate quads at the poles ofq̄0 are treated as such and subdivided as shown
in Fig. 10 (the dotted lines). Weighted quad averaging also repositions the poles ofq̄0 in
the same manner as those ofq0. Thus, the limit surfacesq∞ andq̄∞ agree.

3.3. Smoothness analysis

Given a mesh{T0,p0} with tensor product topology whose initial tensions obey the
tensor product structure, Theorem 3 ensures that the resulting limit surfaces areC2 contin-
uous. For example, the polyhedra{T0, q0} produced by the surface of revolution algorithm
have such a tensor product structure. Therefore, the associated limit surfaces{T∞,q∞} are
C2 continuous. However, if the tensions for each quad ofT0 are chosen without respect to
this topology, then Theorem 3 is not sufficient to ensure that the limit surface isC2 continu-
ous. In general, the authors hypothesize that, for any choice of initial tensionsαi

0 � −1, the
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Fig. 11. A basis function for a vertex surrounded by four quads with all distinct tension
parameters, together with all three possible second divided differences. The second differences
appear continuous.

limit surfaces{T∞,p∞} areC2 continuous. Specifically, we believe that a generalization
of the proof for the curve case (given in Appendix A) is sufficient to establish this as a fact.

For now, we present numerical evidence that the scheme producesC2 limit surfaces
on tensor product meshes. Consider a vertex surrounded by four quads with each quad
assigned distinct tensionsα0

0 andα1
0 (eight distinct tensions in all). Fig. 11 shows such a

basis function and plots all three possible second divided differences. These second divided
differences appear to be continuous, supporting the hypothesis that the scheme produces
C2 continuous limit functions.

At extraordinary vertices, we restrict our smoothness analysis to the stationary case,
i.e., α0

0 == α1
0 == 1. Given an extraordinary vertex of valencen, bi-linear subdivision

plus quad averaging yields a subdivision rule that weights the central vertex by9
16, edge

adjacent vertices by38n
and face adjacent vertices by116n . Forn == 4, this rule reproduce

the uniform rule for bi-cubic B-splines. This rule is mentioned by Catmull and Clark (1978)
as an alternative to their standard rule that uses the weights{1− 7

4n
, 3

2n2 , 1
4n2 }, respectively.

We leave it as an exercise for the interested reader to show that the{ 9
16,

3
8n

, 1
16n } rule

defines a subdivision matrixSk−1 whose spectrum has the form 1> λ == λ > · · · and
whose associated characteristic map is exactly that of the standard Catmull–Clark scheme.
Since the characteristic map for the standard scheme is known to be regular (see (Peters
and Reif, 1998)), the stationary version of our scheme is alsoC1 at extraordinary vertices.

In the non-stationary case, we leave the problem of smoothness analysis at extraordinary
vertices as a topic for future work. However, we observe that the rate of convergence of the
non-stationary rule to theC1 stationary rule is compatible with known bounds forC1 non-
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stationary schemes from the uniform case. Dyn and Levin (1992) provide the basic tools
for performing such an analysis. We intend to investigate the possibility of generalizing
their proof techniques to extraordinary vertices in future work.

Appendix A. A proof of C2 continuity for the non-uniform curve scheme

In this appendix, we provide a proof for Theorem 3. Specifically, we consider the
behavior of the subdivision schemepk = Sk−1pk whereSk−1 has the form



. . . . . . .

. 1
4+4αk

1+2αk

2+2αk

1
4+4αk

0 0 .

. 0 1
2

1
2 0 0 .

. 0 1
4+4αk

1− 1
4+4αk

− 1
4+4α̂k

1
4+4α̂k

0 .

. 0 0 1
2

1
2 0 .

. 0 0 1
4+4α̂k

1+2α̂k

2+2α̂k

1
4+4α̂k

.

. . . . . . .




with αk =
√

1+αk−1
2 andα̂k =

√
1+α̂k−1

2 . Our goal in this appendix is to show that the limit

curvep∞ associated with this scheme is aC2 curve. Our approach is two-phased. In the
first phase, we compute a subdivision matrixDk−1 for the divided differences associated
with our original scheme. In the second phase, we show that the limit curves associated
with this divided difference scheme areC1 continuous and conclude that original scheme
must produceC2 limit curves.

