Spring Conference on Computer Graphics
SCCG 2008

in cooperation with
Eurographics and ACM SIGGRAPH

Conference Materials and Posters

Budmerice
April 21 - 23, 2008

Publisher: Comenius University, Bratislava
Editor: Martin Samuelčík
Cover page & logo design: Matej Novotný, Jozef Martinka
Production: Martin Samuelčík
Webpage: http://www.sccg.sk
ISSN: 1335 - 5694
International
Programme Committee

IPC chairman
Prof. Karol Myszkowski
Max-Planck Institute for Informatics,
Germany

Jeroen van Baar
Sebastiano Battiato
Alexander Belyaev
Bedřich Beneš
Peter Birkholz
David Breen
Jiří Bittner
Alan Chalmers
Pavel Chalmovianský
Ján Ciger
Silvester Czanner
Miguel Chover
Roman Ďuríkovič
Miquel Feixas
Petr Felkel
Andrej Ferko
Franca Giannini
Markus Grabner
Helwig Hauser
Vlastimil Havran
Bert Jüttler
Maxim Kazakov
Ivana Kolingerova
Rafal Mantiuk
Simone Marini
Karol Myszkowski
László Neumann
Alexander Pasko
Giuseppe Patanè
Bernard Péroche
Tomas Plachetka
Werner Purgathofer
Przemyslaw Rokita
Mateu Sbert
Benjamin Schmitt
Peter Shirley
Pavel Slavik
Martin Šperka
Daniel Thalmann
Petr Vaneček
Ivan Viola
Michael Wimmer
Pavel Zemčík
Borut Žalik
Jiří Žára
List of Reviewers

Jeroen van Baar
Sebastiano Battiato
Alexander Belyaev
Bedřich Beneš
Peter Birkholz
David Breen
Jiří Bittner
Pavel Chalmovianský
Ján Ciger
Silvester Czanner
Miguel Chover
Piotr Didyk
Roman Dušikovič
Miquel Feixas
Petr Felkel
Andrej Ferko
Franca Giannini
Markus Grabner
Thorsten Grosch
Helwig Hauser
Vlastimil Havran
Matthias Hullin
Matthias Ihrke
Bert Jättler
Maxim Kazakov

Ivana Kolingerova
Rafal Mantiuk
Simone Marini
Karol Myszkowski
Alexander Pasko
Giuseppe Patanè
Tomas Plachetka
Werner Purgathofer
Tobias Ritschel
Przemyslaw Rokita
Mateu Sbert
Benjamin Schnitt
Peter Shirley
Elena Šikudová
Pavel Slavík
Martin Šperka
Kateřina Tátraiová
Daniel Thalmann
Zsolt Tóth
Petr Vaneček
Ivan Viola
Michael Wimmen
Pavel Zemčík
Borut Žalik
Jiří Žára
HDR Images from Photos of Car Paint with Sparkling Effect

Michal Švireč* Roman Šuríkovič†
Comenius University Comenius University

Abstract

High dynamic range (HDR) photos created by conventional photo camera is a promising tool for a sparkling visualization. We investigate and propose a technique to generated HDR images of car paint from near focus photos. Our setup is good for clear reconstruction of sparkling effect. Reconstructed HDR images are then visualized with different tonemapping operators or directly shown on a HDR display. Our observations show that Mantiuk's or Reinhard's operator is sufficient tool for sparking visualisation on LDR monitors.

Keywords: HDR, Car paint

1 Introduction

High Dynamic Range is set of techniques to capture greater dynamic range (ratio between bright and dark regions) of exposure than normal imaging technique. While with classic photo technique we can capture only limited dynamic range, HDR can be created as composition of images with various dynamic range that represents wide range of intensity found in real world.

Car paint with sparkling effect contains great amount of very small particles, tiny mirrors, that in different light conditions reflects light in various intensity. Image consists of dark, bright areas and very bright dots that often cover a spherical angle less that 1°. We use composition of 3 images with different exposure settings to create HDR image.

The aim of this paper is to enhance the capturing techniques of sparkling effects for the purpose of reproduction of the sparkle appearance in car paints. The closest work to ours is [Duríkovič 2002], but unlike to our work, this approach explicitly modeled the particles with a triangular mesh. [Ershov et al. 1999; Ershov et al. 2001] introduced a surface model for pearlescent paint that includes sparkling effects based on a statistical approach for static scenes. The camera setup with settings is described in Section 2. Next section describes the composition technique of captured photo images and the parameter setting of response curve for best sparkle capture. As discussed in Section 4 the sparkle visualization on HDR monitors was disappointing and the following section describes the visualization on conventional monitors with comparison of different tone mapping operators. The results are concluded in final section.

