- il ll — ll li

- Alias and Antialiasing

Alias

Rasterization algorithms produce stairstep, jagged
appearance

Distortion due to low-frequency sampling

To avoid alias specific frequency of sampling has to
be achieved

NV =N

example of insufficient sampling

Nyquist Frequency

Minimal sampling frequency to avoid losing
information

Nyquist sampling frequency:
fS = 2 fmax
f . highest frequency occurring in the object

Nyquist sampling interval:

Antialiasing

Represent continuous object accurately needs
arbitrary small sampling intervals

We have limited resolution

Solution: antialiasing
Modify pixel intensity along the boundary

More than two intensities needed

Antialiasing Techniques
N

1 Postfiltering
o Sampling at higher rate
0 Prefiltering

o Treats pixels as having area

Postfiltering

Sample at higher frequency
Oversample the same amount in each direction
Each pixel is divided into several subpixels

Filtering: large resolution to small resolution

Postfiltering — Straight Line Segments

Count of subpixels along the line
@ subpixels gives 3 intensity levels above zero

Increasing resolution increases intensity number of
levels

yd

s

Postfiltering — Pixel Weighting Mask
o

1 Subpixels have the same weight
Supersampling

0 Subpixels have different weights

0 1 0 (1 2 1)

1/81 4 1 1/16| 2 4 2

0 1 0 1l 2 1)

Nonuniform Postifiltering

Increase sampling only in specific areas

Only where it is necessary

Where alias may occur

Intensity
Weighted average l
Smaller subpixel has 4
a smaller weight
1
4

Prefiltering

Treat pixels as having area
Lines have finite width

Compute intensity based on the covered area

Multiple objects

Solve visibility

Line representation

quadrilateral

Prefiltering Simplification
e

1 Computing area is expensive

1 Precompute only specific positions of object and
pixels

o1 Find the most suitable case from the precomputed cases

Multisampling (MSAA)

Used in today graphic cards
Each pixel is sampled multiple times (2-16)
Each pass is slightly moved

Less than 1 pixel
Final intensity is acquired by averaging all samples

Compute only on edges

Coverage Sample Antialiasing (CSAA)

Sample only coverage and do not sample color

4x MSAA

= Color Sample
Location
® = Coverage
Sample
Location ®

= Pixel

4 coverage samples 8 coverage samples 16 coverage samples
. F - =

- Visible Surface Determination

Visible Surface Determination

Determine surface patches that will be visible from
a given viewpoint
Hidden surface removal
Used in the past
Three types of algorithms:
Obiject precision (space)
Image precision (space)

List priority

Obiject Precision Algorithms
I [——
for each object O do
begin
find the part A of O that is visible;
display A;

end

Image Precision Algorithms

for each pixel P on the screen do
begin
determine the visible object O pierced
by ray R;
(R- ray from the viewer through the pixel P)
if there is such O
then display the pixels in the color of O

else display the pixel in the background
color

end

Comparison

Object precision
Computes all visible parts
Problems with alias
Complexity is based on the number of objects
In early days of CG
Image precision
Determines visibility in sampled number of directions
Complexity is based on the resolution
List priority
Between image space and obiject space

Most of the algorithms

Painter’s Algorithm

Faces of the scene are listed back to front

face A is in front of face B = B will not obscure A in
any way

Draw the faces from back to front

Modification
Draw from front to back
Store mask of drawn points

More efficient (less writing into frame-buffer)

Newel-Newel-Sancha

Method for sorting faces

Uses painter’s algorithm to draw faces
Sometimes referred as painters algorithm
Computes ordering on the fly

One of earliest list priority algorithms

Newel-Newel-Sancha

Initial ordering based on the farthest z-coordinate

Start with the last polygon P

Find set of lines Q={Q;,...Q,}
(Minimum z-value of P) > (maximum z-value of Q)
No overlap in z direction

If a line is not in Q it is correctly sorted with respect
to P

Newel-Newel-Sancha - Test

Perform tests to sort P and lines in Q

1. Can one separate P and Qs in x2
2. Can one separate P and Qs in y?
3. Is P on the farther side of Qs?

4. Are Qs on the near side of P?

5. Do P and Qs project to disjoint set?

Test 1,2

1 Overlap of xy envelopes

separable in y direction non-separable in x nor in y direction

Test 3 and 4

\/

7Z A

P

e

Test 5

overlapping xy envelopes but disjoint polygons

Newel-Newel-Sancha - Test

If P and Qs do not pass all tests swap P with one of Q

If cyclical overlap occurs cut one of polygons

-
Tests are ordered from simple to complicated

Simple are performed more often

Schumacker List Priority Algorithm

Make the back to front sort view independent

Polygon with lower priority will never obscure
polygon with higher priority

Dividing scene into prioritizable clusters

""""""""""

1 i IR

BSP Algorithm

Exploit idea of separating plane

No polygon on the viewpoint side of the plane can
be obstructed by a polygon from the other side

Two parts
Converting polygon list into BSP tree

Traversal algorithm for back to front ordering of
polygons

Building BSP Tree

Select any polygon and place it at the root

Test each remaining polygon

Lies on the same side as viewpoint — insert in the left
(front) subtree

Lies on the opposite side as viewpoint — insert in the right
(back) subtree

Lies on both sides — divide the polygon along the plane
and put each part in he appropriate tree

