
LESSON 9 Computer Graphics 1

Alias and Antialiasing 2

Alias
3

 Rasterization algorithms produce stairstep, jagged
appearance

 Distortion due to low-frequency sampling
 To avoid alias specific frequency of sampling has to

be achieved

example of insufficient sampling

Nyquist Frequency
4

 Minimal sampling frequency to avoid losing
information

 Nyquist sampling frequency:

 highest frequency occurring in the object
 Nyquist sampling interval:

max2 ffs =

maxf

max

1
2

2

f
x

x
x

cycle

cycle
s

=∆

∆
=∆

Antialiasing
5

 Represent continuous object accurately needs
arbitrary small sampling intervals

 We have limited resolution
 Solution: antialiasing

 Modify pixel intensity along the boundary
 More than two intensities needed

Antialiasing Techniques
6

 Postfiltering
 Sampling at higher rate

 Prefiltering
 Treats pixels as having area

Postfiltering
7

 Sample at higher frequency
 Oversample the same amount in each direction
 Each pixel is divided into several subpixels
 Filtering: large resolution to small resolution

Postfiltering – Straight Line Segments
8

 Count of subpixels along the line
 9 subpixels gives 3 intensity levels above zero
 Increasing resolution increases intensity number of

levels

Postfiltering – Pixel Weighting Mask
9

 Subpixels have the same weight
 Supersampling

 Subpixels have different weights

121
242
121

16/1
010
141
010

8/1

Nonuniform Postifiltering
10

 Increase sampling only in specific areas
 Only where it is necessary
 Where alias may occur

 Intensity
 Weighted average

 Smaller subpixel has
 a smaller weight

4
1

4
1

4
1 16

1
16
1

16
1

16
1

Prefiltering
11

 Treat pixels as having area
 Lines have finite width
 Compute intensity based on the covered area
 Multiple objects

 Solve visibility

 Line representation
 quadrilateral

Prefiltering Simplification
12

 Computing area is expensive
 Precompute only specific positions of object and

pixels
 Find the most suitable case from the precomputed cases

Multisampling (MSAA)
13

 Used in today graphic cards
 Each pixel is sampled multiple times (2-16)
 Each pass is slightly moved

 Less than 1 pixel

 Final intensity is acquired by averaging all samples
 Compute only on edges

Coverage Sample Antialiasing (CSAA)
14

 Sample only coverage and do not sample color

Visible Surface Determination 15

Visible Surface Determination
16

 Determine surface patches that will be visible from
a given viewpoint

 Hidden surface removal
 Used in the past

 Three types of algorithms:
 Object precision (space)
 Image precision (space)
 List priority

Object Precision Algorithms
17

for each object O do

 begin

 find the part A of O that is visible;
 display A;
 end

Image Precision Algorithms
18

for each pixel P on the screen do
 begin
 determine the visible object O pierced
 by ray R;
 (R- ray from the viewer through the pixel P)
 if there is such O
 then display the pixels in the color of O
 else display the pixel in the background

 color
 end

Comparison
19

 Object precision
 Computes all visible parts
 Problems with alias
 Complexity is based on the number of objects
 In early days of CG

 Image precision
 Determines visibility in sampled number of directions
 Complexity is based on the resolution

 List priority
 Between image space and object space
 Most of the algorithms

Painter’s Algorithm
20

 Faces of the scene are listed back to front
 face A is in front of face B = B will not obscure A in

any way
 Draw the faces from back to front

 Modification

 Draw from front to back
 Store mask of drawn points
 More efficient (less writing into frame-buffer)

Newel-Newel-Sancha
21

 Method for sorting faces
 Uses painter’s algorithm to draw faces
 Sometimes referred as painters algorithm
 Computes ordering on the fly
 One of earliest list priority algorithms

Newel-Newel-Sancha
22

 Initial ordering based on the farthest z-coordinate
 Start with the last polygon P
 Find set of lines Q={Q1,..,Qn}

 (Minimum z-value of P) > (maximum z-value of Qi)
 No overlap in z direction

 If a line is not in Q it is correctly sorted with respect
to P

Newel-Newel-Sancha - Test
23

 Perform tests to sort P and lines in Q

 1. Can one separate P and Qs in x?
 2. Can one separate P and Qs in y?
 3. Is P on the farther side of Qs?
 4. Are Qs on the near side of P?
 5. Do P and Qs project to disjoint set?

Test 1,2
24

 Overlap of xy envelopes

separable in y direction non-separable in x nor in y direction

Test 3 and 4
25

Test 3 Test 4

Test 5
26

overlapping xy envelopes but disjoint polygons

Newel-Newel-Sancha - Test
27

 If P and Qs do not pass all tests swap P with one of Q
 If cyclical overlap occurs cut one of polygons

 Tests are ordered from simple to complicated
 Simple are performed more often

Schumacker List Priority Algorithm
28

 Make the back to front sort view independent
 Polygon with lower priority will never obscure

polygon with higher priority
 Dividing scene into prioritizable clusters

BSP Algorithm
29

 Exploit idea of separating plane
 No polygon on the viewpoint side of the plane can

be obstructed by a polygon from the other side

 Two parts
 Converting polygon list into BSP tree
 Traversal algorithm for back to front ordering of

polygons

Building BSP Tree
30

 Select any polygon and place it at the root
 Test each remaining polygon

 Lies on the same side as viewpoint – insert in the left
 (front) subtree

 Lies on the opposite side as viewpoint – insert in the right
 (back) subtree

 Lies on both sides – divide the polygon along the plane
 and put each part in he appropriate tree