*e-mail: sviroo@gmail.com
†e-mail: roman.durikovic@fmph.uniba.sk

2 Exposition

Creating photographs of car paint with sparkling effect with different exposure presets is very sophisticated process. Single car paint consists of layers with embedded particles. As top layer is very glossy, it could be hard to capture the scene without reflection of illuminators. Distinct feature of modern car paint is that it is orientation dependent. When turned around, different sparkles begin to sparkle. This effect is caused by random orientation of sparkles in car paint. During HDR image capturing it is needed that individual photos capture the same scene, that means the same set of sparkles should be illuminated. Otherwise the resulting image will be blurred. This can happen even when camera slightly moves by touching.

Paint particles are very small, hence we use camera with high resolution to gain high quality of each photo. To achieve very detailed photo we use macro lens and to avoid reflection of light flash from top layer, we will use macro flash. Of course a remote switch will prevent camera movements. On figure 1 is the whole configuration which consists of Canon 30D, Canon EF-S 60mm Macro USM lens, Canon Macro Twin Lite MT-24EX flash and remote switch, was arranged upright to car paint at a distance 10 – 15 centimeters.

![Figure 1: Camera configuration: Canon 30D, Canon EF-S 60mm Macro USM lens, Canon Macro Twin Lite MT-24EX flash and remote switch.][1]

The first camera setting need to be set is aperture. With low aperture number picture is unsatisfactory, because the outer part of photo will be blurred. Sufficient setting for our purpose is F16. Shutter speed, second setting, is set to 1/15 sec. To simplify shooting process and avoid camera shaking, we use remote shutter and set on flash AE bracketing, begin in –2 EV with 1 EV increment. This enable us to capture 3 pictures of same scene, each with different exposure setting, particular with –2 EV, 0 EV, 2 EV, as you can see on figure 2. While at HDR creating is possible to use various image formats, we store photos in RAW and JPEG with resolution 8 MPix.

![Figure 2: Images of same car paint with different exposure setting. From left to right: –2 EV, 0 EV, 2 EV][2]

38
3 Creating HDR Images

For creating HDR images, we use the Open Source software Optfsgui [Rota], which dispose many additional options. The first advantage is capability to make HDR from different image formats. In our research we are making HDR from both formats we shoot, RAW and JPEG. To create result image properly it is important to set the exposure value for each photo to same value as it was shot (in our case it was −2 EV, 0 EV and 2 EV). Another part consists of HDR creating options, where individual options are camera response curve, weighting function and HDR creation model. Camera response curve is a curve showing the relation between amount of incoming light and image pixel values of a digital camera. When making HDR from RAW format data the response curve is linear, because RAW images contain linear sensor data. Next setting related to response curve is a Gamma parameter. The weighting function assigns a weight to all pixels (a value between 0 and 1 multiplied with the pixel value) it determines the trust of every pixel. In Optfsgui it is possible to set three different weighting functions: triangular, Gaussian and Plateau. Each function makes a bit different effect to final image. Last option, HDR creation model, has two possible values, Debevec model and Robertson model. We will use only Debevec’s model.

At creating HDR images, we use the source photos in RAW and JPEG formats with different settings of weighting function and response curve. We compared the results from RAW and JPEG to find out which one reproduces the best sparkling effect and have the same color appearance as car paint sample. At first sight the best results has had images created with linear response curve and triangular weighting function. As best result in comparison between HDR images created from RAW and JPEG seems to be the images made from RAW. Careful investigation of HDR images from RAW data shows that various settings of weighting function and response curve have almost similar results, but we found out that darker samples had best results with different settings than brighter ones. Shown dark sample had the best result with triangular weighting function, on the other hand brighter sample best reproduces the HDR with Gaussian weighting function. As was mentioned above the response curve is set to linear when using the RAW format.

4 Sparkles on HDR Monitor

All this research was made on LDR monitor, so we can’t see all the visual information that HDR could interpret. We observer HDR images of car paints with strong sparkling on LDR monitor. We use the BRIGHTSIDE™ HDR display for this project. It is a 18-inch LED-based HDR monitor, and its luminance range is 0.05 – 3000 cd/m². By limiting its maximum and minimum luminance values, we can simulate the broad range of conventional displays. We found out that image was brighter and also highlight got much brighter comparing to conventional monitors, unfortunately, there was still not enough dynamic range to see details in the highlight and sparkles. We could not get to the point that the image looked well exposed and highlight looked realistic. Regarding this finding, we tried tonemapping to Low Dynamic Range (LDR) as another alternative to processing the HDR result.

5 Sparkle Visualization - Tone Mapping

While HDR display is not good for rendering sparkling effect, we want to find out which tonemapping operator is good enough for rendering sparkling effect in LDR. Software Optfsgui offers the most known operators developed by Manuïk, Fattal, Drago, Durand, Reinhard, Ashikhmin.

