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Abstract

This work describes an implementation of optical phenomena
on water surfaces. Despite high performance of current graph-
ics hardware, shaders need essential simpli�cations and numerical
approximation. Here we propose the implementation of common
e�ects such as re�ection, refraction and caustics. In order to have
a simple and elegant implementation we have done coarse ap-
proximations to achieve real time animation, while still having a
realistic appearance, which is important in real time simulation
and games.

Categories: [Computer graphics]: Three-Dimensional Graph-
ics and Realism

Keywords: refraction, re�ection, caustics
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Chapter 1

Overview

Chapter 2 of this thesis gives an outline of the problem and dis-
cusses aims of this work.

Chapter 3 brie�y discusses state of the art and common tech-
niques used in this area.

Chapter 4 describes application programming interface and spec-
i�cation of our implementation.

Chapter 5 is devoted to obtaining textures needed to environ-
mental mapping.

Chapter 6 discusses an explanation of how is colour of the water
determined.

Chapter 7 will elaborate algorithms for environmental mapping
and water surface shading.

Chapter 8 is devoted to creating caustic texture on CPU and
GPU.

Chapter 9 provides implementation of proposed algorithms in the
OpenGL Shading Language.

Chapter 10 discusses achieved results with proposed implemen-
tation.
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Chapter 11 summarizes all our e�orts and concludes this thesis
and discusses possible future directions.
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Chapter 2

Introductions

Ray tracing is a fundamental problem that makes the photo-
realistic rendering of water surfaces so di�cult. Particularly to
achieve real time frame rates. There are still some programming
constrains in graphics hardware that need to be overrun. Com-
putation of �nal colour of our surface is performed in a shader
program. We will use the OpenGL Shading Language to write
the shaders. A �uid represented as a triangular mesh serves as
an input to our shader that can be generated by the known �uid
dynamic methods. Although �uid movement simulation is out of
scope of this work, there is plenty of literature devoted to this
problem. Additional input data is the environment consisting of
mesh and textures of objects (e.g. plants, shore, skybox). Gener-
ally, the object can be under the water surface, above the water,
or following on the surface. To handle all these cases we should
focus on the known solution based on the environmental textures.
The primary goal is to achieve realistic appearance using a simple
straightforward procedure and to deal with constrains.
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Chapter 3

Related work

Several works in the past were focused on realistic rendering of
water surfaces. Previous approaches mostly based on ray tracing
are computationally intensive and can not be used in real time.
For this purpose we propose a simpli�ed model of the optical
phenomena.

Optical e�ects like re�ection and refraction are mostly done by
environment mapping techniques.

First work devoted to environment mapping was [Bli76] pub-
lished in seventies of twentieth century.

Newer approach based on GPU is proposed in paper [YYM05].
Work [Bel03] is devoted to creation of the triangular water

surface and implementation of fundamental optics phenomena on
featureless graphics hardware. Creation of water surface in [Bel03]
is based on results of oceanography research. There are presented
two models for imitating optics e�ects called �re�ection and re-
fraction� and �sky re�ection�.

The idea of the �rst model is that the whole scene (except
water) is rendered into main camera forming �refraction� texture.
Camera in the mirror position under the water plane, produces
�re�ection� texture. Then using projection mapping, the textures
are mapped onto the water surface and mixed, using Fresnel coef-
�cient. This technique works �ne for a plane water. For oscillating
water is need to take into account the normal change to get the
correct result. It can be done in such way: in every grid point of
surface is calculated the re�ection ray and intersect it in with the
plane raised above the water plane; intersection point is then pro-
jected into camera to form texture coordinate for the grid point.
Texture coordinates for �refraction� are calculated in [Bel03] in
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the same way as �re�ection� except for three things: plane is low-
ered, refraction vector is used and intersection point is projected
to main camera.

Second model can be used in case of invisible or nearly invisible
bottom, for the open water (or the water that does not re�ect
anything except sky). It is based on per-pixel cubic environment
mapping. So this approach need bump and cubic environment
texture. Environment texture should contain sky (or other things
to be re�ected). Bump is generated fromN xN normals matrix.

