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Abstrakt 
V článku uvedieme rozličné metódy pre 
odstránenie deformácie obrazov. Tieto me-
tódy sú príbuzné bežne známym metódam 
registrácie obrazov používajúcich riadiace 
body, ktoré určujú ako sa jednotlivé časti 
obrazu budú transformovať. Navrhneme 
novú metódu, ktorú nazveme hladkou troju-
holníkovou metódou. Uvedené metódy 
potom porovnáme z hľadiska presnosti 
s akou odstraňujú deformácie obrazov. Na-
koniec určíme najpresnejšiu z opísaných 
metód. Nami navrhnutá metóda je dosta-
točne presná a v porovnaní s ostatnými 
metódami aj veľmi rýchla. Presnosť jednot-
livých metód bude porovnaná pomocou 
novonavrhnutej metodológie. 
 

Kľúčové slová:  metódy registácie obrazov, 
triangulácia, tenkostenný splajn, Shepardo-
va metóda, Cloughova-Tocherova metóda. 
 

Abstract 
In this paper we will discuss various 
methods of picture deformation recovery. 
These methods work like commonly known 
image registration methods, which use 
control points to describe how parts of an 
image will be transformed. We propose 
such a new method, which we call smooth 
triangle method. All methods are explored 
and their accuracy in the picture 
deformation recovery are compared. Next, 
we determine the most accurate method 
among them. Our proposed smooth triangle 
method is very fast and sufficiently accurate 
comparing to others. Accuracy of various 
methods will be compared upon the new 
proposed methodology. 
 

Key words:  image registration, 
triangulation, thin plate spline, Shepard's 
method, Clough-Tocher method. 
 

 
Introduction 
 

Motivation for this paper was a need for an accurate geometric correction of scanned 
cadastral maps (maps of land lots and owners). Many of these maps are very old. They are 
distorted or deformed by climatic influences. The identification points (Geodetic Control 
Points), that represent part of distinguish objects such as old trees, corners of big buildings, 
etc. are often used in the process of a map creation. If we know their accurate position, they 
can help us remove map deformation. Cadastral maps have also another type of identification 
points, which make regularly spaced rectangular grid. 

A picture of a map is then converted into vector form (by an automatic or manual 
vectorization tool) and consequently coordinates of all polygons vertices are computed. These 
polygons are used to compute land areas, which are often written into land databases. 

Our paper describes some picture transformation methods. All of them can be divided 
into two classes – one-segment or many-segment transformation methods. However, we can 
also classify these methods as global or local. The one-segment methods are global methods 

                                                 
1  This work was supported by VEGA grant No. 1/3024/06. 
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naturally, but we can make them local. Their transformation function f(x) is expressed by one 
formula on the whole domain. Among them, radial basis functions are the most popular. The 
many-segment methods (often known as finite element methods) are all local and their trans-
formation function consists of more than one polynomial function. All methods in this class 
are based on the triangulation of the given input control points. The components of the vector 
function f(x) can be considered as two explicit surfaces interpolating two sets of 3-D points. 
Well known methods in this section are Clough-Tocher and Powell-Sabin methods. 

The discussed topics can be found (in slovak language) in more details in [3]. 

1. Transformation Methods 

Suppose, we are given two sets of n points P, V ∈ E2 , P = {pi[xi, yi]∈E2; i = 1, ... , n} and 

V ={vi[xi', yi']∈E2; i = 1, ... , n}. The set P consists of identification points on a deformed picture 

and the set V comprises of points on an ideal undeformed picture2. We call pairs (pi, vi) as 

corresponding points. Then we seek a transformation function f: E2→E2 such that f(pi) = vi, 

where i = 1, 2, ... , n. Using the function f(x), we will transform all points of the input picture. 

1.1. One-segment Transformation Methods 
Methods which belong to this class are such methods whose transformation functions 

are given by one formula on the whole domain. The main advantage of these methods is their 
simple expression and possibility to compute pixels of the new picture laying outside the con-
vex hull of the input corresponding points. 

Their transformation functions have almost global influence on the transformed picture. 
By some modification of these methods, we can obtain transformation functions with local 
character. In this section, we describe the thin plate spline method and Shepard's method. 