Repeat the procedure recursively for the two subtrees

BSP Tree — Example

fron@ack o
(2) (3

2 3
4a 4b

5 ONOC

Avoiding Large Trees

Use heuristics

Select the polygon in the root of the subtree

Cuts the fewest polygons

Choose the best from a few chosen at random

BSP Tree Traversal

If the viewpoint is in the front subtree
1. draw back subtree
2. draw front subtree

If the viewpoint is in the back subtree

1. draw front subtree

2. draw back subtree

Representing Polygons

BSP Tree — Conclusion

Slow building and fast traversal

Ordering is independent from the viewpoint
Possible precomputation

Efficient for static scenes

Use

Flight simulators

Computer games (e.g. Doom)

Woarnock’s Algorithm

Image space algorithm

Find rectangular regions (windows) of the same
intensity

Recursively subdivide window until it has the same

intensity

A
\

/
AN

Woarnock’s Algorithm

Initialize list of windows L by adding the entire
screen

For each window W in L look for the following
trivial cases:
1. all polygons are disjoint from W — draw W in the
background color

2. one surrounding polygon in front of all other
polygons intersecting the window is found — draw W in

the color of the polygon
3. only one polygon Intersects W

Woarnock’s Algorithm

3. only one polygon intersects W
Draw intersection in the color of P and the rest in color of W
3 subcases: P is contained in W, P surrounds W, P and W
have nontrivial intersection

None of the 3 cases occurred
Divide the window into 4 equal windows and add them to
the list L

Repeat until windows get to the size of a pixel

At that point check which polygon is in front of the others

Woarnock’s Algorithm — Tests

Is P disjoint from the window?

Does
Does

Does

P surround a window?

P partially meet a window?

P fall inside a window?

Is P in front of other polygons?

Woarnock’s Algorithm — Tests

Is P disjoint from the window?
Bounding box
Does P surround a window?¢

Check if window vertices are inside P

If not check if P is surrounded by W (partialy meet aor
fall inside)

Is P in front of other polygons?

Involves depth caculations

Is P in Front of Other Polygons®

P and Q partially meet window W

Test whether P is in front of Q
Only if P is surrounding polygon

The depth of the plane of P is less than the depth of
the plane of Q in all corners of the window

Sufficient but not necessary condition

Subdivide if the test fails

Face in Front of other Faces
Vo

L-buffer Algorithm

Image based algorithm

Record depth information for each pixel
Z-buffer

Two dimensional array of the same size as frame
buffer

Store depth as real values

Scan convert in frame-buffer and in Z-buffer

L-buffer Algorithm

initialize FRAMEBUFFER to the background color
Initialize DEPTH to o0

for each face F do
for each point p of F do
if p project to FRAMEBUFFER[i,j] then

if Depth(p) < DEPTH[i,i] then

begin
FRAMEBUFFER(i,j] = color of F at p
DEPTHYIi,j] = Depth(p)

end

Scan Line Approach to Z-buffer

Z-buffer takes a lot of memory
Compute if line separately
Use array as long as scan line

1.y sort to limit attention to the edges or faces
intersecting the scan line

Use AEL and coherence of edges as by scan conversion

2. X sort

Divide scan line into spans

3. Z depth search

Process each span of the scan line

Divide Scan Line into Spans

Segments can be unambiguously ordered within a

span A
Z

Different —
approaches \\ |

Z-buffer Conclusion

Advantages
Simple algorithm
Easy to implement

Disadvantages

Memory consuming

Suitable for scenes with many polygons

Used in today graphic cards

L-buffer Comparison

Z-buffer

For each polygon

For each y
For each x

Z-buffer with scan line

For each y

For each polygon
For each x

Ray casting

For each y

For each x

For each polygon

Octree Algorithm

Visualization of volume data

Draw octants in sequence dependent on the viewing
direction z

No voxel in the list will be obscured
by a voxel earlier in the list
Viewer in the 15" octant
looking toward the origin:
8,7,4,6,5,2,3,1

(multiple possibilities)

PaaEl s

x

- Questions 222

	Lesson 9
	Alias and Antialiasing
	Alias
	Nyquist Frequency
	Antialiasing
	Antialiasing Techniques
	Postfiltering
	Postfiltering – Straight Line Segments
	Postfiltering – Pixel Weighting Mask
	Nonuniform Postifiltering
	Prefiltering
	Prefiltering Simplification
	Multisampling (MSAA)
	Coverage Sample Antialiasing (CSAA)
	Visible Surface Determination
	Visible Surface Determination
	Object Precision Algorithms
	Image Precision Algorithms
	Comparison
	Painter’s Algorithm
	Newel-Newel-Sancha
	Newel-Newel-Sancha
	Newel-Newel-Sancha - Test
	Test 1,2
	Test 3 and 4
	Test 5
	Newel-Newel-Sancha - Test
	Schumacker List Priority Algorithm
	BSP Algorithm
	Building BSP Tree
	BSP Tree – Example
	Avoiding Large Trees
	BSP Tree Traversal
	Representing Polygons
	BSP Tree – Conclusion
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm – Tests
	Warnock’s Algorithm – Tests
	Is P in Front of Other Polygons?
	Face in Front of other Faces
	Z-buffer Algorithm
	Z-buffer Algorithm
	Scan Line Approach to Z-buffer
	Divide Scan Line into Spans
	Z-buffer Conclusion
	Z-buffer Comparison
	Octree Algorithm
	Questions ???

