
Automated usability measurement of arbitrary desktop application with eyetracking

Pavol Fabo
Faculty of Mathematics, Physics and Informatics

Comenius University
Bratislava, Slovakia

Email: pavol.fabo@fmph.uniba.sk

Roamn Ďurikovič
Faculty of Mathematics, Physics and Informatics

Comenius University
Bratislava, Slovakia

Email: durikovic@fmph.uniba.sk

Abstract—Nowadays in software development process more
attention is paid to the final usability of the product. To achieve
such usability we use various methods from user centered
design up to the usability evaluation methods, requiring much
attention from usability experts. The presense of these experts
are needed both during capturing and analysing usability
data, which eventually costs too much. We propose a tool
for automated data capturing during user tests as well as
a captured data analysis in order to evaluate the recorded
interaction and guide the attention of software developers.
Furthermore we provide a simple statistics of user tests as
well as a means to browse recorded data with the interaction
context extended with eye tracking data.

Keywords-Usability measurement, Automated interaction
measurement, Interface evaluation

I. INTRODUCTION

In the history of software development, there are many
cases where inadequate usability of software have lead to a
disaster. Thus more and more attention has been paid to the
user centered design and overall usability of the software
products.

There are many ways to ensure the usability of sofware.
First of all a design guidelines and/or user interface patterns
are used, then new software development models like itera-
tive or spiral models have been devised, thus overcomming
the drawbacks of traditional waterfall software development
model. Finally the software’s usability is evaluated using
tests with the users, usually in usability laboratories. In
such laboratory a special environment is set up to enable
usability expert to record the interaction of the tester. The
recorded data are than evaluated by usability experts in order
to analyse several key parts of the interaction. Since this
process uses humans to record and evaluate it is extremely
time consuming. To target the excessive time consumation of
this standard usability evaluation approach a various other
methods of interface evaluation and usability testing have
been created [1], [2], [3].

Another approach to overcome the time consuming draw-
back of traditional usability test is the automation. Auto-
mated usability measurements and testing are very promising
area of usability research. Since the usability testing process
consists of three stages, i.e. capturing, analysis and critique,

the automation might be employed in each and every of
these stages.

Automated interaction data capturing is used today in a
standard usability laboratories using video cameras capturing
the user and even the computer screen. But such data are
video based thus are very hard to analyse automatically. On
the other hand a various interaction logging systems have
been used instead to capture the interaction. Automation in
the analysis and critique stages are not that straightforward.
Here a various models and metrics have to be used in order
to make an usability conclusion about the interaction.

II. USABILV APPLICATION A TOOL FOR AUTOMATED
USABILITY EVALUATION

The automation of the usability evaluation process has
been done several times earlier. The automation has been
employed in large variety of evaluation methods from
testing, inspection, inquiry, analytical modeling up to the
simulation methods [4].

Automated usability testing methods usually capture
events and timestamps of the events and consequently
analysing this data using various metrics or pattern-matching
approaches [4]. Such methods unfortunatelly does not in-
volve the user, just the events generated by the user.

Inspection methods are based on an examination of the
user interface and its conformance to a set of guidelines.
Even here an automation has been done, mainly in the
analysis process with respect to the graphical user interface
elements, widgets and layout, thus eventually ommiting the
analysis of the user’s interaction itself.

Inquiry methods are motivated with capturing of the user’s
subjective impressions about various aspocts of an user
interface [4]. The biggest drawback of the inquiry methods is
the lack of automation in the analysis and critique processes.
This is mainly due to the lack of formalism, since the data
are generated by the users themselves.

Analytical modeling usability evaluation methods use
some kind of model, either the model of the user interface,
or the model of the user himself, or both in order to
help the evaluator to predict the usability of the interaction
[4]. The well known GOMS model, which focuses on the



Figure 1. Model of the interaction in Microsoft Paint application.
Actual modelled interaction is for opening and saving an image using jpeg
compression. Model consist of eight click events (white rectangular boxes)
and one text event (yellow rectangular box) labelled with respective ID
numbers.

user performace, is also an analytical modeling evaluation
method [5].