1.1.1. Thin Plate Splines Method 
Thin Plate Splines method (or radial basis function methods) is the most preferable 

method for the image warping. We can also use it in the picture deformation recovery. 
The interpolating transformation function f(x) is shown below [7]: 
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In the case of thin plate spline d = 2, k = 2 and from this follow R2,2(r) = r2log(r). If we need 
higher smoothness degree, then we choose k > 2. 

If the dimension d = 2 and k = 2 we can rewrite formula (1) as: 

                                                 
2  The position of these points can be computed from their world (geodetic) coordinates or can be determined 
straightforward if they are points of a rectangular grid. 
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Applying interpolation conditions f(pi) = vi , where i = 1, 2, … , n together with boundary 
conditions (3) we can compute the unknown values via the next system of equations: 
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where ( ) ( )2222
ijijjiij yy+xx=r=r −− . 

1.1.2. Shepard's Method 
Perhaps the best approach of solving the scattered data interpolation problem is the 

Shepard's method, see [8]. 
Analogously to the previous section, we are looking for a transformation function f(x), 

which satisfies the conditions f(pi) = vi, where i = 1, 2, … , n. Shepard defined his 
interpolating function f(x) to be weighted mean of the coordinates vi  [6]: 

( ) ( )∑ω
n

=i
ii=

1
vxxf . (5)

Weight functions ωi(x) from formula (5) can be expressed: 
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final surface in the neighborhood of the interpolated points. 
The global character of this method can be made local by multiplying weighted function 

ωi(x) by mollifying function λi(x) ∈ C(Rd). As an example of such a mollifying function is the 

Franke-Little weight [6]: 
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Franke and Nielson proposed ( ) 2/1/2/1 nND=R wi , where D is the maximum distance 
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between arbitrary two points of the set P and Nw is a fixed integer (usually Nw = 19; heuristic 
obtained value). 

Franke and Nielson in [4] generalized the Shepard's method by using local interpolants. 
They proposed to replace vi by local interpolating functions Li(x) with interpolation property 
Li(pi) = vi. We get: 

( ) ( ) ( )xLxxf i

n

=i
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1
ω . (7)

If the interpolation functions are quadratic functions, we obtain sufficiently smooth 
surfaces with relatively low computational complexity. 

 Modified quadratic Shepard's method is one of such methods. Using formula (7) we 
get: 
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where the local quadratic interpolant Qk(x, y) is defined by: 
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The coefficients ci,j in Qi(x, y) can be computed by least square method using 
conditions: 
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1.2. Many-segment Transformation Methods 

Many-segment methods (mostly known as Finite Element Methods) are primarily based 
on a triangulation of the input points of the set P. This triangulation divides the area of the 
input picture into triangle regions whereas each region is transformed by its own transforma-
tion function. In all FEM methods, we need to ensure that all transformed points lie inside the 
convex hull of the set P. We describe several such methods. 

1.2.1. Simple Triangle Method 

At first, we create a Delaunay triangulation of all input points of the set P. Next, all 
points within each triangle of the input picture will be transformed using the corresponding 
affine transformation. 

Then the transformation function can be evaluated by the following algorithm: 
For each picture point X[x, y], we find a triangle ABC such that X ∈ ∆ABC. If there exist more 
such triangles, we choose an arbitrary one. The coordinates of the new point X'[x', y'] are 
computed from equations of the affine transformation, which are given by conditions that 
points A, B, C ∈ P are transformed into points A', B', C' ∈ V, respectively: 
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x' = a1x + b1y + c1  and  y' = a2x + b2y + c2 , (11)

where 
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1.2.2. Smooth Triangle Method 

We can obtain better results (from the aspect of “quality” picture deformation recovery), 
when we compute the coordinates of the new points as a weighted sum of the projections of 
the point X, where weights depend on the neighboring triangles. 

Let Ti denotes triangle ABC and Ta, Tb, Tc denote its neighbors. As in the previous 
method, let for each triangle Ti ⊂ P be assigned a triangle Ti' ⊂ ν. Let for each pair (Ti, Ti') be 
assigned the affine transformation fi, such that the vertices of Ti are transformed to the vertices 
of Ti'. Let fa, fb, fc denote the affine transformations associated to pairs (Ta, Ta'), (Tb, Tb'), 
(Tc, Tc'), respectively. Further, we denote )(XfX ifi

= . 