First operator we tried was gradient domain operator [Fattal et al. 2002]. We believed in local enhancement of sparkle luminance according to sharp gradient changes near the sparkle. The algorithm manipulates the gradient field of the luminance image by attenuating the magnitudes of large gradients. Smaller details are amplified thus becoming more evident. This operator has 2 main parameters, α and β. Parameter α is the threshold, with the meaning the details whose luminance derivative is less than α are amplified, those whose derivative is greater than α are decreased. We used default value of this parameter, which was 0.1. Second parameter β expresses how much the algorithm will be effective. Setting β = 1, the algorithm will perform no operation on the HDR, and there will be only a linear shrink of the dynamics. Decreasing β will increase the effectiveness of the algorithm, in other words you will increase the compression of the dynamics making the details much more evident. Default value of this parameter is 0.8, but with this value resulting image has the blurred areas. Figure 3 shows the tonemapped HDR image and Figure 4 the marked blurred area with red line.

Figure 3: Tonemapped HDR image with gradient domain operator. Parameter α = 0.1, β = 0.883.

Figure 4: Detail of the blurred area in tonemapped image with gradient domain operator.

Second operator is adaptive logarithmic mapping [Drago et al. 2003]. This algorithm is intended to imitate the human eye’s response, and is useful when a true tone result is desired. It is a global spatially uniform operator. At the beginning, it calculates the average luminance of the image and, using this value and the external parameter "bias", it creates a non-linear logarithmic function that is applied to each pixel separately, without considering the neighboring pixels. This operator isn’t very good for our purpose because details are not amplified more than other parts of the image. Result on figure 5 was blurred and even the color appearance wasn’t the same as original car paint sample has.
Next operator is a tone mapping algorithm for high contrast images [Ashikhmin 2002]. The operator is performed in three steps. First, it estimates the local adaptation luminance at each point in the image. Then, a simple function is applied to these values to compress them into the required display range. Since important image details can be lost during this process, algorithm reintroduces details in the final pass over the image. Resulting image shown on Figure 6 is better than image from Drago's operator, but because of resulting luminance of color, the tone mapped image isn't sufficient.

Fast bilateral filtering [Durand and Dorsey 2002] is very popular tonemapping operator, because it produces most realistic images from HDR of classic outdoor scenes. This operator reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Result in our testing on samples with sparkling effect was quite good as you can see on Figure 7.

Dynamic range reduction [Reinhard and Devlin 2005] operator is a relatively simple algorithm with only minimum processing on the original image. Resulting color was almost gray-scale (figure 8) with this operator and its default parameters brightness, chromatic adaptation and light adaptation. Changing the parameters we couldn't reproduce the image with color information corresponding with the sample paint. On the other side, sparkling effect on this image was very good.

Another operator from Reinhard is a Photographic tone reproduction [Reinhard et al. 2002]. This algorithm is simple and produce very good results on our image sets. Color representation is better than in previous operators and sparkling effect is one of the best. Figure 9 is generated picture with only default parameters.

The last operator is a Perceptual framework for contrast processing [Mantik et al. 2006]. Images are processed in a visual response space, in which contrast values directly correlate with their visibility in an image. This framework involves a transformation of an image from luminance space to a pyramid of low-pass contrast images and then to the visual response space. After modifying response values, the transformation can be reversed to produce the resulting image. To predict the visibility of threshold contrast, a transducer function was derived for the full range of contrast levels that can be found in High Dynamic Range images. Operator posses two parameters, contrast factor and saturation factor. We achieved best color information with saturation parameter set between 1.9 and 2.0. Sparkling effect was good enough when contrast factor was set on 1 (Figure 10).
6 Conclusion

<table>
<thead>
<tr>
<th>operator</th>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fattal</td>
<td>This operator isn’t good enough for sparkling effect, because of blurred area on whole image</td>
</tr>
<tr>
<td>Drago</td>
<td>Final image is blurred, color appearance isn’t as original and dynamic range is small</td>
</tr>
<tr>
<td>Ashikhmin</td>
<td>Images produced from this operator was sharp enough, but dynamic range and color was insufficient</td>
</tr>
<tr>
<td>Durand</td>
<td>Color and sharpness was very good with this operator, but most of sparkles had medium lightness</td>
</tr>
<tr>
<td>Reinhard 2005</td>
<td>If the color wasn’t grey-scale, this operator would be one of the most sufficient</td>
</tr>
<tr>
<td>Reinhard 2002</td>
<td>This operator is one of the best for sparkling effect. Color is similar to created HDR image</td>
</tr>
<tr>
<td>Mantiuk</td>
<td>This is another sufficient operator for sparkling effect, color appearance is quite different from Reinhard’s and images poses a bit less sharpness</td>
</tr>
</tbody>
</table>

In this paper we have presented another method for sparkling effect visualization. We have found out that displaying generated images on HDR monitor is insufficient. Refering to above table Reinhard’s dynamic range reduction is the most suited tone mapping operator for visualization of sparkling effect on car paints captured by our photographic setup.

7 Acknowledgements

This research was sponsored by grant from EU-FP6-MC-040681-APCOCOS.

References