Proposed rendering technique is mostly depending on the way
of constructing mesh representing water surface. In work [Bel03]
four requirements appeared during the construction of surface. By
the �rst requirement, �nal triangular representation of water sur-
face must allow fast culling of invisible (out of the camera frustum)
triangles. Of course, no calculations should be performed for ver-
tices of the invisible triangles. The second requirement appeared
because of artefacts in the �nal image when using translucency.
The problem is in triangle rendering order (it is very important
when dealing with translucent objects and z-bu�er). When the
triangle order was back-to-front, the distant triangles were seen
through near ones, thus creating those artefacts. So, in a result-
ing mesh all triangles should be sorted front-to-back. To produce
water surface of acceptable quality the grid step should be small
enough. So the third requirement says mesh building algorithm
must provide enough details near the camera while overall trian-
gles number should be not very big. The fourth requirement is
simple: water surface mesh should be easily stripi�able. That is
for improving rendering speed.

Although proposed work covers fundamentals of water visual-
ization, it does not involve features like light transporting model
and caustics. This work also do not involve current hardware
features like the fragment shader which could performs per-pixel
lighting and shading of the water surface.
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Works devoted to refraction usually consider one transparent
object surrounded by an in�nitely far environment represented
by an environment map. This assumption can not be used in
the case of the refraction of a ground surface through a water
volume. Computing the refraction of nearby objects can be done
with memory costly light-�eld precomputations [HLCS99].

The essential problem is also the colour calculation. As ex-
plained by [PA01], the physical study of light-water interactions
is a full-�edged research �eld with a vast literature. For example
Belyaev in [Bel04] proposed conversion from the energy-spectral
representation to RGB colour space.

Tessendorf in [Tes02] is discuss radiosity of the ocean environ-
ment. The ocean environment consists of only four components:
The water surface, the air, the sun, and the water volume below
the surface.

The light seen by a camera is dependent on the �ow of light
energy from the source (i.e. the sun and sky) to the surface and
into the camera. In addition to specular re�ection of direct sun-
light and skylight from the surface, some fraction of the incident
light is transmitted through the surface. Ultimately, a fraction
of the transmitted light is scattered by the water volume back
up through the interface and into the air. Some of the light that
is re�ected or refracted at the surface may strike the surface a
second time, producing more re�ection and refraction events. Un-
der some viewing conditions, multiple re�ections and refractions
can have a noticeable impact on images. Tessendorf ignore more
than one re�ection or refraction from the surface at a time. This
not only makes his algorithms and computation easier and faster,
but also is reasonably accurate in most viewing conditions and
produces visually realistic imagery.

General part of [Tes02] is devoted to the mathematical descrip-
tion of the ocean waves. This is out of scope of our research.

Authors in [GC06] also present a real-time technique to render
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realistic water volumes. But water volumes are represented as the
space enclosed between a ground height�eld and an animable wa-
ter surface height�eld. Method in [GC06] is a simpli�ed raytracing
approach which handles re�ections and refractions and allows to
render complex e�ects such as light absorption, refracted shadows
and refracted caustics. They represent a water volume with two
height�elds, the ground surface and the water surface, both en-
coded as 2D textures. In they approach is fragment shader used
to perform ray-tracing. During this, they only consider one level
of recursivity: for each viewing ray, they found the intersection
with the water surface, then the intersection of the refracted ray
with the ground. This single level recursion assumption is correct
if the ground is non-re�ective, and if no light-ray crosses the water
surface more than once.

Caustics are caused by the convergence of light due to re�ec-
tions and refractions. Computing caustics is hard to carry out
in a forward raytracing approach because it requires to count the
amount of incoming light at each rendered point. That is why
most existing caustics algorithms are based on backward raytrac-
ing: rays are cast from the light source instead of the view point.
In [GC06] is used a two-pass photon-mapping-like algorithm, in-
volving GPU/CPU transfers of textures. The �rst pass renders
the water surface from the light source into a photon texture. The
texels of this texture record the coordinates of where the corre-
sponding light rays hits the ground. Since the ground is a height-
�eld, they needed only recording the (x, y) coordinates, which
leaves the third channel of the texture available to store the pho-
ton contribution, based on the Fresnel transmittance, the traveled
distance, the incident angle and a ray sampling weight. Then the
photon texture is transfered to CPU where it was processed to
construct an illumination texture. The illumination texture is
then transferred to the GPU where it is used for lighting in the
�nal render pass.
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Proposed work is devoted to height�eld rendering and has the
problem of geometry-based objects that penetrate the water. This
issue could be solved by dynamic projection of the geometry onto
the height�elds.

