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Historical background Euclid and followers/opponents

Very short prehistory of non-euclidean geometry

The Euclidean postulates were from beginning the object of research due
to a long and complicated formulation of the 5th postulate on parallels.
Published appx. 300 B.C.
Many attempts failed until the ideas of non-euclidean geometry appeared
in 1829 by N. Lobachevsky, in 1831 by J. Bolyai. In 1824, C. Gauss
wrote about such geometry in his letter to his friend F. Taurinus.
In 1868, E. Beltrami constructed 2-dimensional non-euclidean geometry
and introduced pseudosphere (a sphere with negative curvature). The
results on hyperbolic geometry started to occur frequently.
In 1908, H. Minkowski reformulated the famous A. Einstein’s paper
from 1905 and introduced space-time.
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What is a pseudo-euclidean space? Quadratic form and its polar form.

Quadratic form on a vector space

We consider Rn together with a quadratic for q : Rn → R given by
q(x) = x>Qx with symmetric matrix Q. The corresponding polar form
is given by P(x, y) = x>Qy and it is a symmetric, bilinear map with
relation to the quadratic form given by q(x) = P(x, x). They are
mutually unique.

A space with a quadratic form is called a pseudo-euclidean space. We
consider regular q. The form q plays the role of a square of the norm.
The polar form P plays the role of the scalar product in the Euclidean
space.

The possible cases are classified by pairs (p,m), where p + m = n and in
some basis of Rn we can write q(x) =

∑p
i=1 x2

i −
∑n

i=p+1 x2
i . Often

denoted by Rn
p.

The subset q−1(0) is called isotropic cone.
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What is a pseudo-euclidean space? Quadratic form and its polar form.

Examples of pseudo-euclidean spaces

An example of such space is Euclidean space with signature (n, 0).

An important example is Minkowski space. It is a space R4
1 with

q(x0, x1, x2, x3) = x2
0 − x2

1 − x2
2 − x2

3. Usually, the x0 = ct-coordinate in
physics, where c is the speed of the light (often set to 1 for theoretical
reasoning), t is time.
The isotropic cone consists of so called light-like vectors. The vectors
outside this cone are either space-like vectors, q(x) < 0 or time-like
vectors, q(x) > 0.

Many properties of the space Rn+1
1 are similar to the corresponding

properties of the R4
1 space. For the visualization purposes, we use R3

1.
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What is a pseudo-euclidean space? Isometries

Linear automorphism of a pseudo-euclidean space

Felix Klein in his Erlangen Program (1872) proposed a way
of classification of geometries (in the sense of the 19th century).
For a particular space, we consider invariants of its automorphism
group. The idea strongly influences the development of
mathematics.

A linear automorphism f of Rn such that q(x) = q(f (x)) for all x ∈ Rn

is called quadratic form preserving automorphism. Similar to the case of
transformations of Euclidean space preserving the length of the vectors.

All such automorphisms form a group denoted O(p,m) ⊆ GL(n) or
O(q). The orientation preserving automorphisms are denoted O+(p,m)
or O+(q). The case O(1, n) will be interesting for us.
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Group of automorphisms Artinian plane

Artinian plane

Consider the space R2
1 with quadratic form q(x′, y′) = x′2 − y′2.

Then q(x′, y′) = (x′ − y′)(x′ + y′). The isotropic cone consists
of two lines. Considering the basis

√
2/2(1, 1)>,

√
2/2(−1, 1)>

consisting of the direction of the isotropic lines, we get the form
q(x, y) = 2xy. A two-dimensional space with quadratic form of this type in
certain basis is called Artinian. Then, there are four subsets of matrices
representing transformations in the group O(1, 1):(

k 0
0 k−1

)
, k ∈ R∗+,

(
k 0
0 k−1

)
, k ∈ R∗−,

(
0 k

k−1 0

)
, k ∈ R∗+,

(
0 k

k−1 0

)
, k ∈ R∗−.

