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ABSTRACT
We present a method to compute the exact topology of a real al-
gebraic surface S, implicitly given by a polynomial f ∈

�
[x,y,z] of

arbitrary degree N. Additionally, our analysis provides geometric
information as it supports the computation of arbitrary precise sam-
ples of S including critical points. We use a projection approach,
similar to Collins’ cylindrical algebraic decomposition (cad). In
comparison we reduce the number of output cells to O(N5) by con-
structing a special planar arrangement instead of a full cad in the
projection plane. Furthermore, our approach applies numerical and
combinatorial methods to minimize costly symbolic computations.
The algorithm handles all sorts of degeneracies without transform-
ing the surface into a generic position. We provide a complete im-
plementation of the algorithm, written in C++. It shows good per-
formance for many well known examples from algebraic geometry.

Categories and Subject Descriptors:
I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling—Curve, surface, solid and object representations;
G.4 [Mathematical Software]—Algorithm design and analysis;
G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations —
Polynomials, methods for

General Terms: Algorithms, Performance

Keywords: Algebraic surfaces, exact geometric computation, topol-
ogy computation, cylindrical algebraic decomposition

1. INTRODUCTION
Problem and results: The topological analysis of real algebraic

curves and surfaces has received a lot of attention in algebraic ge-
ometry, computer graphics and computer aided geometric design.
Beside the theoretical interest of the problem, accurate topologi-
cal and geometric information of algebraic objects is crucial for a
good visualization and for a meaningful approximation by simpler
objects, such as splines or polygons [8], [40].

We present an algorithm that provides topological information
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about an arbitrary algebraic surface S, given by an implicit equa-
tion in

�
[x,y,z] of degree N. We compute a cell decomposition,

where each cell is a smooth subvariety of S of dimension 0, 1, or
2 and determine how these cells are connected. Our cell decom-
position has the boundary property, i.e., the boundary of a cell is
given by a union of other cells (compare the similar notion of a
CW-complex [34], [12]). The result is similar to a cylindrical alge-
braic decomposition (cad) [17], [15] of � 3, but our decomposition
represents the topology using only O(N5) cells whereas the worst
case complexity of a cad is Ω(N7). It is possible to refine the de-
composition into simply connected cells without compromising the
final complexity.

Our algorithm consists of three steps: First, we project the z-
critical points of S to compute an arrangement AS. Second, we lift
the components of AS to � 3, obtaining the cell decomposition ΩS.
It suffices to lift over one sample point of each component. Third,
we compute the adjacencies between the cells of ΩS.

We describe new methods for all three steps with the goal to re-
place costly symbolic computations by certified approximation ap-
proaches as much as possible. Our toolbox for approximate meth-
ods contains, for instance, a numerical method for univariate root
isolation (Bitstream Descartes [20], [23]), an extension for the non-
square-free case (m-k-Bitstream Descartes [22]), and interval arith-
metic. Still, we guarantee to reflect the mathematical correct topol-
ogy of the surface in all cases, as expected from the exact geometric
computation (EGC) paradigm [44].

Our approach does not make any assumptions about the input
surface and does never transform the coordinate system to prevent
degeneracies. This allows to accurately sample the surface in ar-
bitrary resolution by lifting points of a fine granulation of the xy-
plane. On the other hand, we have to deal with degenerate situa-
tions, in particular with vertical lines that are part of the surface.
Such lines are decomposed into vertical segments, and vertices in-
between, to satisfy the boundary property.

We also provide an exact and complete implementation of the
presented algorithm in C++. To our knowledge, this is the first
EGC-implementation for the topological analysis of algebraic sur-
faces, including singular ones. It relies on an EGC-algorithm to
produce arrangements of arbitrary algebraic plane curves, which
has been presented recently in [21]. Our experiments show good
performance for many reference surfaces from algebraic geome-
try. Essentially needed in the projection step of our approach is the
analysis of planar curves of degree up to N(N−1) which limits its
practical applicability for high-degree surfaces.

Related work: The problem of topology computation for alge-
braic plane curves has been extensively studied [22], [19], [29],
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[39], [31], [28]. Recently, also exact methods for the case of space
curves [24], [2], [27] came under consideration.

For topology computation of algebraic surfaces, two principle
approaches can be distinguished: one is to consider level-curves
of the surface for certain critical values and to connect the com-
ponents of these levels in order to obtain a topological description
of the surface; see the recent works of Mourrain and Técourt [37]
(also in [11]), Fortuna et al. [25], [26] (for non-singular curves)
and Alcázar et al. [1] (where the connection step is missing). The
other approach is to project the critical points of the surface to the
plane, obtaining the silhouette curve. The topology is then deduced
by lifting the features induced by the silhouette. We are following
this approach; see also Cheng et al. [16] and the articles about cad
below.

The tools to compute a surface’s topology are similar in all men-
tioned approaches: each one needs to compute the topology of al-
gebraic plane curves, either to analyze the level curves or the sil-
houette. Additionally, critical points of the surface, or at least their
projections, must be identified, which is usually done by resultant-
calculus or Groebner bases. Most algorithms, e.g., [37], [25], [26],
[16], apply a linear (topology-preserving) transformation to obtain
a generic position that simplifies the computation. As already said,
we decided not to allow such a transformation in our algorithm to
preserve also geometric properties of the surface.1

None of the articles [37], [25], [26], [1], [16] report on the prac-
tical performance of their algorithms; if implementations are men-
tioned at all,2 they mainly propose to carry out the calculations
symbolically, or leave the concrete implementation of certain sub-
steps open. We tried to profit from numerical methods as much
as possible and we experienced that this accelerates the algorithm
significantly. We take this as the main reason of the overall good
practical performance of our algorithm.

Cylindrical algebraic decomposition is a more general problem
and constitutes its own research area [15]: Arnon et al. [4] pre-
sented an algorithm to compute a cad in � n. Their algorithm has
been improved in several ways: Numerical methods have been used
to speed-up the lifting step [41], [18], [14], improvements of the
projection step reduce the number of considered polynomials in the
cad [13], [35], cells in the cad are combined into clusters to reduce
the complexity [3], and algorithms have been proposed to compute
which cells are adjacent [5], [6], [36]. Some ideas of our algorithm
already appeared in those articles; for other problems, we propose
novel alternatives. We discuss the similarities and differences with
the appropriate references when we discuss the algorithm in detail.
Outline: We describe the lifting step of the algorithm in Section 2
and introduce the planar arrangement and our cell decomposition
in Section 3. Section 4 deals with the adjacency computation, and
how to treat the special case of vertical line components. Section 5
reports on our implementation and experiments.

2. Z-FIBERS
In what follows, S always denotes a surface of degree N, and

f ∈
�
[x,y,z] denotes its implicit equation. We henceforth assume

that f is a square-free and primitive polynomial, i.e., S contains no
irreducible component twice, and has no two-dimensional vertical
component. The treatment of non-primitive polynomials consists
of a separate analysis of the primitive part and the vertical part. We

1The idea from [22] to transform the curve back into its original
coordinate system seems not to extend easily to the surface case.
2Complete implementations have been presented for subclasses of
surfaces, such as intersections of quadrics [10] and meshes of non-
singular surfaces [38].

skip details for brevity.