The last group of usability evaluation methods is the
simulation methods group. The simulation methods are
based on the simulations of the user’s interaction, which is
done using the models of the user interface and/or the user
himself [4]. Automated interaction data capturing is done by
simply generating the data for the simulation by specified
algorithms like the genetic ones.

A. Interaction model definition

Since our intention was to evaluate any desktop appli-
cation we have to omit an usability models bounded to a
specific software or interface. On the other hand we use a
model of the interaction, created by defining the sequence
of events to be performed by the user. By drawing nodes
and ordering nodes into a sequence, the interaction model
is created very intuitivelly.

We distinguish five different type of nodes for model
definition. Four type of nodes cover mouse events i.e. mouse
click, mouse double click, mouse up and mouse down, and
the fifth node type covers text events i.e. key press event.
An example of interaction model is in Figure 1

The interaction model definition is extended with an
approximate time the user should complete the interaction
during the test.

B. System event tracker

The interaction data capturing is done by system event
tracker. It uses an UserActivityMonitor library [6], which
enables global event handling. We distinguish five system
events specifically mouse up, mouse down, mouse click,
mouse double click and key press. Every event, along
with the time stamp and in case of mouse events with
the mouse position and mouse state, is stored in database.
Furthermore when an event, which is significantly effecting
the look of the interface, especially the mouse clicks and
doubleclicks occurs, a screenshot of actual screen is grabbed

Figure 2. Prototype of low cost eyetracker consisting of an old glasses
and a near infrared sensitive web camera.

and stored along with the event id to the database. This is
done asynchronously, thus the image capturing, compression
and storing into the database does not affect the interaction
smoothness.

C. Eye tracker

The system event data itself is able to define the user’s
interaction very well. Unfortunatelly such data does not
contain information about the user itself. To capture this
type of data we use a low cost head mounted eyetracker
shown in Figure 2. Eyetracker’s data is used to compute a
point of user’s gaze on the computer’s screen as described
in [7].

Our eyetracker consists of a standalone web camera
sensitive in a near infrared spectrum, which is extended
with an infrared illumination LED mounted directly to the
camera. Using the infrared illumination coupled with the
sunglass’s lens used as a pseudo camera filter, we have been
able to achieve proper lighting of the user’s eye, thus the
process of the detection of the user’s gaze is computationally
very simple. For simplicity we consider the position of the
user’s head is static.

In the detection process we use median filter with square
kernel of size of five pixels. Using threshold operation and
contour detection we are able to precisely localize the user’s
pupil. By computing image moments defined by Equation 1.
and described in [8] we are able to compute the coordinates
of the centroid of the user’s pupil using Equation 2.

mp,q =

n∑
i=1

I(x, y)xpyp (1)

xcentroid =
m10

m00

ycentroid =
m01

m00

(2)

Using calibration we are able to map pupil’s center point
to the actual screen coordinates, forming the user’s gaze
point on the screen as described in [8], [7]. Pupil’s center is



Figure 3. Realtime pupil detection using standalone computer vision
algorithms. Top left web camera image shows a definition of range of
interest for pupil detection. Bottom right web camera image shows a
thresholded image. By finding contour and image moments a pupil center
is defined in top right image.

computed as a floating point coordinates, thus the resulting
screen coordinate point is computed with subpixel accuracy.
The computer vision algorithms are implemented using a
EmguCV library [9].

In Figure 3 the results of computer vision algorithms
and pupil center detection are shown. Notice the quality of
an input image, which enables far simpler and less time
consuming pupil’s centroid detection.

D. Recorded data presentation

An essential part of any usability testings is a possibility
to browse the interaction data and virtually play the entire
user’s interaction. Such feature is very needed in order to
make it possible to further examine the interaction data.

In our application, since we store every available data in a
database, we are able to play back the user’s interaction. In
Figure 4 a stored system event data as well as user eyetracker
data are shown in blue and violet colors. Putting the recorded
interaction in the context of the defined interaction model
we are able to visually see any interaction errors. Blue and
violet circles in Figure 4 represent the mouse click events
and actual gaze position during the mouse click. Further a
violed triangles represent that the gaze position when a key
has been pressed during the interaction.