The subset (component) containing identity forms the group of orthochronous
transforms O++(1, 1).
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Group of automorphisms Artinian plane

Orbits of the orthochronous group in the Artinian plane

y

x

y

x
[1, 0]

[0, 1]

[1, 1]

The orbits of the (R2, 2xy) generated by the automorphisms in O++(1, 1) –
four sets of branches of hyperbolas and four rays. The group
O(1, 1)/O++(1, 1) = Z2 × Z2 (Klein’s fourgroup). This structure extends
almost directly to higher dimensions.
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Group of automorphisms Artinian plane

Angle in the Artinian plane

A map in O++(1, 1) can be written in the exponential form(
k 0
0 k−1

)
=

(
et 0
0 e−t

)
, k ∈ R∗+, t ∈ R. (1)

Let `, `′ ⊂ R2 be lines. Their angle is defined as the number ω ∈ R such that

`′ = Ω(`), where Ω is given by the matrix
(

eω 0
0 e−ω

)
. The transformation

of the coordinates given by such a matrix is called hyperbolic rotation.
The angle ω can also be computed using the cross-ratio (a,b, c,d) on the real
projective line generated by R2. In an affine part of the line, where the points
a,b, c,d have the corresponding coordinate a, b, c, d, we get

(a,b, c,d) =
a− c
b− c

:
a− d
b− d

. (2)

Then
ω =

1
2

log(`, `′, J, I), (3)

where J, I are isotropic lines of R1
1. It is also ratio of eigenvalues of Ω.
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Group of automorphisms Artinian plane

Hyperbolic rotation

y

x

ω

I

J

ℓ

ℓ′

P (E)

The definition of the angle ω for the lines `, `′ in R2
1 with isotropic lines I, J.

The oriented area of the yellow domain is proportional to the angle ω.
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Group of automorphisms Higher dimensional case

Möbius group

An inversion i of Rd ∪ {∞}(homeomorphic to Sd) with respect to
(d − 1)-dimensional hypersphere S(s, r) is given by formula
i(x) = s + r x−s

‖x−s‖2 , i(s) =∞, i(∞) = s. We also add hyperplane

reflections of Rd with i(∞) =∞. Equivalently, every subsphere of Sd is
mapped to a subsphere of Sd.

Möbius group Möb(d) is generated by the inversions of Sd or,
equivalently, by the inversions of Rd+1 fixing Sd.

The case d = 2 can also be described by: PSL(2,R)

represented by matrices
(

a b
c d

)
with ad − bc = 1 corresponding

to the complex function f (z) = az+b
cz+d (homography). Additionally,

antihomographies have to be added i.e. f (z) = az̄+b
c̄z+d , a

homography composed with reflection using axis of real numbers in C.
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Group of automorphisms Higher dimensional case

Poincaré group of the Minkowski space

The basic building blocks of the group O(q) for the Minkowski space
Rn+1

1 are O(n) for the Euclidean space Rn ⊆ Rn+1
1 and O(1, 1) for

Artinian planes contained in Rn+1
1 . Moreover for n ≥ 2

O(q) ' Möb(n) ' Conf(Dn).
The group O(q) can be (upto symmetry in the last n variables) generated
by block-diagonal matrices of the type

diag(1,R, In−2), diag(H, In−1), diag(1,−1, In−1), diag(−1, 1, In−1),

where Ik is a identity matrix of type k × k, R =

(
cosφ − sinφ
sinφ cosφ

)
, and

H =

(
coshψ sinhψ
sinhψ coshψ

)
.

The Poincaré group is a semidirect product of the Lorentz group and the
translation group of Rn+1

1 .
There is a strong structure similarity of the group O(q) with O(n).
Complexification of Rn+1 and Rn+1

1 produces isomorphic spaces over C.
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Decomposition theorems Transitivity and hyperplane reflections

Transitivity of the action, reflections as generators

Theorem (Witt, 1936)

Let F,F′ ⊆ E be two subspaces and f : F → F′ be an isometry with respect to
the quadric q. Then, there is a map f̂ ∈ O(q) such that f̂ |F = f .

Theorem (Witt – stronger version)

Let F,F′ ⊆ E be two subspaces and f : F → F′ be an isometry with respect to
the quadric q. There is a map f̂ ∈ O+(q) such that f̂ |F = f if
dim F + dim(rad F) < dim E. Moreover, if dim F + dim(rad F) = dim E and
f ∈ O−(q) then there is no g ∈ O+(q) such that g|F = f |F

Theorem (Cartan–Dieudonné)

Every isometry f ∈ O(q) is a product of at most dim E hyperplane reflections.
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Decomposition theorems Transitivity and hyperplane reflections

