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MODELLING WITH THREE TYPES

OF COONS BODIES

R. Ďurikovič∗ and S. Czanner∗

Abstract

This article discusses the mathematical concepts of multivariate

parametric solids and their description by B-spline basis functions.

Parametric solids can model both the shape and unisotropic interior.

Three types of parametric solids, Coons body of types 0, 1, and 2,

are used to demonstrate the interior modelling often used as initial

or boundary conditions in numerical simulation. Multiple parametric

solid elements can be joined together to form a complicated shape.

Continuity between elements can be defined as in B-spline modelling.

The proposed methodology and modelling technique is applied to a

metamorphosis of two given 3-D shapes.
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1. Introduction

Many unambiguous solid representation techniques, such
as primitive instancing, cell decomposition, constructive
solid geometry, sweep and boundary or medial axis rep-
resentation [1] have the limitation that they do not offer
ways to represent internal behaviour. The representation is
considered to be unambiguous when it corresponds to one
and only one object in the object space. Unfortunately, the
more recent and modern technique, the real function repre-
sentation [2], does not solve this problem either. The above
techniques assume an internal homogenity of the model.
Nevertheless, they are adequate for many simulations and
design applications. Still more and more complicated phys-
ical models, for which scalar, vector, and tensor-valued
physical fields are needed, increase the demand on mod-
elling of both the shape and the distribution of fields as
initial or boundary conditions for simulation. Some of
the applications include areas of structural mechanics and
ablation thermo- and aerodynamics [3] and the description
of inhomogeneous materials. The representation that offers
interior modelling is a parametric function representation:
F : Rn →Rm, where Rn and Rm are the parameter and ob-
ject spaces, respectively. In the trivariate case, the natural

∗ Department of Computer Software, University of Aizu, Aizu-
Wakamatsu, Fukushima-ken 965-8580, Japan; e-mail: {roman,
czanner}@u-aizu.ac.jp

Recommended by Dr. C. Putcha
(paper no. 205-3029)

extension to triangles and rectangles are tetrahedra, pen-
tahedra, and hexahedra, which are extensively used for
Lagrange and Hermite basis functions in the finite element
(FEM) literature [4].

Sederberg and Parry [5] introduced the so-called Free-
Form Deformation (FFD). This method imposes an initial
deformation lattice on a parallelepiped, and defines the
deformable space as the trivariate Bezier volume defined
by lattice points. Griessmain and Purtgathofer [6] modified
the technique by utilizing a B-spline volume representation.

This article, in Section 2, introduces the mathematical
concepts of multivariate parametric solids, and extents
the definition of a Coons patch to Coons solids. Three
types of parametric solids, Coons body 0, 1, and 2, are
used to demonstrate the interior modelling often used as
initial or boundary conditions in numerical simulation.
In Section 3 we modify the control points of boundary
surfaces and curves to model the interior and the shape
of objects. Modelling with multiple Coons solids is also
discussed here. Finally, an application of the proposed
technique and the object metamorphosis is discussed in
Section 4.

2. Three Construction Steps of Coons Body

We will restrict ourselves to the parametric function rep-
resentation: F : R3 →R3. The well-known Coons patch
is generalized to tensor-product Coon parametric solids
called here body 0, 1, and 2. Each of these three rep-
resentations has a different ability to control the interior
of a parametric solid. The simplest and most limited is
Coons body 0 where only the shape of a quadrilateral can
be changed. Coons body 1 allows us to control the interior
by modifying the control points along the edge curves of
a parametric solid. The most general is Coons body 2,
having the ability to modify the shape and interior, using
points within the boundary surfaces of a parametric solid.

In general, a tensor-product solid of degree (l,m, n)
is defined to be:

p(u, v, w) =
l∑

i=0

m∑

j=0

n∑

k=0

bijkF
l
i (u)F

m
j (v)Fn

k (w)

where u, v, w∈ [0, 1], bijk ∈ R3, and Fi are basis functions.
Notice that for a volume of degree (3, 3, 3), there are
4× 4× 4 = 64 algebraic vectors and 64 geometric vectors,
so there are 192 coefficients (see Fig. 1).
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Figure 1. Tensor-product solid of degree (3, 3, 3).

2.1 Visualization

Simple mappings F : R3 →R3 with small polynomial
degrees can be understood by displaying a set of isopara-
metric surfaces of the object (see Fig. 2). One way to get
a good idea of the shape of an object is to display several
different images. For example, we can visualize the shaded
shape with projected parametric curves and display three
parametric surfaces corresponding to constant u, v, and
w. To show the shape and interior changes in time, that
is, mappings F : R4 →R4, time animation of isoparametric
surfaces and outer shape is one possibility. The visualiza-
tion techniques just mentioned are also used in this work.