The coordinates of the new point X' can be computed from formula: 

X' = ωa Xfa + ωb Xfb + ωc Xfc + ωi Xfi ,      (12) 

where  ωa + ωb + ωc + ωi = 1  and  ωa, ωb, ωc, ωi ≥ 0. 
Clearly, the weights ωa, ωb, ωc are attached to the neighbors of the triangle Ti. The 

weights ωa = g(a), ωb = g(b), ωc = g(c) can be computed using the barycentric coordinates 
(a, b, c) of the point X by a function g(x) ∈ C1(R) from the conditions: 

1. g(x) ≥ 0,  if  0 ≤ x ≤ 1 
2. g(x) is decreasing on 0 ≤ x ≤ 1/3 
3. g(0) = 1/2 
4. g(x) = 0  for x ≥ 1/3 
5. g'(x)| x =1/3 = 0. 

The remaining weight ωi can be computed from: 
ωi =1 − (ωa + ωb + ωc). 

It is easy to prove that ωi ≥ 0. 
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Any of weights ωj belonging to the neighbor Tj of the triangle Ti is constructed so that 
the weight is equal to 1/2 for a point lying on their common side and is equal to 0 if the point 
is lying in the barycenter of the triangle (see Fig. 1). 

Examples of functions, which satisfy the conditions described above are (see Fig. 2): 
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The main advantage of our triangle methods is their simple expression and also their 
low computational complexity. The second method provides C1 continuous results which is 
commonly required. 

 

1.2.3. Clough-Tocher Method 
One of the main drawback of piecewise linear interpolation schemes is that they are 

only C0 continuous in general. We often require C1 continuity across the boundaries between 
triangles. C1 continuity obviously requires piecewise interpolation schemes based on 
polynomials of higher order than 1. 

In order to guarantee C1 continuity across boundaries, we need know not only vertex 
coordinates [xi, yi] and their value zi, but also other information. This information includes 

 

Fig. 1.  The weight ωc which corresponding to the triangle Tc is computed 
 from the position of the point X in the triangle Ti 

 

Fig. 1.  Examples of the weight functions g(x) 
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tangent plane (or gradient) at each vertex of the triangulation, as well as cross derivatives at 
the midpoint of each edge of the triangulation. However, the assumption of given gradients is 
not always realistic. In the most cases, they will have to be estimated from the given vertices. 
This can be done by considering the known values not only in the vertices of the actual 
triangle, but also in its neighborhoods. Some methods for the gradient estimation we can find 
in [9] and [1]. 

To construct C1 continuous cubic Clough-Tocher interpolant, we divide each triangle of 
the input triangulation into three minitriangles by connecting its vertices to a point lying 
inside the triangle (usually taken as the barycenter of the triangle). 

The final function f(x) will be C1 continuous surface which consists of cubic Bézier 
triangles over all minitriangles. Clough-Tocher method uses cubic Bézier triangles in the 
form: 

X(u, v, w) = b300u3 + 3b210u2v + 3b120uv2 + 

+ b030v3 + 3b021v2w + 3b012vw2 +   (13) 

+ b003w3 + 3b102w2u + 3b201wu2 + 6b111uvw 
 
Computation of the Bézier Ordinates bijk 

The Bézier ordinates of the control net of three adjacent triangle patches can be 
evaluated by the next algorithm: 

The coordinates [x, y] of the ten Bézier ordinates within each minitriangle are fully 
determined by the control net. They are located either at the minitriangle vertices, or the 1/3 
or 2/3 length of each edge, or at the barycenter of the minitriangle. 

The values z of these Bézier ordinates are determined by the next steps: 
1. The values z of the Bézier ordinates (above P1 and P2) denoted by „●“ are z values 

of the points B1 and B2 from the given triangulation (see Fig. 3): 
b300 = B1  a  b030 = B2. 

2. The values z of the vertices denoted by „●“ which lie on the boundary of the control 
net can be computed from condition, that these vertices lie in the tanget plane given 
by the point B1 or B2 and by normal at this point (see Fig. 3): 

b210 = b300 + 1/3De1X(1, 0, 0) 

b120 = b030 + 1/3D-e1X(0, 1, 0), 
where De1X(u) denotes directional derivative3 in the direction e1 at the point u (see 
Fig. 4). 