DEFINITION 2.1. The z-fiber of a point p := (px, py) ∈ � 2 is

Zp := {γ ∈ � | f (px, py,γ) = 0}.

Note that the fiber can be equal to � , in case S contains the whole
vertical line `p := p× � . We aim for a method to compute the z-
fiber for an arbitrary point p with algebraic coordinates in the plane,
i.e., isolate the real roots of the polynomial fp := f (px, py,z)∈ � [z].
Computational difficulties arise because fp has algebraic coeffi-
cients for many z-fibers computed by our method, and because fp
might have multiple roots. We use some exact information about
fp to overcome such problems:

DEFINITION 2.2. Let p and f be as above. The local degree np
is the degree of fp in z. The local gcd degree kp is the degree of
gcd( fp, f ′p). The local real degree mp is the number of distinct real
roots of fp.

Assuming that np, kp and mp are known, the z-fiber computation
for p works as follows. If kp = 0, then fp is square-free; in that
case, we apply the Bitstream Descartes method [20], [23] on fp.
The method computes the real roots of an exact polynomial only
by numerically approximating the coefficients, i.e., in our case by
evaluating f at x and y with iterated and coherent refinements of
interval approximations for px and py. Otherwise, if kp > 0, we try
to use the m-k-Bitstream Descartes method [22, Sec. 5]; it exploits
knowledge about the local real degree and the local gcd degree,
and isolates the real roots using numerical approximations even if
fp has at most one multiple root. Unfavorable cases are detected by
the method, it simply reports a failure in this case. If this happens,
we compute the square-free part f ∗p of fp and apply the Bitstream
Descartes method on f ∗p .

Why did we choose the Bitstream Descartes method for the lift-
ing step? First of all, the Descartes method is considered to be
a practically efficient root isolation method, and using numerical
approximations of the coefficients is experienced to speed up the
computation further [41], [18], [14]. Thus, our choice for the Bit-
stream Descartes aims for practical efficiency, but it has another
advantage: By a randomized choice of subdivision points, and by
its adaptive precision management, the algorithm gives a success
guarantee for the square-free case, regardless of the polynomial’s
root separation. Thus, a fall back to a symbolic root isolator is
never necessary. The m-k-variant also gives a success guarantee
except for the case that the polynomial is algebraically difficult,
i.e., it has several multiple roots. Then, the polynomial has to be
made square-free by symbolic computation, but the square-free part
can again be tackled with the square-free version of the Bitstream
Descartes method.

The remainder of this section deals with the computation of mp,
kp and the square-free part f ∗p . They are computed using an alge-
braic tool called Sturm-Habicht sequence (cf. [30], the equivalent
term of signed subresultant sequence appears in [9]):

DEFINITION 2.3. Let � be any domain, g∈ � [t] with degg = n,
and δk := (−1)k(k+1)/2. For k ∈ {0, . . . ,n}, the k-th Sturm-Habicht
polynomial of g is defined as

StHan(g) := g

StHan−1(g) := g′

StHak(g) := δn−k−1Sresk(g,g′), k = 0, . . . ,n−2

where Sresk(g,g′) is the k-th subresultant of g and g′. We define
sthak(g), the k-th principal Sturm-Habicht coefficient of g, as the
coefficient of tk in StHak(g).
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The principal Sturm-Habicht coefficients can be represented as de-
terminants of the Sylvester submatrices, possibly multiplied by−1.
The signs of the principal Sturm-Habicht coefficients determine
m = #{z ∈ � | g(z) = 0}. The degree of gcd(g,g′) is given as the
minimal index k for which sthak(g) 6= 0 (for more details, see [29],
[22]). Thus, the Sturm-Habicht sequence for fp reveals the num-
bers mp and kp.

For the square-free part, we consider the cofactors of the Sturm-
Habicht polynomials [9, Prop. 8.38].

PROPOSITION 2.4. For j < n, there exist polynomials u j,v j with
deg(u j) ≤ n− j− 2, deg(v j) ≤ n− j− 1 such that StHa j(g) =
u jg+ v jg′.

All cofactors u j and v j can be written as determinants of “Sylvester-
like” matrices. The square-free part g∗ of g is given by one of
the v j’s [9, Prop. 10.14, Cor. 10.15]:

LEMMA 2.5. Let k = deggcd(g,g′) > 0. Then, g∗ = vk−1.

For the computation of the Sturm-Habicht sequence for fp, we ex-
ploit that they are well-behaved under specializing parameters. We
restrict to the three-dimensional case here.

PROPOSITION 2.6 (SPECIALIZATION PROPERTY).
Let f ∈ � [x,y,z], p := (px, py) ∈ � 2. If degz f = deg fp, then for all
j = 0, . . . ,n it holds that StHa j( fp) = StHa j( f ) |x=px,y=py

In other words, the Sturm-Habicht sequence for f (with z as outer
variable) reveals the specialized Sturm-Habicht sequence for all fp
with degz F = deg fp. Such points p are also called regular. We
generalize this idea to obtain a Sturm-Habicht sequence also for
non-regular points through specialization.

DEFINITION 2.7. For f = ∑N
i=0 ai(x,y)zi, we define the reduc-

tum fn := ∑n
i=0 ai(x,y)zi for n = 0, . . . ,N.

LEMMA 2.8. For all j = 0, . . . ,np, it holds that StHa j( fp) =
StHa j( fnp) |x=px ,y=py .

In our implementation, we use the algorithm presented in [9,
Alg. 8.22] to compute Sturm-Habicht sequences with cofactors.
They are computed using a polynomial remainder sequence [33]
which is more efficient than computing the Sturm-Habicht sequence
via determinantal expressions.

3. (N,K)-ARRANGEMENTS AND THE
CELL DECOMPOSITION

The z-fiber computation for p is based on the computation of the
integers np, kp and mp (Definition 2.2). In this section, we compute
an arrangement in the (x,y)-plane such that all points of an arrange-
ment feature have invariant np and kp. As we will see, also mp is
invariant for such a feature. This allows to efficiently compute the
z-fiber over any point in the plane, since all algebraic information is
determined by the arrangement feature the point belongs to. Also,
we show that the lift of such a feature is the union of disjoint func-
tion graphs which form the basis for our cell decomposition of the
surface.

DEFINITION 3.1. We call a connected set C⊂ � 2 (n,k)-invariant
with respect to a surface S = V ( f ) if the local degree nC and the
local gcd degree kC of f are invariant for all p ∈ C. An (n,k)-
arrangement for S is a planar arrangement whose vertices, edges,
and faces are (n,k)-invariant with respect to S.

In his seminal paper about cylindrical algebraic decomposition,
Collins [17] has proved that an (n,k)-invariant set is delineable,
i.e., that the (real) lift over the set is the union of m disjoint func-
tion graphs. We state a slightly weaker version of his theorem:

THEOREM 3.2. Let C be an (n,k)-invariant set. Then, each
p ∈ C has the same local real degree mC. Moreover, for each
i = 0, . . . ,mC , the i-th lift C(i) over C (defined below) is connected.

C(i) := {(px, py,zi) ∈C× � | zi is the i-th root of p’s z-fiber}.