2.2 Coons Body 0

Coons body 0 is a trilinear interpolation of eight points
Pijk, i, j, k∈{0, 1}, defined as:

T (Pijk;u, v, w)

= (1− u, u) ×
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where u, v, w∈ [0, 1].
Coons body 0 has some obvious properties that can be

derived from the tensor-product solid:
• Derivatives : Because of the linear independence of u,
v, w coordinates, the partial derivatives with respect
to u, v, w have obvious geometric interpretation, and
they coincide with the derivatives along parametric
lines.

• Boundary surfaces : There are six hyperbolic para-
boloids on the boundary, namely, T (Pijk; 0, v, w),
T (Pijk; 1, v, w), T (Pijk;u, 0, w), T (Pijk;u, 1, w),
T (Pijk; u, v, 0), and T (Pijk;u, v, 1).

• Boundary curves : The boundary curves of Coons
body 0 are linear segments. Setting two parameters of

Figure 2. Coons body 0: shape morphing of original cube
by eight control points.

u, v, and w equal to 0, or 1, we get 12 linear segments,
T (Pijk; 0, 0, w), T (Pijk; 0, 1, w), . . . .

• Control grid : The control grid points Pijk coincide
with eight vertices of the quadrilateral.
An example of Coons body 0 element is shown in

Fig. 2. A simple cube is deformed by moving four corner
points in upward and downward directions. As a result,
the shape of the body changes but the interior “density”
cannot be modified. This element is often used in FEM
methods when only linear basis functions are used within
a 3D element.

2.3 Coons Body 1

Let us assume the compatible curves C(u, j, k), C(i, v, k),
and C(i, j, w); i, j, k ∈ {0, 1}; u, v, w ∈ [0, 1], with the
following property:

C(u, j, k)u=i = C(i, v, k)v=j = C(i, j, w)w=k

= C(i, j, k) =: Cijk

for each i, j, k ∈ {0, 1}.
Coons body 1 is a bilinear interpolation between pairs

of compatible curves defined as:

C1(u, v, w)

= (1− u, u)
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− 2T (Cijk;u, v, w)
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Coons body 1 has the following properties:
• Derivatives : The partial derivatives with respect to
u, v, w coincide with the derivatives along parametric
lines.

• Boundary surfaces : There are six Coons patches on
the boundary derived from four-tuples of boundary
curves.

• Boundary curves : The boundary curves of Coons
body 1 are compatible curves C(u, j, k), C(i, v, k), and
C(i, j, w) [7]. In the simplest case, when the boundary
curves are linear, the Coons body 1 is actually the
Coons body 0.

• Vertices : Vertices of C1(u, v, w) are the points Cijk.
• Control grid : Control grid points coincide with the
control points of the boundary curves.

An example of Coons body 1 shown in Fig. 3 demonstrates
the cubic element defined by B-spline boundary curves
each having five control points. The B-spline de Boor
points are distributed along the edges of a simple cube,
and only the points with assigned arrows in the image
are used to deform the shape. The boundary curves of
this solid can define the influence of boundary surfaces on
the interior without changing the outer shape. The effect
of density modification is shown in Fig. 4; the left image
shows the original body with a few parametric surfaces and
the middle image shows the solid with a modified interior.
It can be observed that the interior in the right image
deforms much earlier than that in the left image. The right
image of Fig. 4 is the outer shape that remains constant
during the interior modelling. The interior modelling is
still limited in Coons body 1 as we cannot directly modify
the centre of boundary surfaces.

Figure 3. Coons body 1 with B-spline boundary curves.
B-spline de Boor points along the edges deform the cube.

Figure 4. Coons body 1: preserving the shape while chang-
ing the interior density.

2.4 Coons Body 2

Let us assume three couples of arbitrary opposite patches
Zk(u, v)=C(u, v, k); Yj(u,w)=C(u, j, w); Xi(v, w)=
C(i, v, w); i, j, k ∈ {0, 1}, u, v, w ∈ [0, 1], with common
boundary curves as stated below:

C(u, v, k)v=j = C(u, j, w)w=k =: C(u, j, k); j, k = 0, 1

C(u, v, k)u=i = C(i, v, w)w=k =: C(i, v, k); i, k = 0, 1

C(i, v, w)v=j = C(u, j, w)u=i =: C(i, j, w); i, j = 0, 1

To make things simpler, the connected patches should have
no other intersections, for example, C(u, j, k)=Yj(u,w) ∩
Zk(u, v), C(i, v, k) = Xi(v, w) ∩ Zk(u, v) and C(i, j, w) =
Xi(v, w) ∩ Yj(u,w), i, j, k ∈ {0, 1}.

Coons body 2 is defined to be:

C2(u, v, w) = D(u, v, w)− C1(u, v, w)− T (Cijk;u, v, w)

where T (Cijk;u, v, w) and C1(u, v, w) are Coons bodies
0 and 1, respectively; D(u, v, w) is a linear interpolation
between pairs of opposite patches given by:

D(u, v, w) = (1− u, u)
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Coons body 2 has the following properties:
• Derivatives : The partial derivatives with respect to
u, v, w coincide with the derivatives along parametric
lines.