3. The values z of vertices denoted by „●“ which lie on the lines from the centre of 
triangle to its vertices are determined by three already computed vertices „●“ 
because they all lie on the same plane: 

b201 = 1/3(b300 + b210 + b'120). 
4. The values z of three vertices denoted by „▲“ can be determined from the estimated 

crossboundary derivative at the midpoint of each of three edges of the triangle 
B1B2B3. These vertices lie in the plane which is determined by the point S of the 
Bézier curve (for the parameter t = 1/2) given by the control points b300, b210, b120, 

                                                 
3  The directional derivative can be estimated from the direction of the normal vector at given point. 
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b030 and by the normal vector computed from the linear combination of the normals 
at the triangle vertices (see Fig. 3): 

b111 = 2DdX(1/2, 1/2, 0) – 1/2(ξ1 + ξ2) + 1/2(b210 + b120), 

where  ξ1 = b201 – 1/2(b300 + b210)  and  ξ2 = b021 – 1/2(b120 + b030). 

5. The values z of three vertices denoted by „○“ can be computed from condition that 
they lie in the plane determined by two already calculated vertices „▲“ and by one 
inner vertex „●“ (because two adjacent microtriangles with vertices „▲, ●, ○“ have 
to be coplanar, see Fig. 3): 

b102 = 1/3(b201 + b111 + b'111). 
6. The last Bézier ordinate „□“, which is placed above the center of the triangle 

P1P2P3, lies in the plane determined by three vertices „○“ because the three „center“ 
triangles must be coplanar: 

b003 = 1/3(b102 + b012 + b'102). 
 

 

 

Fig. 2.  Construction of the Bézier ordinates over the three minitriangles (left - top view) 

 

Fig. 3.  Normals and crossboundary derivatives determine the position 
of the Bézier ordinates b210, b120, b111 
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Once we have computed all coordinates of the ordinates bijk, we can use formula (13) 
to evaluate points of the Bézier triangle over the actual minitriangle (we need three such 
patches to “cover” the triangle B1B2B3). Analogously, we calculate patches of each other 
triangles in the given triangulation and thus we obtain C1 continuous interpolated surface. 

2. Comparison of the Methods 
The “accuracy” of here described methods (in the term of the picture deformation 

recovery) was evaluated basically on the picture with black and white grid and its three 
deformations (see Fig. 5). The first deformed picture was created by shrinking the middles of 
the grid boundary towards its center, the second one was deformed by transformation which 
warped its boundary and the last one was deformed by four local deformations (by translating 
and scaling). 

All deformed pictures were recovered by here presented methods. For deformation 
recovery in the first picture we had used 13, in the second one 37 and in the third 86 pairs of 
the corresponding points (see Fig. 6). The number of the points was chosen according to the 
type of the particular deformations. 

 
 

 

 

 

Fig. 5.  Corresponding points for the image deformation recovery  
 of the three deformed pictures 

 
Fig. 4.  Original picture and its three deformations  

(from the left: original, shrinked, warped, locally deformed picture) 
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The accuracy of the methods was evaluated by the cross-correlation coefficient: 
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where xij denote pixels of the input picture and yij denotes pixels of the compared picture. 
 
 

 
 

 

Graph 1.  Comparison of the methods for image deformation recovery 
of the shrinked, warped and locally deformed picture 

deformed
(86 points)

warped
(37 points)

shrinked
(13 points)

Simple triangle method 0,72158 0,72185 0,74822

Smooth triangle method 0,72318 0,73162 0,75398

Thin plate spline method 0,77261 0,80886 0,83655
Quadratic Shepard's
method

0,73866 0,74335 0,81108

Clough-Tocher method 0,75509 0,81454 0,79438
 

 
Table 1.  Comparison of the methods for image deformation recovery 

of the shrinked, warped and locally deformed picture 
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3. Conclusion 
In this paper, some transformation methods were explored and their accuracies in the 

image deformation recovery were compared. From the table and graph above we can see that 
the thin plate spline method gives the best results, because its accuracy (measured by cross-
correlation coefficient) has the almost highest values. We can also deduce that the thin spline 
method is the most suitable for the picture deformation recovery among all methods consid-
ered here. 

We have also proposed new transformation method. Our simple triangle method has 
satisfactory accuracy and its computational simplicity can be very useful, especially in real-
time computing. 

Transformation functions play a major role in image registration. Examples of the 
transformation functions here presented methods on the sample points evaluated from the 
standard Franke test function F1(x, y) [5] are shown on the Fig. 6. 
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