PROOF. Over an (n,k)-invariant set, the number of distinct com-
plex roots is constantly n− k. The roots of f (p,z) continuously
depend on p, thus, in an open neighborhood of any point on C the
imaginary roots stay imaginary. As the total number of roots is pre-
served and imaginary roots only appear together with its complex
conjugate, the real roots also remain real. See [17, Thm. 1] for
more details.

The next construction also appears in Collins’ work [17, Thm. 4]:

THEOREM 3.3. For each algebraic surface S, there exists an
(n,k)-arrangement.

PROOF. We give a constructive proof. Let p be an arbitrary
point in the plane, and f = ∑N

i=0 ai(x,y)zi. The local degree of f
at p simply depends on the coefficients aN , . . . ,a0 by

np = deg fp = max
i=0,...,N

{i | ai(p) 6= 0}.

The same way, the local gcd degree depends on the principal Sturm-
Habicht coefficients sthai( fnp) by

kp = deggcd( fp, f ′p) = min
i=0,...,N

{i | sthai( fn)(p) 6= 0}.

The coefficients ai’s and sthai( fn) define plane curves αi = V (ai)
and σn,i = V (sthai( fn)), respectively, of degree at most N(N−1).
Then np and kp are determined by the curves p is part of. Thus,
the arrangement induced by αN , . . . ,α0 and, for all n = 1, . . . ,N,
σn,0, . . . ,σn,n has only (n,k)-invariant cells.

The proof presents a way to compute an (n,k)-arrangement for a
surface. However, the resulting arrangement consists of much more
features than actually necessary – we aim for an (n,k)-arrangement
with large components.

DEFINITION 3.4. The silhouette ΓS of S is defined by stha0( f ) =

resz( f , ∂ f
∂ z )

LEMMA 3.5. For any point, (np,kp) = (N,0) if and only if p
is not on ΓS. As a consequence, all edges and vertices of an (n,k)-
arrangement away from ΓS can be merged with their adjacent faces
to a (n,k)-invariant face.

PROOF. Using [9, Prop. 4.27], we have resz( f , ∂ f
∂ z )= aNDisc( f )

where Disc( f ) denotes the discriminant of f . Clearly, np = N for a
point p if and only if aN(p) 6= 0. From the definition of the discrim-
inant, kp = 0 for a regular point p if and only if Disc( f )(p) 6= 0.

Consequently, having any (n,k)-arrangement, we can turn it into a
minimal (n,k)-arrangement by a post-processing step (we assume
that each arrangement feature C stores the numbers nC and kC as
data): Remove all edges and vertices away from ΓS, and remove
vertices on ΓS that have exactly two adjacent edges, and both edges
have the same local degree and local gcd degree as the vertex (and
merge the adjacent edges). A similar idea of merging of a cad into
clusters has been proposed by Arnon [3].
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We next present an algorithm that integrates this post-processing
step in the arrangement computation, to lower the size of the inter-
mediate arrangements in the algorithm. The main tool is the com-
putation of overlays. Given arrangements A1 and A2, the overlay is
the union A3 of both arrangements; also, each feature of A3 knows
which feature of A1 and A2 it comes from.

We start by computing the arrangement A defined by the sil-
houette ΓS only. Each face gets the values (N,0) according to
Lemma 3.5. We first decompose A such that each feature has in-
variant local degree. To do so repeat the following steps for n =
N, . . . ,0: Overlay A with the arrangement of the curve αn, the re-
sult is A′. Remove all features of A′ that lie on a face of A. Also,
remove all vertices of A′ that lie on an edge of A whose local degree
has already been set. For each feature that lies on a face of αn, and
whose degree is not set yet, set its local degree to n. Set A← A′

and proceed with the next iteration. At the end, set the local degree
of all features which are not yet set to −∞, as above these features
S is vertical.

Next, we further decompose A into (n,k)-invariant cells. For that,
we iterate over the degrees and overlay with the corresponding prin-
cipal Sturm-Habicht coefficient curves σn,i.

Repeat for n = N, . . . ,1: Repeat for k = 0, . . . ,n−1: Overlay A
with the arrangement of σn,k, the result is A′. Remove all features
of A′ that lie on a face of A. Remove all vertices of A′ that lie on an
edge of A whose local gcd degree has already been set, or whose
local degree does not equal n. For each feature of A that lies on a
face of σn,k, whose local degree is n, and whose local gcd degree
is not yet set, set the local gcd degree to k. Set A← A′ and proceed
with the next iteration.

We remark the obvious optimization that for the local gcd degree,
one has only to consider those degrees n that appear as the local
degree of at least one feature. Also, one can stop the inner iteration
over the k’s as soon as all features of degree n know their local gcd
degree.

The (n,k)-arrangement computed by the above algorithm is called
AS from now on. It basically consists of the overlay of the lead-
ing coefficient curve and the discriminant curve of f (compare
Lemma 3.5), but introduces some subdivision points on edges to
ensure (n,k)-invariance. This approach is in a similar spirit as the
improved projection operators in cad computation; see the work of
McCallum [35] and the slight improvement by Brown [13]. They
show that considering the leading coefficient and the discriminant
is sufficient to ensure delineability, if all cells are made order-
invariant (compare the definition in [35]). So, the consideration of
the non-leading coefficients and the principal Sturm-Habicht coef-
ficients is not necessary to ensure the statement of Theorem 3.2. We
point out that our arrangement AS holds information about the lo-
cal degree and local gcd degree of each feature by construction. As
we have exposed in Section 2, this allows to apply fast methods in
the lifting step. Also, to compute an order-invariant cad, one has to
deal with the partial derivatives of the discriminant instead, which
are usually of higher degree than the principal Sturm-Habicht poly-
nomials used in our approach.

The complexity of our (n,k)-arrangement AS is not greater than
that for ΓS.

THEOREM 3.6. The number of cells of AS is O(N4).
PROOF. Since arrangements induce planar graphs, it is enough

to count vertices. The silhouette ΓS is of degree O(N2), so it has, by
Bézout’s theorem O(N4) critical points. We have to show that the
segmentation with respect to the remaining curves in the algorithm
does not introduce more than O(N4) new vertices.

Consider the decomposition of ΓS into irreducible components
ΓS,i with degree νi, and fix one γ = ΓS,i of degree ν . During the

algorithm, new vertices for γ (that are not removed in the same
iteration) are only introduced in two iteration steps:

First, when a coefficient curve αn does not contain the whole
curve γ . This introduces at most ν ·N many vertices. All further
coefficient curves αn−1, . . . ,α0 do not introduce new vertices on γ ,
since the local degree of all edges for γ is set to n.

Second, new vertices are introduced when a Sturm-Habicht poly-
nomial sthak( fn) does not contain the whole curve γ . This intro-
duces at most ν ·N2 many new vertices. All further Sturm-Habicht
curves sthak−1( fn), . . . ,stha0( fn) do not introduce new vertices on
γ , since the local gcd degree of all edges for γ is set to k.

After all, each ΓS,i gets at most O(νi ·N2) many new vertices,
and the νi sum up to N2.