 Repeat the procedure recursively for the two subtrees

BSP Tree – Example
31

Avoiding Large Trees
32

 Use heuristics
 Select the polygon in the root of the subtree

 Cuts the fewest polygons

 Choose the best from a few chosen at random

BSP Tree Traversal
33

 If the viewpoint is in the front subtree
 1. draw back subtree
 2. draw front subtree

 If the viewpoint is in the back subtree
 1. draw front subtree
 2. draw back subtree

Representing Polygons
34

BSP Tree – Conclusion
35

 Slow building and fast traversal
 Ordering is independent from the viewpoint

 Possible precomputation

 Efficient for static scenes
 Use

 Flight simulators
 Computer games (e.g. Doom)

Warnock’s Algorithm
36

 Image space algorithm
 Find rectangular regions (windows) of the same

intensity
 Recursively subdivide window until it has the same

intensity

Warnock’s Algorithm
37

 Initialize list of windows L by adding the entire
screen

 For each window W in L look for the following
trivial cases:
 1. all polygons are disjoint from W – draw W in the

background color
 2. one surrounding polygon in front of all other

polygons intersecting the window is found – draw W in
the color of the polygon

 3. only one polygon Intersects W

Warnock’s Algorithm
38

 3. only one polygon intersects W
 Draw intersection in the color of P and the rest in color of W
 3 subcases: P is contained in W, P surrounds W, P and W

have nontrivial intersection

 None of the 3 cases occurred
 Divide the window into 4 equal windows and add them to

the list L
 Repeat until windows get to the size of a pixel
 At that point check which polygon is in front of the others

Warnock’s Algorithm – Tests
39

 Is P disjoint from the window?
 Does P surround a window?
 Does P partially meet a window?
 Does P fall inside a window?
 Is P in front of other polygons?

Warnock’s Algorithm – Tests
40

 Is P disjoint from the window?
 Bounding box

 Does P surround a window?
 Check if window vertices are inside P
 If not check if P is surrounded by W (partialy meet aor

fall inside)

 Is P in front of other polygons?
 Involves depth caculations

Is P in Front of Other Polygons?
41

 P and Q partially meet window W
 Test whether P is in front of Q

 Only if P is surrounding polygon

 The depth of the plane of P is less than the depth of
the plane of Q in all corners of the window
 Sufficient but not necessary condition
 Subdivide if the test fails

Face in Front of other Faces
42

Z-buffer Algorithm
43

 Image based algorithm
 Record depth information for each pixel
 Z-buffer

 Two dimensional array of the same size as frame
buffer

 Store depth as real values

 Scan convert in frame-buffer and in Z-buffer

Z-buffer Algorithm
44

initialize FRAMEBUFFER to the background color
Initialize DEPTH to

for each face F do
 for each point p of F do
 if p project to FRAMEBUFFER[i,j] then
 if Depth(p) < DEPTH[i,j] then
 begin
 FRAMEBUFFER[i,j] = color of F at p
 DEPTH[i,j] = Depth(p)
 end

∞

Scan Line Approach to Z-buffer
45

 Z-buffer takes a lot of memory
 Compute if line separately
 Use array as long as scan line
 1. y sort to limit attention to the edges or faces

intersecting the scan line
 Use AEL and coherence of edges as by scan conversion

 2. x sort
 Divide scan line into spans

 3. Z depth search
 Process each span of the scan line

Divide Scan Line into Spans
46

 Segments can be unambiguously ordered within a
span

 Different
 approaches

Z-buffer Conclusion
47

 Advantages
 Simple algorithm
 Easy to implement

 Disadvantages
 Memory consuming

 Suitable for scenes with many polygons
 Used in today graphic cards

Z-buffer Comparison
48

 Z-buffer
 For each polygon
 For each y

 For each x

 Z-buffer with scan line
 For each y
 For each polygon

 For each x

 Ray casting
 For each y
 For each x

 For each polygon

Octree Algorithm
49

 Visualization of volume data
 Draw octants in sequence dependent on the viewing

direction
 No voxel in the list will be obscured
 by a voxel earlier in the list
 Viewer in the 1st octant
 looking toward the origin:
 8, 7, 4, 6, 5, 2, 3, 1
 (multiple possibilities)

Questions ??? 50

	Lesson 9
	Alias and Antialiasing
	Alias
	Nyquist Frequency
	Antialiasing
	Antialiasing Techniques
	Postfiltering
	Postfiltering – Straight Line Segments
	Postfiltering – Pixel Weighting Mask
	Nonuniform Postifiltering
	Prefiltering
	Prefiltering Simplification
	Multisampling (MSAA)
	Coverage Sample Antialiasing (CSAA)
	Visible Surface Determination
	Visible Surface Determination
	Object Precision Algorithms
	Image Precision Algorithms
	Comparison
	Painter’s Algorithm
	Newel-Newel-Sancha
	Newel-Newel-Sancha
	Newel-Newel-Sancha - Test
	Test 1,2
	Test 3 and 4
	Test 5
	Newel-Newel-Sancha - Test
	Schumacker List Priority Algorithm
	BSP Algorithm
	Building BSP Tree
	BSP Tree – Example
	Avoiding Large Trees
	BSP Tree Traversal
	Representing Polygons
	BSP Tree – Conclusion
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm – Tests
	Warnock’s Algorithm – Tests
	Is P in Front of Other Polygons?
	Face in Front of other Faces
	Z-buffer Algorithm
	Z-buffer Algorithm
	Scan Line Approach to Z-buffer
	Divide Scan Line into Spans
	Z-buffer Conclusion
	Z-buffer Comparison
	Octree Algorithm
	Questions ???