• Boundary surfaces : There are six boundary faces
Xi(v, w), Yj(u,w), and Zk(u, v), used in the defin-
ition [7]. Note that if the patches are the Coons patches
defined by four-tuples of boundary curves, then the
Coons body 2 is actually the Coons body 1. In the
simplest case, where patches have linear boundary
curves, the Coons body 0 is obtained.

• Boundary curves : The boundary curves of Coons
body 2 are common boundary curves C(u, j, k),
C(i, v, k), and C(i, j, w).

• Vertices : Vertices of C2(u, v, w) are the points Cijk.
• Control grid : Control grid points coincide with the
control grid points of boundary surfaces.

An example of Coons body 2 using B-spline boundary sur-
faces is shown in Fig. 5. The de Boor control points of this
body are distributed at corners, on edges, and within the
interior of boundary surfaces. De Boor control vertices dis-
tributed over the B-spline surfaces create the shape folding
and deform a simple cube in Fig. 5. Additional freedom in
modelling is gained from control points distributed within
the centre of B-spline patches. It can be shown that the
Coons body 2 defined by the B-spline boundary surfaces

3



is a B-spline body [7]. A nail represented as a single Coons
body 2, illustrated in Fig. 6, has two different interior
densities while preserving the same outer shape. The right
image shows the shaded shape and surface parametric
curves of a nail. Moving control points belonging to edges
along the nail body modify its interior density.

Figure 5. Coons body 2 with B-spline boundary surfaces.
The de Boor points of boundary surfaces can deform the
shape and interior of the original cube.

Figure 6. Nail as Coons body 2 with two different interior
density distributions.

3. Modelling with Coons Bodies

A lattice is defined as a set of points that generates a
volume. A control lattice has vertices, edges, faces, and
cells. In the case of Coons bodies, each cell of the control
lattice is defined by six faces and each face by four vertices.
Each vertex has connectivity six. Each cell defines a Coons
body (volume). Because any Coons body 2 is a B-spline
volume, the shape continuity is simply controlled in a
similar way as is done for B-splines. Similarly, multiple
control points can also be used in Coons body 2 to create
sharp edges and corners.

In an example shown in Fig. 7, the modelling of a
spool starts from a cube. First, the bottom of a cube is
rounded with control points on the bottom side of a cube;
next the top is created by modifying the control points on
top side. Top and bottom points also define the thickness
of the spool. Other control points are not modified. The
control grid and the shaded surfaces for two steps of spool
modelling are shown in Fig. 7.

Multiple Coons bodies 2 combined with set-theoretic
operations can create complicated shapes. In Fig. 8, three
bodies with the union set operation are used to form the
final shape. In the case when blending between several

parts is required, a single Coons body 2 with an extended
number of control points can be used. Five Coons bodies
2 were used to design an ergonomic chair in Fig. 9. The
control grid used for modelling is shown in the right image.

Figure 7. Modelling a spool as a Coons body 2 starting
from a cube.

Figure 8. Union set operation between three Coons
bodies 2.

Figure 9. Chair represented with five Coons bodies 2 and
its control grid.

4. Metamorphosis with Coons Bodies

In the case of Coons bodies, we are dealing, for example,
with the deformation of an unit cube in the sense that
we operate on the material forming the cube to alter its
shape by pressing, drawing, twisting, or turning. This
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deformation process has local character within the body. In
general, the position of every point in the interior as well as
those on the surface is altered when a grid point is moved.
In the case where two different sets of control points define
the same boundary surface (except the parametrization),
the shape of the body does not change but the interior
will change (see Figs. 4 and 6). In order to carry out
the metamorphosis of two objects represented by a Coons
body, for every grid point of the first object the associated
grid point from the other object must be found. Then
the grid deformation, by moving a grid point along the
path, defines the metamorphosis, similar to the motion
path in animation. Metamorphosis between the cube and
the spool, shown in Fig. 10, uses the grid deformation
technique.

Figure 10. Metamorphosis from cube to spool using the
Coons body 2.

5. Conclusion

The proposed system implemented under the Linux Red
Hat 6.2 operating system uses the parametric Coons bodies
to model the interior and outer shape of a body. Presented
examples show how easy it is to define and change the inter-
ior. Natural extensions to interior modelling are the shape
deformation and metamorphosis discussed in this work.

The authors see the advantage of this technique as
being the ability to define the boundary and internal initial
conditions prior to numerical simulations. The method
works well for symmetric shapes used in engineering simu-
lation. Parametric solids can be effectively applied in finite
elements with irregular or trimmed boundaries to avoid
difficult problems in model design for FEM.

The proposed method was tested in shape deformation
examples using both engineering and organic shapes. It
was quite difficult to apply the parametric solids for repre-
senting and deforming organic shapes. Coons bodies can be
easily utilized in FFD applications. Better results of shape
deformation could be obtained using the fifth-dimensional
parametric solids under current investigation.
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