DEFINITION 3.7. Let S be a surface, without vertical compo-
nent, AS as above and mC the local real degree of a cell C ∈ AS.
The cell decomposition ΩS is defined as

ΩS :=
⋃

C∈As

(

⋃

i=1,...,mC

{C(i)}

)

COROLLARY 3.8. For a surface of degree N without vertical
line, the number of cells in ΩS is O(N5).

This means that we achieve a topological description of the surface
using O(N5) many sample points. This is less compared to cad
which consists of Ω(N7) cells in the worst case, due to its vertical
decomposition strategy in the plane. An alternative decomposition
into O(N6) cells has been proposed by Mourrain and Técourt [37].
In Section 4.3, we extend ΩS to surfaces with vertical lines, and
show that the extension still keeps the same worst-case complexity
of O(N5).

Extracting simply connected cells Sometimes it might be ad-
vantageous to achieve a decomposition into simply connected cells
(i.e., each path in a cell is contractible to a point). Our decomposi-
tion ΩS does not have this property. We next propose an algorithm
that transforms ΩS into a decomposition of simply connected cells.

The first step is to compute a sim-
ply connected refinement A ′S of AS.
Only one- and two-dimensional cells
of AS can be non-simply connected.
Consider the planar graph G induced
by AS, by mapping its 0-dimensional
cells to nodes, and its 1-dimensional
connected cells to edges. Simply
connectivity for 1-dimensional cells
is achieved by adding an additional
vertex for each cyclic edge; see the
squared vertices in the picture to the
left.

To prevent non-simply connected
faces, we apply the following algo-
rithm: while G contains a bounded

connected component, choose such a component, and connect its
y-minimal point downwards using a vertical arc (dashed) until it
reaches another component of G (or if this does not happen, the arc
goes to −∞). Observe that each such arc either merges two con-
nected components, or turns one of them unbounded. Thus, it is
clear that the algorithm terminates, and produces a graph without
bounded connected components. The computed graph induces a
refined arrangement A ′S of AS. The newly added cells inherit the
(n,k)-properties of the cell they are included. For the such refined
A
′

S , we claim:
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PROPOSITION 3.9. Each cell of A ′S is simply connected, and
its number of cells is O(N4).

PROOF. Assume for a contradiction that there is a cell C of A ′S
which is not simply connected. Clearly, C cannot be 1-dimensional
as we split all cycles. So assume that C is a face. Since it is not sim-
ply connected, there is a cycle P that is not contractible. Hence, its
interior contains a connected component, which must be bounded.
That contradicts the fact that there is no bounded connected com-
ponent .

For the complexity statement, observe that we introduce at most
one edge and two vertices, and split at most one face for each con-
nected component. Since the number of connected components is
not greater than the number of faces, we add at most 4 cells for each
face of AS. This proves that we do not increase the complexity.

The arrangement A ′S implies a cell decomposition Ω′S by lifting
the components (compare Definition 3.7).

PROPOSITION 3.10. Each cell of Ω′S is simply connected, and
its number of cells is O(N5).

PROOF. Each cell C of Ω′S is the diffeomorphic image of a (sim-
ply connected) cell of A ′S , it follows that C is simply connected as
well. The complexity statement is clear, as each cell can have up to
N lifts.

We mention that this refinement into simply connected cells has
not yet been integrated into our implementation that we present in
Section 5.

4. ADJACENCY
As already mentioned we aim for a decomposition of S which

also fulfills the boundary property, i.e., the boundary of each cell
should be the union of other cells. Equivalently, for any two cells
M1,M2 with dimM1 < dimM2, we must have M1 ∩M2 = ∅ or
M1 ⊂ M2. In the latter case we call M1 and M2 adjacent. Then
the adjacency relation of such a pair can be checked at an arbitrary
point p ∈M1, i.e., the two cells are adjacent if and only if p ∈M2.
Theorem 4.1 shows that in case of a surface S which contains no
vertical line `p, the decomposition ΩS defined in Definition 3.7 al-
ready has this boundary property.

THEOREM 4.1. Let M1,M2 ∈ ΩS with dimM1 < dimM2 and
C1,C2 ∈AS their corresponding adjacent projections onto the plane.
If C1 has local degree nC1 6= −∞ and M1 ∩M2 6= ∅, then M1 =
M2 ∩ (C1× � ).

PROOF. Let M2 be the j0-th lift of C2 and p = (p∗,z0) ∈M2 ∩

(C1 × � ) an arbitrary point, contained in a lift C(i0)
1 of C1. For

the lifts p∗(i) of p∗ we choose a box neighborhood Bp∗ of p∗ and
also disjoint boxes B1, . . . ,BmC1

lying above Bp∗ with Bi = Bp∗ ×
[

p∗(i)−δ , p∗(i) +δ
]

and a δ > 0. We can assume that Bp∗ and

δ are chosen such that the i-th lift of C1 ∩Bp∗ is contained in Bi.
For Bp∗ small enough, it follows that the j0-th lift of Bp∗ ∩C2 is
also contained in Bi0 as p ∈ Bi0 ∩M2. As a direct consequence
((Bp∗ ∩C1)× � )∩M2 is the i0-th lift of (Bp∗ ∩C1). Now for any
two points p∗1 and p∗2 on C1 there exists a compact path Σ on C1,
which connects them. Then we consider an open covering of Σ with
local neighborhoods Bp′ , p′ ∈ Γ, such that ((Bp′ ∩C1)× � )∩M2 is
the ip′ -th lift of C1. Then from restricting to a finite partial covering

it follows that ip′ = i0 for all p′, thus C(i0)
1 = M2 ∩ (C1× � ). Now

M1 ∩M2 6= ∅ exactly if M1 = C(i0)
1 .

In case where S contains a vertical line `p, we also get a decom-
position of S into non-singular cells: It consists of lifted elements
of AS with local degree n 6= −∞, and finitely many vertical lines.
However, in general, the boundary property is no longer fulfilled
for this decomposition. For a patch M which projects onto a face,
adjacent to p, its closure M may only contain a single point of `p,
a line segment, a ray or `p :

THEOREM 4.2. Let S contain the vertical line `p and F ∈ AS

be a face, which is adjacent to p. Then for any surface patch F ( j)

(the j-th lift of F) there exists an interval I(F( j)) ⊂ � , such that
p× I(F( j)) = F( j)∩ `p.

PROOF. Given two points (p,z0),(p,z1) ∈ F( j)∩`p, z0 < z1, on
the vertical line, there exist corresponding continuous paths Σl ⊂
F( j) with (p,zl) ∈ Σl for l = 0,1. Now let (p,z∗) be an arbitrary
point in between (p,z0) and (p,z1). If we restrict to (end-)parts of
Σl we can assume that for every point (ql ,zql )∈Σl we have zq0 < z∗

and zq1 > z∗. We now consider the projection Σ∗l ⊂ F of Σl onto the
plane. We further denote Bε the open disc with radius ε and center
p. Then from the definition of F it follows the existence of an
ε0 > 0 such that Σε := ∂Bε ∩F is connected for all ε < ε0. Then Σε
intersects Σ∗0 as well as Σ∗1, thus because of continuity the j-th lift

Σ( j)
ε ⊂F( j) of Σε contains a point sε with z-coordinate z∗. It follows

that F( j) contains an arc of the z∗-level curve of S, which passes the
point (p,z∗). Hence, we must have (p,z∗) ∈ F( j)∩ `p.

