
LESSON 10 Computer Graphics 1

Drawing Wireframe Models 2

Drawing Wireframe Models
3

 Apply visibility test to edges
 Discard or draw differently the occluded edges
 Exploit previous algorithms

 Draw boundary and delete interior

 Better solution
 Front edges (2 front faces)
 Back edges (2 back faces)
 Contour edges (back and front face)

Drawing Wireframe Models
4

 Back edges
 Invisible, discard

 Front edges and contour edges
 Potentially visible
 Detect and draw only visible parts

 Roberts algorithm
 Clip potentially visible edges by faces

 Apell algorithm
 Clip potentially visible edges by contour edges

Backface culling, view frustum culling, occlusion
culling

Visibility Culling 5

Visibility Culling
6

 Culling – removing triangles from computation
 Visibility culling – culling triangles for the purpose

of rendering
 Remove unseen triangles from computation
 Less triangles = faster computation
 Fastest polygon to render is the one that is never

sent to renderer

Visibility Culling
7

 Exact visible set (EVS)
 All primitives that are partially or fully visible
 Ideal output of culling

 Potentially visible set (PVS)
 Primitives that might be visible

 Conservative culling

 Approximate (aggressive) culling

PVSEVS ⊆

PVSEVS ⊄

Visibility Culling
8

 Conservative culling
 Always generate correct images

 Approximate culling
 Generates incorrect images
 Minimizing the error
 Fast computation

Backface Culling
9

 Every polygon has a front and back face
 Discard backfacing polygons
 Application: closed surfaces
 Determine the angle between viewing direction and

polygon normal
 Angle < 90 degrees – discard polygon

 Angle > 90 degrees – reserve polygon

0>⋅vn 

0<⋅vn 

Backface Culling
10

 Orientation specified by the order of vertices

 Compute normal: () ()1312 vvvvn −×−=

Backface Culling – Conclusion
11

 Simple algorithm
 Can reduce many polygons
 Suitable for scenes were a lot backfacing polygons

appear
 Very common situation

 Ineffective for terrains or rooms
 Only few backfacing polygons

 Standard part of graphical APIs (OpenGL, DirectX)
 Need to specify faces which should not be culled

View Frustum Culling
12

 Draw only objects in view volume
 Clip against cut pyramid
 Clip all objects against clipping edges - O(n)
 Hierarchical culling

 Hierarchically subdivide space (e. g. Octree, BVH)
 O (log n)

 Test only bounding volumes
 Discard if entirely outside view frustum

View Frustum Culling
13

Detail Culling
14

 Sacrifice quality for speed
 Small detail contribute nothing or very little to the

rendered image
 Cull if area of object projection is below a threshold

 Usually a number of pixels

 Sometimes called screen-size culling
 Usually used by movement of the viewer

Occlusion Culling
15

 Back-face culling and view-frustum culling can not
reduce enough polygons for today games

 Solution: occlusion culling
 Remove occluded polygons

Portal Culling
16

 Suitable for architectural models
 Walls are often large occluders
 Portal

 door, window, …
 Connecting adjacent rooms

 View frustum culling through each portal
 Preprocessing

 Automated preprocessing Extremely difficult for
complex scene

 Currently done by hand

Portal Culling – Algorithm
17

 1. locate cell V where the viewer is positioned
 2. initialize 2D bounding box P to the rectangle of

the screen
 3. render the geometry of the cell V

 Use view frustum culling
 Frustum emanates from viewer and goes through P

Portal Culling – Algorithm
18

 4. recurse on portals of the cells neighboring V
 Project each visible portal of the current cell onto the

screen
 Find 2D axis-aligned BB of the projection
 Compute intersection of and the BB

 5. for each intersection
 Empty intersection – not visible, omit from processing
 Nonempty intersection – resurse to step 3
 V – neighboring cell
 P – intersection BB

Portal Culling - Example
19

Portals and Mirrors
20

David Luebke
Chris Georges

Portals and Mirrors
21

David Luebke
Chris Georges

Hierarchical Z-Buffering
22

 Scene in octree
 Z-buffer

 Image pyramid (Z-pyramid)
 Occlusion representation of the scene
 Each z-value represents the farthest z-value of the

window
 Overwrite z-value
 recursively

Hierarchical Z-Buffering
23

 Hierarchical culling of octree nodes
 Traverse in front-to-back order
 Compare the z-pyramid with the screen projection

 Z-pyramid cell encloses the octree cell
 Compare the smallest depth within the cell (znear)
 If znear is larger than the value in z-pyramid the cell is

occluded

 Continue recursively down the z-pyramid until
 Cell is found to be occluded
 Bottom level of the z-pyramid is reached – cell is visible

