
LESSON 9 Computer Graphics 1

Alias and Antialiasing 2

Alias
3

 Rasterization algorithms produce stairstep, jagged
appearance

 Distortion due to low-frequency sampling
 To avoid alias specific frequency of sampling has to

be achieved

example of insufficient sampling

Nyquist Frequency
4

 Minimal sampling frequency to avoid losing
information

 Nyquist sampling frequency:

 highest frequency occurring in the object
 Nyquist sampling interval:

max2 ffs =

maxf

max

1
2

2

f
x

x
x

cycle

cycle
s

=∆

∆
=∆

Antialiasing
5

 Represent continuous object accurately needs
arbitrary small sampling intervals

 We have limited resolution
 Solution: antialiasing

 Modify pixel intensity along the boundary
 More than two intensities needed

Antialiasing Techniques
6

 Postfiltering
 Sampling at higher rate

 Prefiltering
 Treats pixels as having area

Postfiltering
7

 Sample at higher frequency
 Oversample the same amount in each direction
 Each pixel is divided into several subpixels
 Filtering: large resolution to small resolution

Postfiltering – Straight Line Segments
8

 Count of subpixels along the line
 9 subpixels gives 3 intensity levels above zero
 Increasing resolution increases intensity number of

levels

Postfiltering – Pixel Weighting Mask
9

 Subpixels have the same weight
 Supersampling

 Subpixels have different weights

































121
242
121

16/1
010
141
010

8/1

Nonuniform Postifiltering
10

 Increase sampling only in specific areas
 Only where it is necessary
 Where alias may occur

 Intensity
 Weighted average

 Smaller subpixel has
 a smaller weight

4
1

4
1

4
1 16

1
16
1

16
1

16
1

Prefiltering
11

 Treat pixels as having area
 Lines have finite width
 Compute intensity based on the covered area
 Multiple objects

 Solve visibility

 Line representation
 quadrilateral

Prefiltering Simplification
12

 Computing area is expensive
 Precompute only specific positions of object and

pixels
 Find the most suitable case from the precomputed cases

Multisampling (MSAA)
13

 Used in today graphic cards
 Each pixel is sampled multiple times (2-16)
 Each pass is slightly moved

 Less than 1 pixel

 Final intensity is acquired by averaging all samples
 Compute only on edges

Coverage Sample Antialiasing (CSAA)
14

 Sample only coverage and do not sample color

Visible Surface Determination 15

Visible Surface Determination
16

 Determine surface patches that will be visible from
a given viewpoint

 Hidden surface removal
 Used in the past

 Three types of algorithms:
 Object precision (space)
 Image precision (space)
 List priority

Object Precision Algorithms
17

for each object O do

 begin

 find the part A of O that is visible;
 display A;
 end

Image Precision Algorithms
18

for each pixel P on the screen do
 begin
 determine the visible object O pierced
 by ray R;
 (R- ray from the viewer through the pixel P)
 if there is such O
 then display the pixels in the color of O
 else display the pixel in the background

 color
 end

Comparison
19

 Object precision
 Computes all visible parts
 Problems with alias
 Complexity is based on the number of objects
 In early days of CG

 Image precision
 Determines visibility in sampled number of directions
 Complexity is based on the resolution

 List priority
 Between image space and object space
 Most of the algorithms

Painter’s Algorithm
20

 Faces of the scene are listed back to front
 face A is in front of face B = B will not obscure A in

any way
 Draw the faces from back to front

 Modification

 Draw from front to back
 Store mask of drawn points
 More efficient (less writing into frame-buffer)

Newel-Newel-Sancha
21

 Method for sorting faces
 Uses painter’s algorithm to draw faces
 Sometimes referred as painters algorithm
 Computes ordering on the fly
 One of earliest list priority algorithms

Newel-Newel-Sancha
22

 Initial ordering based on the farthest z-coordinate
 Start with the last polygon P
 Find set of lines Q={Q1,..,Qn}

 (Minimum z-value of P) > (maximum z-value of Qi)
 No overlap in z direction

 If a line is not in Q it is correctly sorted with respect
to P

Newel-Newel-Sancha - Test
23

 Perform tests to sort P and lines in Q

 1. Can one separate P and Qs in x?
 2. Can one separate P and Qs in y?
 3. Is P on the farther side of Qs?
 4. Are Qs on the near side of P?
 5. Do P and Qs project to disjoint set?

Test 1,2
24

 Overlap of xy envelopes

separable in y direction non-separable in x nor in y direction

Test 3 and 4
25

Test 3 Test 4

Test 5
26

overlapping xy envelopes but disjoint polygons

Newel-Newel-Sancha - Test
27

 If P and Qs do not pass all tests swap P with one of Q
 If cyclical overlap occurs cut one of polygons

 Tests are ordered from simple to complicated
 Simple are performed more often

Schumacker List Priority Algorithm
28

 Make the back to front sort view independent
 Polygon with lower priority will never obscure

polygon with higher priority
 Dividing scene into prioritizable clusters

BSP Algorithm
29

 Exploit idea of separating plane
 No polygon on the viewpoint side of the plane can

be obstructed by a polygon from the other side

 Two parts
 Converting polygon list into BSP tree
 Traversal algorithm for back to front ordering of

polygons

Building BSP Tree
30

 Select any polygon and place it at the root
 Test each remaining polygon

 Lies on the same side as viewpoint – insert in the left
 (front) subtree

 Lies on the opposite side as viewpoint – insert in the right
 (back) subtree

 Lies on both sides – divide the polygon along the plane
 and put each part in he appropriate tree