Theorem 4.2 shows that in case of a vertical line we still have to
decompose the vertical lines into segments to obtain a decomposi-
tion ΩS of S which fulfills the boundary property. In Section 4.3
we show how to determine the intervals I(F( j)) and thus, how to
decompose the vertical lines.

4.1 Edge-face adjacencies
Let E be an edge of AS, and let F denote an adjacent face in

the arrangement AS. We want to compute the adjacencies between
cells above E and cells above F . From the boundary property it
suffices to check for an arbitrary point p = (px, py)∈ E if p is adja-
cent to the lifted surface patch. Therefore, we choose such a sample
point with rational x-coordinate px (in the case of a vertical edge,
we choose a rational y-coordinate and proceed analogously). If the
local degree over p is N, and the z-fiber over p has been computed
using the m-k-Bitstream Descartes method (compare Section 2),
adjacencies are computed similarly to the planar adjacency meth-
ods described in [22], [29]. All roots but one of fp are simple and
the cells over E to which they belong have precisely one adjacent
surface patch over F . The remaining surface patches must be adja-
cent to the possibly multiple root.
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f (px, y, z)

p = (px, py)

q = (qx, qy)

If fp was not isolated
using the m-k-Bitstream
Descartes method, the
treatment is the same as
in [6]. We choose a ra-
tional sample point q =
(qx,qy) for F with qx =
px, and consider the
planar curve f |x=px :=
f (px,y,z) ∈

�
[y,z]. The i-th lift F(i) of F is adjacent to the j-th lift

E( j) of E if and only if there is a segment of the curve V ( f |x=px )
connecting the i-th point over qy with the j-th point over py. In our
implementation, we use the algorithm presented in [22] to compute
the adjacency information for V ( f |x=px ).
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4.2 Adjacencies of a vertex
We consider a vertex point p whose z-fiber is finite, thus there ex-

ist finitely many zero-dimensional cells (px, py,z1), . . . ,(px, py,zm).

# #$ $

% %& &

' '( (

We apply several fil-
ters. If np = N,
and p’s z-fiber has
been constructed us-
ing the m-k-Bitstream
Descartes method, the
adjacencies are com-
puted as described in
Section 4.1. Second,
adjacencies between p
and an edge E can often be derived by a transitivity argument from
the combination of adjacencies of E with its adjacent faces F1 and
F2, and the adjacencies of F1 and F2 to p (compare the picture on
the right). We skip further details of this simple argument.

If no filter applies, choose rational intermediate values q0, . . . ,qm
such that qi−1 < zi < qi for all i = 1, . . . ,m. The planes z = qi divide
the real space in m+2 buckets that separate the fiber points zi.

DEFINITION 4.3. Let C ∈AS be adjacent to p. A point p′ on C
is bucket-faithful if there exists a path from p′ to p on C such that
on that path, each cell C(i) ∈ΩS over C remains in the same bucket.

With a bucket-faithful point p′ on C, the adjacencies of cells over C
with cells over p follows by considering the z-fiber of p′: if the i-th
point over p′ lies in the bucket of z j , then the cells C(i) and p( j) are
adjacent. Furthermore, points over p′ that lie in either the bottom-
most or the top-most bucket belong to asymptotic components, i.e.,
they are unbounded in z-direction.

It is easy to prove by an ε-argument that a bucket-faithful point
p′ exists for each cell C adjacent to p. However, we want to prevent
p′ being too close to p, as this results in a bad separation of the roots
of fp′ and thus complicates the computation of the z-fiber of p′.
Observe that p′ on C is bucket-faithful if
and only if there is a path from p′ to p on
C that does not intersect any of the bucket
curves defined by f (x,y,qi) ∈

�
[x,y]. We

first compute a bucket box around p that
contains no point of any of the bucket
curves (depicted on the right, the bucket
curves are drawn as dashed lines), This is
easily done with interval arithmetic: Use approximations of p to
evaluate f (px, py,qi) for all i = 0, . . . ,m until no resulting interval
contains zero. The final approximation of p defines the bucket box.

In the second step, we compute bucket-
faithful points inside the bucket box for
each adjacent cell (note that not each
point inside the bucket box is also bucket-
faithful). For each adjacent edge, choose
an arbitrary sample point, and shrink the
box until all these points are outside the
box (depicted on the right). After that,
each cell has a bucket-faithful point on the box boundary. Com-
pute all intersection points of AS with the box boundary.

Follow each edge E starting in p, until
it crosses the box boundary. The intersec-
tion point is bucket-faithful for E. For a
face F , consider the edge E ∈AS that pre-
cedes F in counterclockwise order around
p. Let p′′ be the bucket-faithful point of E
at the box boundary. Let p′ be a point on
the box boundary between p′′ and the next

intersection of the box’s boundary with AS in clockwise order. p′

is a bucket-faithful point for F .
The described method does not cover the special case of an iso-

lated vertex p yet. In this case, we compute the intersections of
AS with the vertical line x = px, and choose an intermediate value
between py and the next intersection point above.

Our method for vertex adjacencies has a similar basic idea as
the local box algorithm by Collins and McCallum [36] for cads.
Still, there are some differences: our construction of the “local box”
(which we call bucket box) is more efficient as it only involves in-
terval arithmetic. Also, we have to handle adjacent components
that are not x-monotone, which complicates the computation of
bucket-faithful points. Moreover, their local box algorithm requires
irreducible polynomials as input which implies a preceding factor-
ization step.

4.3 Vertical lines
In the special case where S contains a vertical line `p, in general,

the lift F(i) of a face F ∈ AS, adjacent to p in AS, is no longer
adjacent to exactly one lift of p. From Theorem 4.2 it follows that
F(i) is adjacent to a connected set p× I(F(i)) on `p, i.e., a single
point, a line segment, a ray or `p. We define

Z′p :=
⋃

C∈AS\{p}:p∈C

(

⋃

i=1,...,mC

{zA|zA is an endpoint of `p ∩C(i)}

)

as the union of all endpoints of intervals I(F(i)) and all z-values of
endpoints (over p) of lifted arcs in AS, adjacent to p. In the first
step we show how to get a candidate list Z∗p for Z′p. Let I(F(i)) be
an adjacency interval, which consists of more than one point, and
(p,z0) ∈ I(F(i)) be an arbitrary interior point, i.e., z0 /∈ Z′p. Then
Theorem 4.2 tells us that the curve Cz0 = {(x,y) ∈ � 2| f (x,y,z0) =
0}, embedded into the arrangement AS, contains at least one arc
that leaves p and passes the face F . Vice versa, each of these arcs
corresponds uniquely to a lifted surface patch above F which is ad-
jacent to (p,z0). The idea how to get a candidate list of possible
endpoints of the intervals I(F(i)) is based on the following geomet-
ric consideration.