Hierarchical Z-Buffering
24

Graphical Pipeline (Revisited) 25

Graphical Pipeline
26

Modeling Coordinates
27

 Local coordinates
 Specific for every object
 Simplify modeling of object

 Make the representation easier

12

2

2

2

=+
b
y

a
x () () 12

2

2

2

=
−

+
−

b
yy

a
xx cc

World Coordinates
28

 Specify position of object
 User defines object with respect to this coordinates

Viewing Coordinates
29

 Camera coordinates
 Analogy to pinhole camera
 Specified by:

 Camera position (vector or view at point)
 Viewing direction
 View plane (distance from the camera)
 Upward vector

Viewing Coordinates – View Plane
30

 Viewing plane
 Perpendicular to the viewing vector
 Specified by the distance from the camera
 In front of the camera

Viewing Coordinates - Computation
31

 v – viewing direction
 w – upward vector
 It is difficult to define upward vector parallel to the

viewing plane
 Solution

 Project arbitrary vector onto the viewing plane

()nnwww
nwc

nncnwnw
ncww

u

u

u









⋅−=
⋅−=

⋅+⋅=⋅=
+=

0 1==⋅ nnn 

Viewing Coordinates - Computation
32

 Origin p = camera position
 Upward vector

 User specified
 Projection of a vector from the base

 Coordinate system (u1, u2 , u3)

()

231

332

3

 ,

uuu

uuwww
w
wu

v
vu

u
u

u

×=

⋅−==

=

Viewing Transformation
33

 World coordinates to viewing coordinates
 ()() ()Mpquuupqq TTT −=−→ 321
















=

332313

322212

312111

uuu
uuu
uuu

M
()
()
()3332313

2322212

1312111

,,
,,
,,

uuuu
uuuu
uuuu

=
=
=

Clipping
34

 View frustum clipping
 Far and near clipping planes

 Limiting visibility
 Limiting number of triangles

Projection Coordinates
35

 Visible space = unit cube
 Simple to clip against a unit cube

 Simple equations of clipping planes

 Clipping algorithm is independent of boundary
dimensions

 Clipping in homogenous coordinates

Projective Transformation
36

 See lesson 4
 Transform clipped frustum to cube

 Scale, translate, Tpersp



















=

1000
/1100
0010
0001

d
Tpersp

Projective Transformation
37

() ()

()

() 







−=






 +−=+−









+−−=






 −−−=−−

−=−

1,,0,,,0,1,,0,

1,,0,,,0,1,,0,

0,,0,01,,0,0

2

2

ax
dd

a
d

ax
d

d
axaxdxTaxdx

ax
dd

a
d

ax
d

d
axaxdxTaxdx

dTd

persp

persp

persp

Workstation Transformation
38

 From homogenous to Euclidian
 Parallel projection along z axis
 Scale and transform in order to map to viewport

Graphical Pipeline - Conclusion
39

 Lighting and shadows
 Global coordinates

 Clipping
 Projection coordinates

 Visibility
 Depends on algorithm
 Image space – workstation coordinates or projection

coordinates
 Object space – viewing coordinates, world coordinates

2D Graphical Pipeline
40

 Similar to 3D pipeline
 Viewing transformation

 Make window axis aligned
 Projection coordinates (normalized coordinates)

 Window is square with side of length = 1
 Separate modeling from displaying

 Clipping
 Viewing coordinates
 World coordinates – join viewing and projection

(normalization) coordinates

Questions ??? 41

	Lesson 10
	Drawing Wireframe Models
	Drawing Wireframe Models
	Drawing Wireframe Models
	Visibility Culling
	Visibility Culling
	Visibility Culling
	Visibility Culling
	Backface Culling
	Backface Culling
	Backface Culling – Conclusion
	View Frustum Culling
	View Frustum Culling
	Detail Culling
	Occlusion Culling
	Portal Culling
	Portal Culling – Algorithm
	Portal Culling – Algorithm
	Portal Culling - Example
	Portals and Mirrors
	Portals and Mirrors
	Hierarchical Z-Buffering
	Hierarchical Z-Buffering
	Hierarchical Z-Buffering
	Graphical Pipeline (Revisited)
	Graphical Pipeline
	Modeling Coordinates
	World Coordinates
	Viewing Coordinates
	Viewing Coordinates – View Plane
	Viewing Coordinates - Computation
	Viewing Coordinates - Computation
	Viewing Transformation
	Clipping
	Projection Coordinates
	Projective Transformation
	Projective Transformation
	Workstation Transformation
	Graphical Pipeline - Conclusion
	2D Graphical Pipeline
	Questions ???