Pseudo-orthogonality

Orthogonality of vectors in Euclidean, elliptic and hyperbolic plane. A
reflection using linear variety H ⊂ Rn

k is given via map

f (x) = xH − x⊥H , (4)

where x = xH + x⊥H is a unique decomposition (if possible) of x such that
x ∈ H and x ∈ H⊥.
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Applications of Minkowski space Special theory of relativity

Special theory of relativity (STR)

An event is marked with time and space coordinates. Having two observers
O, Ô of the same event, we get coordinates (t, x) and (̂t, x̂) of the same event.
Let the observer Ô is moving by a constant velocity v < c in the direction of
the coordinate axis x. Assumptions of STR give Lorentz transformation

t̂ =
t − v

c2 x√
1− v2

c2

,

x̂ =
x− vt√
1− v2

c2

,

or alternatively using tanhφ = v
c as(

ct
x

)
=

(
coshφ sinhφ
sinhφ coshφ

)(
ĉt
x̂

)
. (5)
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Applications of Minkowski space Special theory of relativity

Length contraction, time dilatation
x0

x1

x̂0

x̂1

∆t ∆t̂

∆x

∆x̂

Contraction
of length. Let ÂB̂ be a segment of
unit length in the coordinate system
Ô. Hence the difference vector
has coordinates (0, 1). For the
observer O, it has the coordinates
(sinhφ, coshφ). Hence,
the length will be for him shorter
by a factor coshφ = 1√

1− v2

c2

.

Dilatation of time. Let ÂB̂ be a segment of unit time in the coordinate system
Ô. Hence the difference vector has coordinates (1, 0). For the observer O, it
has the coordinates (coshφ, sinhφ). Hence, the time between the events will
be for him shorter by a factor coshφ = 1√

1− v2

c2

.
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Applications of Minkowski space Special theory of relativity

Addition of velocities in STR
x0

x1

φ1

φ2

x1
1

x1
2

x1
3

x0
1

x0
2

x0
3

Addition of velocities. Let φ1
be the size of the hyperbolic angle
between the lines representing
the observers O1,O2, where
O2 is moving with velocity v1 with
respect to O1, let φ2 be the size
of the hyperbolic angle between
the lines representing the observers
O2,O3,where O3 is moving
with velocity v2 with respect to O2
and φ3 be the size of the hyperbolic
angle between the observers
O1,O3, where O3 is moving with velocity v3 with respect to O1. Assuming
the directions to be same, we get

φ3 = φ1 + φ2 which using tanhφi =
vi

c
gives

v3

c
=

v1
c + v2

c
1 + v1

c
v2
c
. (6)
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Applications of Minkowski space Hyperbolic geometry

Models of the hyperbolic spaces

Hyperbolic space is a flat (not curved) space where the hyperplanes (and
also all “linear varieties” of lower dimensions) satisfy a special set of
rules for parallelity, different from the usual axioms of Euclidean
geometry.

The models of the hyperbolic spaces of dimension n can be obtained
using Rn+1

n with q(x) = x2
1 + · · ·+ x2

n − x2
n+1. The hypersurface

q−1(−1) (the “hypersphere of radius -1”) can serve as the example.

We recall well known models for hyperbolic geometry – the hyperboloid
model, the Beltrami-Klein’s model and the Poincaré’s models. We
consider the case of plane, since it can be drawn, however the same
construction works for arbitrary finite dimension. The distance in the
models can be defined using projective geometry.

Pavel Chalmovianský (KAGDM FMFI UK) Geometry of Minkowski Space Bratislava, May 27, 2011 18 / 30



Applications of Minkowski space Models of hyperbolic geometry

Figure: The locations of the models of hyperbolic geometry in Minkowski space.
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Applications of Minkowski space Models of hyperbolic geometry

The hyperboloid model

The points of this model are on the
upper part of the hyperboloid U =
q−1(−1) ∩ {x ∈ Rn+1

n , xn+1 > 0}.
The tangent space of each point inher-
its positive definite scalar product from
Rn+1

n . The distance between points a,b
is computed as

∫ tb
ta

√
q(ẋ(t))dt with

x(t) given by the intersection of U ∩
[a,b]. It can be parameterized by
a cosh(t) + v sinh(t), t ∈ R, q(v) =
1 (analogous to the Euclidean case).
This is also geodesic line on U between
those two points. The space U is com-
plete, constantly curved and its isome-
tries are formed by the orthochronous
subgroup of Möb(n). Weierstrass model
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Applications of Minkowski space Models of hyperbolic geometry

Figure: The locations of the models of hyperbolic geometry in Minkowski space.
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Applications of Minkowski space Models of hyperbolic geometry

Beltrami-Klein’s model

The points of the n-dimensional
hyperbolic space are given as in-
ner points of the unit radius disk
in Dn(0, 1) ⊂ Rn corresponding
to one-dimensional subspaces of
Rn+1 with negative q. The lin-
ear subvarieties of the hyperbolic
space are intersections of the affine
varieties in Rn with intDn. The
distance in the model is mapped
from the hyperboloid model. The
Euclidean angles between affine
spaces do not represent the hyper-
bolic angles. The model is also
called projective.