Figure 4.1: Steiner Roman Sur-
face with horizontal intersections
at z = 1

2 , 2
5 , 3

10 , 1
10 ,0,− 3

10 ,− 2
5

We sweep with a hori-
zontal plane z = z0 along
the vertical line and con-
sider the arrangement AS,z0 ,
denoting the overlay of Cz0

and AS. We are interested
in all values z0 where we
detect possible changes of
the local topology of AS,z
at p, i.e., we have to de-
tect whenever for any face
F ∈AS, the number of arcs
of Cz leaving p and passing
F changes. For a generic
z0 (to be specified), a slight
perturbation of z0 leads to
a deformation of Cz0 such
that the local topology of
AS,z0 at p is preserved. Then arcs A⊂ F which correspond to sur-
face patches F(i) are continuously deformed into arcs, that are still
contained in F and also correspond to F(i). Hence, F(i) must be
adjacent to all points (p,z) in a neighborhood of z0. In case where
z0 is an endpoint of an interval I(F(i)), perturbing z0 results in ei-
ther loosing an arc that passes p or in an arc that switches the face.
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In the example of Figure 4.1 this happens for z0 = ± 1
2 , where we

loose arcs, and for z0 = 0, where arcs switch the face.
In the following theorems we specify these ideas and provide an

algebraic description for non-generic z0 with respect to local topol-
ogy changes of AS,z0 . It turns out that the computed candidate list
Z∗p does not only contain all endpoints of intervals I(F(i)), but also
the z-values of endpoints (over p) of lifted silhouette arcs, which
are adjacent to p. Hence, we obtain a superset Z∗p of Z′p.

Let us first state the main result of this section:

THEOREM 4.4. Let

r(x,z) := resy( f , fy) = (x− px)
i0 r̃(x,z),

h(x,z) := resy( f , resz( f , fz)) = (x− px)
k0 h̃(x,z)

with the following definitions of exponents

i0 := max{i : (x− px)
i|r(x,z)},

j0 := min{ j :
∂ j f
∂y j (px, py,z) 6≡ 0}

k0 := max{k : (x− px)
k|h(x,z)}.

Then for z0 6∈ Z∗p := {z|r̃(px,z) = 0∨ ∂ j0 f
∂y j0 (px, py,z) = 0∨ h̃(px,z) =

0} the local topology of AS,z0 at p is preserved for any sufficiently
small perturbation of z0 and Z′p ⊂ Z∗p.

We assumed S to be square-free and that it does not contain a
two-dimensional, vertical component, thus the curve Cz is square-
free and does not share a common component with ΓS for all but
finitely many z ∈ � . As such degenerate z-values are exactly given
by resy( f , fy)(x,z) ≡ 0 or resy( f , resz( f , fz)) ≡ 0, it follows that
the above factorization of r(x,z) and h(x,z) as well as j0 is well
defined. In particular for each z0 ∈ Z′p, the curve Cz0 is square-free
and it neither contains the vertical line L :=V (x− px)⊂ � 2 nor any
component of ΓS.

We split the proof of Theorem 4.4 as follows. Theorem 4.5
shows that Z∗p contains all z-values of endpoints (over p) of lifted
silhouette arcs, adjacent to p, as well as all z0 ∈ I(F(i)), where
I(F(i)) consists of only one point. Then, in Theorem 4.6, we prove
our claim about preserving the topology which finally leads to a
proof that Z∗p contains the endpoints of intervals I(F(i)), which con-
sists of more than one point.

THEOREM 4.5. Let L⊂ � 2 denote the line x = px and let C ⊂
ΓS be a component of the silhouette, adjacent to p. Then the end-
point (over p) of any lift C(i),L(i) is contained in p× Z∗∗p with

Z∗∗p := { ∂ j0 f
∂y j0

(px, py,z) = 0∨ h̃(px,z) = 0} ⊂ Z∗p. Furthermore, for

each surface patch F(i) that is connected with exactly one point
(p,z0) ∈ `p, it holds that z0 ∈ Z∗∗p .

PROOF. For any sequence pn := (xn,yn) ∈ ΓS\L, limn→∞ pn =

p, and any lift p(i)
n := (xn,yn,z

(i)
n ) we must have that f (p(i)

n ) =

resz( f , fz)(pn) = 0, thus h(xn,z
(i)
n ) = (xn− px)

k0 h̃(xn,z
(i)
n ) = 0. It

follows that h̃(xn,z
(i)
n ) = 0, so if we pass to the limit, we obtain

h̃(px, limn→∞ z(i)
n ) = 0. This shows that the lift of any component

of ΓS, distinct from L, runs into a point (p,z) ∈ p×Z∗∗p on `p. Now
we consider a sequence pn := (px,yn) ∈ L\{p} of points on L, that
converges towards p. Then, for any lift p(i)

n := (px,yn,z
(i)
n ) of pn

we must have f (p(i)
n ) = (yn− py)

j0 f̃ (yn,z
(i)
n ) = 0 with f̃ (y,z) :=

f (px ,y,z)
(y−py)

j0
. It follows that f̃ (yn,z

(i)
n ) = 0, thus limn→∞ f̃ (yn,z

(i)
n ) =

f̃ (py, limn→∞ z(i)
n ) = 0 and ∂ j0 f

∂y j0
(px, py, limn→∞ z(i)

n ) = 0. Finally,
for a face F ∈AS, that is adjacent to p, its closure either contains a
silhouette arc C, adjacent to p or some part of L that contains p. If
we assume that the i-th lift of F is connected with exactly one point
on `p, this also holds for either a lift of C or L. As we already have
shown that endpoints (over p) of such lifts are contained in p×Z∗∗p ,
our last claim follows.

In Theorem 4.4 we stated that for z0 /∈ Z∗p, any sufficiently small
deformation of z0 does not change the local topology of AS,z0 at p:

THEOREM 4.6. Let z0 /∈ Z∗p, then there exists an ε > 0, such
that for all ε-approximations zε of z0, the local topology of AS,z0

at p does not change. Furthermore, if an arc A0 ⊂ F ∈ AS of Cz0

corresponds to a surface patch F(i) (i.e., it is the projection of a
z0-level curve on F(i) onto F) then A0 continuously deforms into
an arc A of Czε , which also corresponds to F(i).

PROOF: As r̃(px,z0), h̃(px,z0) 6= 0 and ∂ j0 f
∂y j0

(px, py,z0) 6= 0 there

exists an ε > 0 and x− < px < x+, such that r(x,z),h(x,z) 6= 0 and
∂ j0 f
∂y j0

(px, py,zε ) 6= 0 for all x ∈ [x−,x+]\{px} and zε an arbitrary
ε-approximation of z0. As for any zε the root py of f (px,y,zε ) has
multiplicity j0, it follows the existence of y− < py < y+ such that
[y−,y+] is an isolating interval for the real root py of f (px,y,zε ).
Now if we restrict to the rectangle B := [x−,x+]× [y−,y+] we ob-
tain an isolating area for the x-critical point p of Czε , i.e., for each
point (x,y) ∈C∩B\{p} its y-value is an ordinary root of f (x,y,zε ).