Note the positional difference between the system event
data shown as blue lines, and the eyetracker data, shown
as violet lines, which is caused by not having a static
head position during eyetracker data capturing. We consider
such misposition to be a great feature from the interaction
exporation point of view. The misposition visually separate
eyetracker data from system event data thus promoting the
visual exploration.

The interaction records shown if Figure 4 are very good
to assess the overall interaction.

In order to enhance the visual analysis we have denoted
the actual correspondence of the eyetracker data and the

Figure 4. Captured system event data (blue lines) and user eyetracked data
(violet lines) put into the context of the interaction model. A discrapancy
between eyetracked data and system event is clearly visible, showing not
optimal parts of the interface.

Figure 5. Representing correspondence between system events and
eyetracker data as a red dashed line. The interaction context in form of
a screenshot, which has been stored in a database, is shown as well.

system events data using a red dashed line as shown in
Figure 5. What’s more we are able to playback whole
interaction. The position is visually represented as a big
rectangle both in system events data (blue rectangle) and
eyetracked data (violet rectangle). Furthermore, since we
have stored a interface screenshot after each system event,
we are able to show the context of the interaction i.e. the
actual user interface as shown in Figure 5.

E. Simple interaction analysis

Our first step into the usability evaluation was to detect
the most evident problems in the interaction. We have
considered various performance metrics, as defined in [10],
and found out that three of them are very straightforward to
determine from the captured data.

Firstly, we consider the actual time of the user’s interac-
tion. During the interaction model definition we have defined
the approximate time it should take the user to successfully
complete the interaction. During the user test we keep track



of time by inserting a timestamp information to the database
along with the both system event data and eyetracker data.
After the test we are able to find the time of the interaction
by simple database query. This time is compared with the
time defined in the interaction model. If the difference is
big enough, we have used difference of two seconds, the
interaction is tagged with a time difference problem, denoted
as a ”T” letter in the ”Problems” column in Figure 6.

Figure 6. Users interaction records enhanced with simple interaction
analysis tags.

Secondly, the number of system events, especially mouse
clicks, is another very important usability indicator. Since
the interaction model consists of actual events, that the
user should perform, we are able to detect if the user
actually performed these events. Such comparison is not that
straightforward since we need to take into account the text
nodes in the interaction model. Sometimes the text node
need to be click inside, other times it gains focus during the
interaction. Thus we count the minimum and maximum click
count of the interaction model. These are then compared
with the interaction the user has performed during the tests.
If the user’s click count is not inside the interval defined by
minimum and maximum interaction model click counts, the
interaction is tagged with a click count problem, denoted
with ”C” letter in the ”Problems” column. It needs to be
said that such approach is not the optimal one, but for
the purposes of simple analysis it should be sufficient.
We perform more detailed analysis, which is described in
Section II-F.

Finally, the last metric we use for simple analysis is
distance travelled. The interaction model has defined the
position as well as the order of the nodes. From the position
of nodes we are able to compute the distance that should
user travel in order to reach the next node. We compute an
interval defined by the minimum and the maximum distance
the user might travel. Minimum distance, is the distance
of the closest nodes points, the maximum distance is the
distance of the two farthest points. In the database, the
information about user’s mouse movement are stored, thus
the computation of the travelled distance by the user is very
straightforward as shown in Equation 3.

d =

n−1∑
i=0

(Pi+1 − Pi) (3)

Eventually if the users distance travelled is not in the
defined interval, the entire interaction is tagged with a
distanced problem, denoted by ”D” letter in the ”Problems”
column.

Except of these metrics, we use also a task success metric,
which is recorded at the end of the user interaction by
user’s subjective assessment, thus providing the tests with
subjective data, which is also very useful.

These three metrics along with the subjective task success
metric form our simple analysis, which is used as a first look
on the interaction.

F. Enhanced interaction analysis

Using a simple analysis we have provided a quick first
look on the quality of the user interactions during the tests.
Using an enhanced interaction analysis we aim to validate
the recorded interaction to the interaction model, especially
considering the order and the position of the system events.

Figure 7. Showing a problem in the interaction. The user has not performed
the right interaction by missing the click node and eventually missing all
successive nodes. All missed targets are shown as red circles.