In phase one, we follow the approach of Dyn et al. (1991) and Warren (1995). Let∆k

be the two-banded matrix whose product∆kpk is the vector consisting of the divided
differences ofpk with respect to the knot sequenceTk. If Dk−1 satisfies the matrix equation
∆k.Sk−1 = Dk−1.∆k−1, thenDk−1 is a subdivision matrix relating the divided differences
of the form∆kpk = Dk−1(∆k−1pk−1). SinceSk−1 has rows that sum to one, the matrix
Dk−1 exists and has the form

Dk−1 =




. . . . . . . .

. 0 1+2αk

2+2αk

1
2+2αk

0 0 0 .

. 0 1
2+2αk

1+2αk

2+2αk
0 0 0 .

. 0 0 1+2αk

2+2αk

1
2+2(α̂)k

0 0 .

. 0 0 1
2+2αk

1+2(α̂)k

2+2 ˆ(α̂)k

0 0 .

. 0 0 0
1+2(α̂)k

2+2(α̂)k

1
2+2(α̂)k

0 .

. 0 0 0 1
2+2(α̂)k

1+2(α̂)k

2+2(α̂)k

0 .

. . . . . . . .




.
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Next, we analyzed the subdivision processqk = Dk−1qk−1. If the limit curvesq∞
associated with this scheme areC1, then limit curvesp∞ associated with the original
subdivision processpk = Sk−1pk−1 are C2 (see the two references above for details).
Ideally, we would like to repeat this process and build a divided difference scheme for
Dk−1 with respect toTk−1. Unfortunately, the rows of subdivision matrixDk−1 do not
sum to one. Therefore, such a subdivision matrix for these differences do not exist. In
phase two, we use the non-stationary analysis technique of Dyn and Levin (1999, 1995).
In particular, we show that the divided differences∆kqk are converging to a continuous
curve. Specifically, if we defineq ′

k[x] to be piecewise linear function whose value at the
ith knot ofTk is exact theith entry of∆kqk , then we will prove that theq ′

k[x] are uniformly
converging to a continuous function and therefore conclude that the limit curveq∞ is aC1

curve.
The key to the proof is to examine the differences betweenq ′

k−1[x] andq ′
k[x]. If Lk−1

is the subdivision matrix for linear subdivision, then∥∥q ′
k−1[x] − q ′

k[x]∥∥∞ = ‖Lk−1∆k−1qk−1 − ∆kqk‖∞,

= ‖Lk−1∆k−1qk−1 − ∆kDk−1qk−1‖∞,

= ∥∥(Lk−1∆k−1 − ∆kDk−1)qk

∥∥∞,

�
∥∥(Lk−1∆k−1 − ∆kDk−1)

∥∥∞‖qk−1‖∞. (18)

Now, the matrixLk−1∆k−1 − ∆kDk−1 has a particularly simple form

2k

β0




. . . . . . . .

. 0 −1+αk

1+αk

1−αk

1+αk
0 0 0 .

. 0 1−αk

2(1+αk)
0 −1+α̂k

2(1+α̂k)
0 0 .

. 0 0 −1+αk

1+αk

1−α̂k

1+α̂k
0 0 .

. 0 0 1−αk

2(1+αk)
0 −1+α̂k

2(1+α̂k)
0 .

. 0 0 0 −1+α̂k

1+α̂k

1−α̂
1+α̂k

0 .

. . . . . . . .




,

whereβk is the knot spacing forTk. (Recall thatβk = 1
2βk−1.) Based on Theorem 2, we

observe that∥∥(Lk−1∆k−1 − ∆kDk−1)
∥∥∞ <

c

dk

for any 1� d < 2 with the constantc depending onα0, α̂0, β0 andd . Using a similar
method, one can show that, for allk > 0,

‖qk‖∞ �
(

1+ ĉ

2k−1

)
‖qk−1‖∞ �

(
k−1∏
i=0

(
1+ ĉ

2k

))
‖q0‖∞

� e2ĉ‖q0‖∞.
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Substituting the bounds from the last two equations into Eq. (18) yields that

∥∥q ′
k−1[x] − q ′

k[x]∥∥∞ � c ∗ e2ĉ‖q0‖∞
dk

.

To complete the proof, we observe that the limit functionq ′∞[x] can be written as the
infinite sum

q ′∞[x] = q ′
0[x] −

∞∑
i=0

(
q ′

k−1[x] − q ′
k[x]).

For bounded‖q0‖∞, this infinite sum must converge for allx based on the ratio test applied
to the previous equation. Therefore, the continuous functionsq ′

k[x] uniformly converge to
a continuous limit functionq ′∞[x].
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