Furthermore B is also an
isolating area for the inter-
section point p of Czε with
the silhouette ΓS. W.l.o.g.
we can assume that B has
been chosen small enough
such that AS,zε has star-
shape within B, i.e., all
points {ΓS ∪Czε } ∩ B are
connected by arcs of ΓS ∪
Czε with p. We can further
assume that all intersection

points of Czε with ∂B are on the left or on the right edge of ∂B.
Thus we get a one-to-one correspondence between arcs A ⊂ Czε
and points (xA,yA) ∈Czε ∩∂B with xA ∈ {x−,x+}. As yA is an or-
dinary root of f (xA,y,zε ) it follows that for sufficiently small ε the
number of such points (xA,yA) as well as the number of arcs that
leave p stays the same for all zε . This shows that the local topol-
ogy of AS,zε at p does not change (for details we refer to [21] and
[22]), proving the first part of the theorem.
For the second claim let us consider an arbitrary arc A0⊂Cz0 . Then
A0 corresponds to a surface patch F(i), i.e., the i-th lift of its corre-
sponding point q0 := (xA0 ,yA0) ∈ A0∩∂B lies on the z0-level curve
of S. We choose a neighborhood Uq0 ⊂ F of q0 which fulfills the
following two conditions:

• Uq0 contains no point (xA,yA) that corresponds to an arc A⊂
Cz0 , different from A0

• There exist open, isolating intervals I1, . . . , ImF ⊂ � for the
roots of all polynomials f (q,z) where q ∈Uq0 (in particular
we have z0 ∈ Ii).

The first condition can trivially be fulfilled as q0 is an interior point
of F . For the second condition we remark that f (q0,zε ) is a square-
free polynomial, thus isolating intervals for its real roots remain
isolating for f (q,zε ) for any sufficiently small approximation q of
q0. Now we can choose ε small enough, such that
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• Uq0 contains exactly one point qzε :=(xA,yA) that corresponds
to an arc A⊂Czε .

• [z0− ε,z0 + ε]⊂ Ii

The preceding conditions are a direct consequence of the fact that
the set of points (xA,yA) continuously deform with varying zε and
that we can choose ε sufficiently small.

Now the point qzε corresponds to an arc A⊂ F of Czε , thus there

exists a lift q( j)
zε ⊂ F( j) on the zε -level curve. From the properties of

Uq0 it follows that i = j, thus F(i) is adjacent to (p,zε ). This shows
that F(i) is adjacent to all points (p,zε). 2

We can now proof the central result:

PROOF OF THEOREM 4.4. Theorem 4.5 already tells us that z-
values of endpoints on `p of lifted silhouette arcs and lifted sur-
face patches, adjacent to exactly one point on `p are contained in
Z∗∗p ⊂ Z∗p. Thus it remains to show that a given z /∈ Z∗p cannot be
an endpoint of an interval I(F(i)) that consists of more than one
point. We prove by contradiction, so assume that z0 is an endpoint
of I(F(i)), then, from Theorem 4.6, there exists an ε-neighborhood
Uε (z0) of z0 such that for all z ∈Uε (z0) the local topology of AS,z
at p is preserved. Furthermore each arc of Cz, that correspond to a
surface patch F(i) continuously deforms into an arc, that also cor-
responds to the same patch. As we assumed z0 to be an endpoint of
I(F(i)) the neighborhood Uε (z0) must contain an interior point ż of
I(F i). Then, from Theorem 4.2, we know that Cż contains an arc,
which leaves p and passes the face F . It follows that there exists
a corresponding arc of Cz for any z ∈Uε (z0). But this shows that
I(F(i)) contains Uε (z0), a contradiction.

As a consequence of Theorem 4.4, we can define our cell decom-
position ΩS in general.

DEFINITION 4.7. Let S be a surface with (n,k)-arrangement AS.
Let V be the set of vertices in AS whose lifts are vertical lines. For
p ∈ V, let ωp denote the partition of `p into elements of Z∗p and
their induced intervals of � . We define

ΩS :=
⋃

C∈As\V

(

⋃

i=1,...,mC

{C(i)}

)

∪
⋃

p∈V
ωp

By construction of Z∗p, ΩS has the boundary property. We can also
show that vertical lines do not increase the complexity.

THEOREM 4.8. The number of cells of ΩS is O(N5).

PROOF. Using Corollary 3.8, it remains to show that the vertical
lines do not introduce more than O(N5) cells. The number of ver-
tices with vertical lines is in O(N2). For a fixed p, the set Z∗p is the
union of the roots of three polynomials in z (compare Theorem 4.4),
whose degree is at most O(N3).

Adjacencies for vertical line cells: Let
p denote a vertex in AS having a vertical
line. We proceed similar to Section 4.2 by
defining bucket values qi and bucket curves
V ( f (x,z,qi) for each intermediate value be-
tween elements of Z∗p. There is a complica-
tion here, as all bucket curves now are in-
tersecting p, and we cannot build a bucket box as before. Instead,
we compute the overlay of AS with all bucket curves, and build a
box around p that does not contain an intersection of AS with any
bucket curve, except at p itself.

For the sample points of edges from
AS, we further proceed as in Section 4.2.
Choose points at each adjacent cell of AS
and shrink the box until they are outside.
Then traverse the edges starting p and
choose the first box intersection as sample
point for the edge. This point is bucket-
faithful (recall Definition 4.3) and reveals the adjacencies between
the lifted cells over the edge with the cells at the vertical line, which
is valid due to the construction of Z∗p.

For an adjacent face F , we first compute which patches F ( j) over
F are adjacent to whole vertical segments. Each such vertical seg-
ment contains one of the bucket values qi. Thus, a patch over F that
is adjacent to an interval causes an arc of the bucket curve for qi that
lies in F and ends in p. We proceed as follows. Iterate over the arcs
of all bucket curves in F that leave p. Let qi be the bucket value of
the currently considered bucket curve. Choose a sample point on
the bucket curve (inside the bucket box), build the z-fiber over it,
and determine which patch F( j) has the z-coordinate qi. Mark this
patch to be adjacent to the vertical segment containing qi, and also
to the two endpoints of the segment.

Finally, when all patches adjacent to an interval are detected,
consider the remaining patches. They are adjacent to some zero-
dimensional cell over p. Choose a bucket-faithful point for the face
(analogous to Section 4.2), and determine the buckets which the
remaining patches belong to.

5. IMPLEMENTATION AND RESULTS
Often, implementations of algorithms in this area of research are

lacking, or do exclude certain degeneracies, like vertical lines or
singularities. Our presented algorithm is transformed into a fully
working C++-implementation, based on the projects CGAL and
EXACUS.3 Algebraic surfaces are represented by EXACUS’ class
template Algebraic_surface_3. Algebraic curves are taken from
EXACUS’ ALCIX library that implements recent work by Eigen-
willig et. al. [21, 22]. To construct and refine the (n,k)-arrangement
for a surface S using CGAL’s Arrangement_2 package [42], we
rely on EXACUS’ ability to provide a model of CGAL’s ARRANGE-
MENTTRAITS_2 concept for algebraic curves for arbitrary degree.
This feature is essential for the projection step of our algorithm.