θ

UKlein

∂UKlein

P

ℓ1

ℓ2

ℓ3
ℓ4

Beltrami-Klein’s model of the
hyperbolic plane.
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Applications of Minkowski space Models of hyperbolic geometry

Hilbert’s metric

Hilbert (Cayley-Klein) metric h in the bounded
convex domain K is given by the hyperbolic angle via

h(a,b) =
1
2

log(a,b,p,q).

The projective invariance and the multiplicative properties of the cross-ratio
give the triangle inequality h(a, c) + h(c,b) ≥ h(a,b).

q pa b

c

d

r

s

t

u

v

p′ q′

K
∂K

(a,d,p,q)(d,b,p,q) = (a,b,p,q)

(a, c, t,u) = (a,d,p′,q′) ≥ (a,d,p,q)

(c,b, s, r) = (d,b,p′,q′) ≥ (d,b,p,q)

The identification of such metric was also con-
sidered in the more general context of the 4th
Hilbert problem (identification of metric with
straight line geodesics).
For non-bounded convex domain, a slight mod-
ification e.g. with Euclidean distance is used.
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Applications of Minkowski space Models of hyperbolic geometry

Figure: The locations of the models of hyperbolic geometry in Minkowski space.
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Applications of Minkowski space Models of hyperbolic geometry

Poincare’s model

The Beltrami-Klein model is not conformal. There is a way to improve the
model using a modified mapping from the hyperboloid model U.
Let Sn ⊆ Rn+1 be the unit sphere and Sn

+ be its upper half-sphere. It encloses
the disk Dn(0, 1) via its “equator” Sn−1 = Sn ∩ Rn. The map π : Rn+1 → Rn

given by π(x1, . . . , xn+1) = (x1, . . . , xn) restricted to the Sn
+ is bijective. Let

ρ : Sn − {S} → Rn be the stereographic projection from the “south pole”
S = (0, . . . , 0,−1). Then the conformal model can be get using maps
ρ ◦ (π|Θ)−1 : Dn → Dn.
The group of isometries agrees with

Conf(Dn) = {Ac(x) : A ∈ O(n), c ∈ {IdDn , inv⊥∂Dn}}.

Using a special inversion of Rn, one gets also Poincaré halfspace model.
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Applications of Minkowski space Models of hyperbolic geometry

Poincaré disc model

θ

UPoincaré

∂UPoincaré

P

ℓ

ℓ1

ℓ2

b′

a′

a

b
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Applications of Minkowski space Models of hyperbolic geometry

Area of a polygon in hyperbolic plane

Using Gauss-Bonet theorem, the area of the triangle in hyperbolic space
is π − α− β − γ (upto a constant multiple, curvature). The area of a
polygon is hence (n− 2)π −

∑m
i=1 αi

there are infinitely many non-isomorphic discrete subgroups of O(q)
generating tiling of the hyperbolic space starting with a properly chosen
polygon (some were used in the M. C. Escher paintings)
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Applications of Minkowski space Additional areas of applications

More topics and applications

classical hyperbolic geometry – synthetic/analytic properties

modern topology/geometry of hyperbolic spaces/manifolds

theory of relativity

discrete subgroups of Möb(n)

geometric modeling/approximations/(applied) algebraic geometry
medial axis transform – way of representing compact sets T having
property cl(int T) = T
Minkowski Phytagorean hodograph curves
many computational structures (e.g. Voronoi diagrams)
rendering in hyperbolic space
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Applications of Minkowski space Locally interesting topics

Ongoing work connected to this area
classification of
polynomial/rational curves with
respect to the q based on control
points (Barbora Pokorná)

visualizations of complex
functions (Miroslava Valíková)

structure of isolated singularities
and their deformations (Martina
Bátorová)
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