 Repeat the procedure recursively for the two subtrees

BSP Tree – Example
31

Avoiding Large Trees
32

 Use heuristics
 Select the polygon in the root of the subtree

 Cuts the fewest polygons

 Choose the best from a few chosen at random

BSP Tree Traversal
33

 If the viewpoint is in the front subtree
 1. draw back subtree
 2. draw front subtree

 If the viewpoint is in the back subtree
 1. draw front subtree
 2. draw back subtree

Representing Polygons
34

BSP Tree – Conclusion
35

 Slow building and fast traversal
 Ordering is independent from the viewpoint

 Possible precomputation

 Efficient for static scenes
 Use

 Flight simulators
 Computer games (e.g. Doom)

Warnock’s Algorithm
36

 Image space algorithm
 Find rectangular regions (windows) of the same

intensity
 Recursively subdivide window until it has the same

intensity

Warnock’s Algorithm
37

 Initialize list of windows L by adding the entire
screen

 For each window W in L look for the following
trivial cases:
 1. all polygons are disjoint from W – draw W in the

background color
 2. one surrounding polygon in front of all other

polygons intersecting the window is found – draw W in
the color of the polygon

 3. only one polygon Intersects W

Warnock’s Algorithm
38

 3. only one polygon intersects W
 Draw intersection in the color of P and the rest in color of W
 3 subcases: P is contained in W, P surrounds W, P and W

have nontrivial intersection

 None of the 3 cases occurred
 Divide the window into 4 equal windows and add them to

the list L
 Repeat until windows get to the size of a pixel
 At that point check which polygon is in front of the others

Warnock’s Algorithm – Tests
39

 Is P disjoint from the window?
 Does P surround a window?
 Does P partially meet a window?
 Does P fall inside a window?
 Is P in front of other polygons?

Warnock’s Algorithm – Tests
40

 Is P disjoint from the window?
 Bounding box

 Does P surround a window?
 Check if window vertices are inside P
 If not check if P is surrounded by W (partialy meet aor

fall inside)

 Is P in front of other polygons?
 Involves depth caculations

Is P in Front of Other Polygons?
41

 P and Q partially meet window W
 Test whether P is in front of Q

 Only if P is surrounding polygon

 The depth of the plane of P is less than the depth of
the plane of Q in all corners of the window
 Sufficient but not necessary condition
 Subdivide if the test fails

Face in Front of other Faces
42

Z-buffer Algorithm
43

 Image based algorithm
 Record depth information for each pixel
 Z-buffer

 Two dimensional array of the same size as frame
buffer

 Store depth as real values

 Scan convert in frame-buffer and in Z-buffer

Z-buffer Algorithm
44

initialize FRAMEBUFFER to the background color
Initialize DEPTH to

for each face F do
 for each point p of F do
 if p project to FRAMEBUFFER[i,j] then
 if Depth(p) < DEPTH[i,j] then
 begin
 FRAMEBUFFER[i,j] = color of F at p
 DEPTH[i,j] = Depth(p)
 end

∞

Scan Line Approach to Z-buffer
45

 Z-buffer takes a lot of memory
 Compute if line separately
 Use array as long as scan line
 1. y sort to limit attention to the edges or faces

intersecting the scan line
 Use AEL and coherence of edges as by scan conversion

 2. x sort
 Divide scan line into spans

 3. Z depth search
 Process each span of the scan line

Divide Scan Line into Spans
46

 Segments can be unambiguously ordered within a
span

 Different
 approaches

Z-buffer Conclusion
47

 Advantages
 Simple algorithm
 Easy to implement

 Disadvantages
 Memory consuming

 Suitable for scenes with many polygons
 Used in today graphic cards

Z-buffer Comparison
48

 Z-buffer
 For each polygon
 For each y

 For each x

 Z-buffer with scan line
 For each y
 For each polygon

 For each x

 Ray casting
 For each y
 For each x

 For each polygon

Octree Algorithm
49

 Visualization of volume data
 Draw octants in sequence dependent on the viewing

direction
 No voxel in the list will be obscured
 by a voxel earlier in the list
 Viewer in the 1st octant
 looking toward the origin:
 8, 7, 4, 6, 5, 2, 3, 1
 (multiple possibilities)

Questions ??? 50

	Lesson 9
	Alias and Antialiasing
	Alias
	Nyquist Frequency
	Antialiasing
	Antialiasing Techniques
	Postfiltering
	Postfiltering – Straight Line Segments
	Postfiltering – Pixel Weighting Mask
	Nonuniform Postifiltering
	Prefiltering
	Prefiltering Simplification
	Multisampling (MSAA)
	Coverage Sample Antialiasing (CSAA)
	Visible Surface Determination
	Visible Surface Determination
	Object Precision Algorithms
	Image Precision Algorithms
	Comparison
	Painter’s Algorithm
	Newel-Newel-Sancha
	Newel-Newel-Sancha
	Newel-Newel-Sancha - Test
	Test 1,2
	Test 3 and 4
	Test 5
	Newel-Newel-Sancha - Test
	Schumacker List Priority Algorithm
	BSP Algorithm
	Building BSP Tree
	BSP Tree – Example
	Avoiding Large Trees
	BSP Tree Traversal
	Representing Polygons
	BSP Tree – Conclusion
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm – Tests
	Warnock’s Algorithm – Tests
	Is P in Front of Other Polygons?
	Face in Front of other Faces
	Z-buffer Algorithm
	Z-buffer Algorithm
	Scan Line Approach to Z-buffer
	Divide Scan Line into Spans
	Z-buffer Conclusion
	Z-buffer Comparison
	Octree Algorithm
	Questions ???