Arrangements in CGAL integrate the faces, edges, and vertices
by a doubly-connected-edge-list (DCEL) that is extended with geo-
metric data. For technical reasons, curves are split into x-monotone
subcurves. Our traversal combines them to maximal (n,k)-constant
paths. We make extensive usage of advanced operations on ar-
rangements [43]. For example, we attach a collection of informa-
tion (e.g., nC and kC) to each DCEL-component. In combination
with CGAL’s overlay mechanism, the computation AS can be im-
plemented as explained in Section 3. Additionally, the construction
of z-fibers as presented in Section 2 benefits from the precomputed
parameters nC and kC for each cell. This avoids to repeat costly
tests, e.g., whether a point lies on some curves. We also follow the
scheme of lazy-evaluation, e.g., the sample point for a cell and its
z-fiber is only computed on demand, and then cached.

We shortly want to mention, that our design of implementation
decouples combinatorial and generic tasks from surface-specific
ones using the generic programming paradigm [7]. In particu-
lar, three tasks, that follow our algorithmic description, are ex-
pected from a supported surface. First, decompose the polynomi-
als resz( f , ∂ f

∂ z ), ai, and sthai( fn) into square-free factors and con-
struct corresponding curve instances. Second, a surface is required
3See project homepages at www.cgal.org and www.mpi-inf.mpg.de/EXACUS
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Instance degx,y,z (#V,#E,#F) |ΩS| t
steiner-roman 2,2,2 (5,12,8) 28 0.73
cayley-cubic 2,2,2 (3,10,8) 31 0.74
dupin-cyclide 4,4,4 (3,4,4) 10 0.19
tangle-cube 4,4,4 (0,6,7) 28 0.61
bohemian-dome 4,4,4 (7,20,14) 61 0.75
chair 4,4,4 (4,9,7) 31 3.05
hunt 6,6,6 (3,2,3) 15 1.21
star 6,6,6 (1,1,2) 5 3.61
spiky 6,9,6 (1,8,8) 13 1.43
C8 8,8,8 (40,48,26) 496 30.95
random-3 3,3,3 (2,3,3) 15 0.17
random-4 4,4,4 (7,14,8) 64 4.50
random-5 5,5,5 (16,24,10) 154 236.40
interpolated-3 3,3,3 (4,6,3) 23 0.34
interpolated-4 4,4,4 (12,18,9) 82 31.41
projection-4d 4,4,4 (4,12,9) 34 10.33

Table 1: Complexity and running times (in seconds) for a selection of
surfaces. Some defining polynomials can be found in Appendix A.

to construct a z-fiber for given p, knowing np and kp. Third, for
two adjacent cells of AS, it has to compute their lifted adjacen-
cies (see Section 4 for details). The newly written code consists of
about 15,000 lines C++. It will be published with a future release
of CGAL.
Experiments: We also run experiments on our implementation on
well-known examples from algebraic geometry,4 and interpolated
instances, and also a generic projection of two quadrics in 4D. All
experiments are executed on an AMD Dual-Core Opteron(tm) 8218
(1 GHz) multi-processor platform. Each processor has an internal
cache of 1 MB and the total memory consists of 32 GB. The system
runs Debian Etch. We compiled using g++-4.1.2 with flags -O2
-DNDEBUG and use the exact number types of CORE [32]. Observe
that our software currently does not benefit from having several
processors, although many steps of the algorithm are well-suited
for parallel computations.

Table 1 states for a selection of tested surfaces the size of the
(n,k)-arrangement AS, the total number of cells in ΩS, and the
obtained running times. It is also expected, that (some) surfaces
do not show any (n,k)-vertex (e.g., tangle-cube), or -edge (e.g.,
xy-functional surfaces) at all. Concerning the running times, we
observed that about 90% is spent to construct AS. This is no sur-
prise, as we have to analyze plane algebraic curves of degree up to
N(N−1). The remaining 10% are spent to compute lifts and adja-
cencies, which allows to conclude that these steps benefit from our
approximative and combinatorial methods.

Conclusion and outlook
Our work demonstrates that surface analysis is practically feasible
for moderate degrees without switching to a generic position. The
experiments show promising results thanks to our saving cell de-
composition and the consequent application of approximate meth-
ods. We consider our result to serve as a basis for solving related
problems. For instance, we are currently investigating how to en-
hance the cell decomposition to produce exact triangulations of ar-
bitrary surfaces. An extension to multiple surfaces enables to an-
alyze space curves and to realize boolean operations for surfaces.
For the future, we plan to work on these theoretical tasks, and to
augment our implementation towards multiple surfaces.
4Subsets of the tested example surfaces are provided courtesy of INRIA by the
AIM@SHAPE Shape Repository, by www.singsurf.org, by www.freigeist.cc,
and by [38]
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APPENDIX
A. SURFACES

We finally give the defining polynomials of some example sur-
faces that we analyzed in Section 5.

steiner-roman f = (y2 +(x2)) · z2 +(((1) · x) · y) · z+((x2) · y2)

cayley-cubic f = (5 · y+(5 · x)) · z2 +(5 · y2 +(−2) · y+(5 · x2 +(−2) · x)) · z+((5 ·
x) · y2 +(5 · x2 +(−2) · x) · y)

dupin-cyclic f = 447279 ·z4 +(894558 ·y2 +(894558 ·x2 +(−1155200) ·x+1155200)) ·
z2 +(447279 ·y4 +(894558 ·x2 +(−1155200) ·x+(−1155200)) ·y2 +(447279 ·
x4 +(−1155200) · x3 +(−1404800) · x2 +5120000 · x+(−2560000)))

tangle-cube f = z4 +(−5) · z2 +(y4 +(−5) · y2 +(x4 +(−5) · x2 +10))

bohemian-dome f = z4 +(2 ·y2 +((−2) ·x2)) · z2 +((−1) ·y4 +(2 ·x2 +(−4)) ·y2 +
(x4))

chair f = 16 · z4 +(288 · y2 +(288 · x2 +(−600))) · z2 +((−1280) · y2 +(1280 · x2)) ·
z+(80 · y4 +((−96) · x2 +(−600)) · y2 +(80 · x4 +(−600) · x2 +5125))

hunt f = 4 · z6 + (12 · y2 + (12 · x2 + 276)) · z4 + (12 · y4 + (24 · x2 + (−528)) · y2 +
(12 · x4 +(−960) · x2 +4620)) · z2 +(4 · y6 +(12 · x2 +(−129)) · y4 +(12 · x4 +
(−150) · x2 +1380) · y2 +(4 · x6 +87 · x4 +84 · x2 +(−4900)))

star f = 100 ·z6 +(300 ·y2 +(300 ·x2 +(−300))) ·z4 +(300 ·y4 +(600 ·x2 +(−599)) ·
y2 +(300 · x4 +(−599) · x2 + 300)) · z2 +(100 · y6 +(300 · x2 +(−300)) · y4 +
(300 ·x4 +(−599) ·x2 +300) ·y2 +(100 ·x6 +(−300) ·x4 +300 ·x2 +(−100)))

spiky f = z6 +((−3) · y3 +(3 · x2)) · z4 +(3 · y6 +(21 · x2) · y3 +(3 · x4)) · z2 +((−1) ·
y9 +(3 · x2) · y6 +((−3) · x4) · y3 +(x6))

C8 f = 32 · z8 +(−64) · z6 +40 · z4 +(−8) · z2 +(32 ·y8 +(−64) ·y6 +40 ·y4 +(−8) ·
y2 +(32 · x8 +(−64) · x6 +40 · x4 +(−8) · x2 +1))
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