
LESSON 10 Computer Graphics 1 



Drawing Wireframe Models 2 



Drawing Wireframe Models 
3 

 Apply visibility test to edges 
 Discard or draw differently the occluded edges 
 Exploit previous algorithms 

 Draw boundary and delete interior 

 Better solution 
 Front edges (2 front faces) 
 Back edges (2 back faces) 
 Contour edges (back and front face) 



Drawing Wireframe Models 
4 

 Back edges 
 Invisible, discard 

 Front edges and contour edges 
 Potentially visible 
 Detect and draw only visible parts 

 Roberts algorithm 
 Clip potentially visible edges by faces 

 Apell algorithm 
 Clip potentially visible edges by contour edges 

 



Backface culling, view frustum culling, occlusion 
culling 

Visibility Culling 5 



Visibility Culling 
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 Culling – removing triangles from computation 
 Visibility culling – culling triangles for the purpose 

of rendering 
 Remove unseen triangles from computation 
 Less triangles = faster computation 
 Fastest polygon to render is the one that is never 

sent to renderer 
 



Visibility Culling 
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 Exact visible set (EVS) 
 All primitives that are partially or fully visible 
 Ideal output of culling 

 Potentially visible set (PVS) 
 Primitives that might be visible 

 Conservative culling 
 

 Approximate (aggressive) culling 
 

PVSEVS ⊆

PVSEVS ⊄



Visibility Culling 
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 Conservative culling 
 Always generate correct images 

 Approximate culling 
 Generates incorrect images 
 Minimizing the error 
 Fast computation 



Backface Culling 
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 Every polygon has a front and back face 
 Discard backfacing polygons 
 Application: closed surfaces 
 Determine the angle between viewing direction and 

polygon normal 
 Angle < 90 degrees – discard polygon 

 
 Angle > 90 degrees – reserve polygon 
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Backface Culling 
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 Orientation specified by the order of vertices 
 
 
 
 
 
 

 Compute normal: ( ) ( )1312 vvvvn −×−=



Backface Culling – Conclusion 
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 Simple algorithm 
 Can reduce many polygons 
 Suitable for scenes were a lot backfacing polygons 

appear 
 Very common situation 

 Ineffective for terrains or rooms 
 Only few backfacing polygons 

 Standard part of graphical APIs (OpenGL, DirectX) 
 Need to specify faces which should not be culled 



View Frustum Culling 
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 Draw only objects in view volume 
 Clip against cut pyramid 
 Clip all objects against clipping edges - O(n) 
 Hierarchical culling 

 Hierarchically subdivide space (e. g. Octree, BVH) 
 O (log n) 

 Test only bounding volumes 
 Discard if entirely outside view frustum 



View Frustum Culling 
13 



Detail Culling 
14 

 Sacrifice quality for speed 
 Small detail contribute nothing or very little to the 

rendered image 
 Cull if area of object projection is below a threshold 

 Usually a number of pixels 

 Sometimes called screen-size culling 
 Usually used by movement of the viewer 



Occlusion Culling 
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 Back-face culling and view-frustum culling can not 
reduce enough polygons for today games 

 Solution: occlusion culling 
 Remove occluded polygons 



Portal Culling 
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 Suitable for architectural models 
 Walls are often large occluders 
 Portal  

 door, window, … 
 Connecting adjacent rooms 

 View frustum culling through each portal 
 Preprocessing 

 Automated preprocessing Extremely difficult for 
complex scene 

 Currently done by hand 

 



Portal Culling – Algorithm 
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 1. locate cell V where the viewer is positioned 
 2. initialize 2D bounding box P to the rectangle of 

the screen 
 3. render the geometry of the cell V 

 Use view frustum culling 
 Frustum emanates from viewer and goes through P 



Portal Culling – Algorithm 
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 4. recurse on portals of the cells neighboring V 
 Project each visible portal of the current cell onto the 

screen 
 Find 2D axis-aligned BB of the projection 
 Compute intersection of and the BB 

 5. for each intersection 
 Empty intersection – not visible, omit from processing 
 Nonempty intersection – resurse to step 3 
 V – neighboring cell 
 P – intersection BB 

 



Portal Culling - Example 
19 



Portals and Mirrors 
20 

David Luebke 
Chris Georges 



Portals and Mirrors 
21 

David Luebke 
Chris Georges 



Hierarchical Z-Buffering 
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 Scene in octree 
 Z-buffer 

 Image pyramid (Z-pyramid) 
 Occlusion representation of the scene 
 Each z-value represents the farthest z-value of the 

window 
 Overwrite z-value  
 recursively 



Hierarchical Z-Buffering 
23 

 Hierarchical culling of octree nodes 
 Traverse in front-to-back order 
 Compare the z-pyramid with the screen projection 

 Z-pyramid cell encloses the octree cell 
 Compare the smallest depth within the cell (znear) 
 If znear is larger than the value in z-pyramid the cell is 

occluded 

 Continue recursively down the z-pyramid until  
 Cell is found to be occluded 
 Bottom level of the z-pyramid is reached – cell is visible 



Hierarchical Z-Buffering 
24 



Graphical Pipeline (Revisited) 25 



Graphical Pipeline 
26 



Modeling Coordinates 
27 

 Local coordinates 
 Specific for every object 
 Simplify modeling of object 

 Make the representation easier 
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World Coordinates 
28 

 Specify position of object 
 User defines object with respect to this coordinates 



Viewing Coordinates 
29 

 Camera coordinates 
 Analogy to pinhole camera 
 Specified by: 

 Camera position (vector or view at point) 
 Viewing direction 
 View plane (distance from the camera) 
 Upward vector 



Viewing Coordinates – View Plane 
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 Viewing plane 
 Perpendicular to the viewing vector 
 Specified by the distance from the camera 
 In front of the camera 



Viewing Coordinates - Computation 
31 

 v – viewing direction 
 w – upward vector 
 It is difficult to define upward vector parallel to the 

viewing plane 
 Solution 

 Project arbitrary vector onto the viewing plane 
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Viewing Coordinates - Computation 
32 

 Origin p = camera position 
 Upward vector 

 User specified 
 Projection of a vector from the base 

 Coordinate system (u1, u2 , u3) 
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Viewing Transformation 
33 

 World coordinates to viewing coordinates 
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Clipping 
34 

 View frustum clipping 
 Far and near clipping planes 

 Limiting visibility 
 Limiting number of triangles 



Projection Coordinates 
35 

 Visible space = unit cube 
 Simple to clip against a unit cube 

 Simple equations of clipping planes 

 Clipping algorithm is independent of boundary 
dimensions 

 Clipping in homogenous coordinates 



Projective Transformation 
36 

 See lesson 4 
 Transform clipped frustum to cube 

 Scale, translate, Tpersp 
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Projective Transformation 
37 
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Workstation Transformation 
38 

 From homogenous to Euclidian 
 Parallel projection along z axis 
 Scale and transform in order to map to viewport 



Graphical Pipeline - Conclusion 
39 

 Lighting and shadows 
 Global coordinates 

 Clipping 
 Projection coordinates 

 Visibility 
 Depends on algorithm 
 Image space – workstation coordinates or projection 

coordinates 
 Object space – viewing coordinates, world coordinates 



2D Graphical Pipeline 
40 

 Similar to 3D pipeline 
 Viewing transformation 

 Make window axis aligned 
 Projection coordinates (normalized coordinates) 

 Window is square with side of length = 1 
 Separate modeling from displaying 

 Clipping 
 Viewing coordinates 
 World coordinates – join viewing and projection 

(normalization) coordinates 



Questions ??? 41 
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