The validation of mouse events is straightforward, on the
other hand text nodes in the interaction models has to be
targeted specifically. The text node is very special since a
user might use as many mouse events in the text node as
he wants. Thus the mouse click, doubleclick, up and down
events inside the text node are not considered. As soon as the
mouse events are outside the text node they are again taken
into the account. Using this validation process we are able
to find mispositioned events, which eventually affects the
interaction. Such interaction problem is shown in Figure 7.

G. Test statistics

To provide a global view on the usability test a interaction
statistics are available. We have implemented task success
statistics, which are computed per test, as shown in Figure 8.

Further more a most valuable metric, time on task, is also
available in stats. In Figure 9 the blue column denote a mean



Figure 8. Showing the percentual representation of task success for
individual tests. Test called ”notepad01” in the left column of the graph
has 60% success rate shown as green color and 40% failure rate shown
as red color. Test called ”MSpaint” in the right column of the graph has
about 33% success rate shown as green color. Around another 33% of tests
have minor problems, shown as lime color bar. Orange color denotes major
problems during the tests, whereas red color denotes test failure.

of time on tasks through all interaction records in a test. This
is extended with a standard deviation shown as red error
bars. The orange column denote the time of the interaction
as defined in the interaction model.

Figure 9. Statistics comparing the mean time of the task (blue column) of
all test to the interaction model defined time (orange column). The graph
is enhanced with a standard deviation error bars (red color).

III. CONCLUSION AND FUTURE WORK

We have presented an novel approach for automated
usability evaluation. We have automated the data capturing
and shown four metrics, i.e. time success, travelled distance,
click count and time on task, which are used for simple
analysis. Furthermore the validation of system events order
and position form an enhanced analysis. By making available
evaluation statistics, we make it possible to evaluate the
overall interaction usability.

The biggest advantage of our method is its versatility. It
can be used for virtually any desktop application. The only
mandatory thing needed for the usage of our method is the
interaction model definition.

We are aware of several drawback of our method. For
instance text nodes needs to be distinguished, since there

is an interaction difference between the textarea nodes and
textbox nodes. Furthermore, we need to consider changing
the focus of the user interface elements, by pressing either
the tab or alt+tab key. Our approach assume that the user
will not customize the environment during the test. Simple
displacement of user interface elements will lead to the total
test failure, since the positions of interface model nodes are
defined absolutely. Finally, we need to take into account,
that there are several ways of the interaction, leading to the
task success.

These and any other problems are target of our future
research in the field of the automated usability evaluation.

IV. ACKNOWLEDGEMENT

This research was partially supported by a VEGA
1/0898/12 2012-2014 a Scientific grant from Ministry of
Education of Slovak Republic and Slovak Academy of
Science and by Comenius University Grant.

REFERENCES

[1] W. Albert, T. Tullis, and D. Tedesco, Beyond the Usability
Lab: Conducting Large-scale Online User Experience Stud-
ies, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010.

[2] J. Nielsen, Usability Engineering. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993. [Online].
Available: http://portal.acm.org/citation.cfm?id=529793

[3] J. S. Dumas and J. C. Redish, A Practical Guide to Usability
Testing, 1st ed. Exeter, UK, UK: Intellect Books, 1999.

[4] M. Y. Ivory and M. A. Hearst, “The state of the art in
automated usability evaluation of user,” Berkeley, CA, USA,
Tech. Rep., 2000.

[5] B. E. John and D. E. Kieras, “The goms family
of user interface analysis techniques: comparison and
contrast,” ACM Trans. Comput.-Hum. Interact., vol. 3,
pp. 320–351, December 1996. [Online]. Available:
http://doi.acm.org/10.1145/235833.236054

[6] G. Mamaladze, “Processing global mouse and
keyboard hooks in c#,” 2004. [Online]. Available:
http://www.codeproject.com/KB/cs/globalhook.aspx

[7] A. T. Duchowski, Eye Tracking Methodology: Theory and
Practice. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2007.

[8] G. Bradski and A. Kaehler, Learning opencv, 1st edition,
1st ed. O’Reilly Media, Inc., 2008.

[9] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of
Software Tools, 2000.

[10] T. Tullis and W. Albert, Measuring the User Experience:
Collecting, Analyzing, and Presenting Usability Metrics. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2008.