Caustics mapping is also discussed in [MKP05], however this
algorithm requires texture access in the vertex shader for inter-
section estimation in the caustic map generation step.
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Chapter 4
Software speci�cation

The goal of this work is to create algorithm providing real time
visualization with photorealistic results. Real time rendering re-
quires solution based on the GPU. One of possible way is to use
OpenGL application programming interface.

4.1 Development environment

OpenGL is the premier environment for developing portable,
interactive 2D and 3D graphics applications. Since its introduc-
tion in 1992, OpenGL has become the industry's most widely used
and supported 2D and 3D graphics application programming in-
terface. OpenGL fosters innovation and speeds application devel-
opment by incorporating a broad set of rendering, texture map-
ping, special e�ects, and other powerful visualization functions.
At its most basic level, OpenGL is a speci�cation, meaning it is
simply a document that describes a set of functions and the pre-
cise behaviors that they must perform. From this speci�cation,
hardware vendors create implementations, libraries of functions
created to match the functions stated in the OpenGL speci�ca-
tion, making use of hardware acceleration where possible.

With the recent advancements in graphics cards, new features
have been added to allow for increased �exibility in the rendering
pipeline at the vertex and fragment level. Programmability at this
level is achieved with the use of fragment and vertex shaders.

To program this fragment and vertex shaders in OpenGL is
most common way to use the GLSL, because it is a standard
high level shading language in OpenGL. GLSL shaders themselves
are simply a set of strings that are passed to the hardware ven-
dor's driver for compilation from within an application using the
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OpenGL API's entry points. Shaders can be created on the �y
from within an application or read in as text �les, but must be
sent to the driver in the form of a string.

TyphoonLabs ShaderDesigner is an integrated development en-
vironment which helps to developers creating vertex and fragment
shader programs in GLSL.

Due to goal of creating algorithms providing just visualization,
it is no need to build sophistic application. For testing results is
enough a simple window which displays rendered scene from the
speci�c position and direction of the camera controlled by arrow
keys and mouse. For this purpose is optimal solution based on
GLUT.

GLUT is designed for constructing small to medium sized OpenGL
programs. While GLUT is well-suited to learning OpenGL and de-
veloping simple OpenGL applications, GLUT is not a full-featured
toolkit so large applications requiring sophisticated user interfaces
are better o� using native window system toolkits, but it is simple,
easy, and small.

To work with features like Frame Bu�er Object, fragment and
vertex shaders or another extensions in OpenGL is use of GLEW
library suitable.

While OpenGL Shading Language is well for programming
GPU, C++ language is suitable choice for creating fast programs.
C++ uses a relatively straightforward compiler, provide low-level
access to memory, provide language constructs that map e�ciently
to machine instructions, and require minimal run-time support.

4.2 Data structures

Data structures using during visualization are often textures.
This textures are useful for example to perform environment map-
ping. Another structures are vertex arrays which store geometry
data. In OpenGL Shading Language are typical data structures
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vectors. Vectors are used for storing coordinates or colour infor-
mation.

4.3 Purpose of Program

Purpose of programming demonstration application is to prove
explored algorithms. In order to evaluate the results is necessary
display the scene with animated water surface and the frame rates
per second.

4.4 Operating description

Program loads environment scene geometry and textures. The
scene consists of the lake without water and its geometry is stored
in Wavefront OBJ �les. In the program after loading the scene, an-
imated water surface (triangular mesh generated by sine function)
is created and added into the scene. Main part of the program is
devoted to creation optical e�ects on this surface.
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Chapter 5

Refraction and Re�ection texture

The e�ect of re�ection and refraction in our approach similar to
[Bel03] and [Sou05] is achieved by two pass rendering algorithm.
In the �rst pass, we split the whole scene into the a�oat part and
the underwater part by the horizontal clipping plane.

5.1 Refraction texture

To obtain refraction texture we put clipping plane little bit
above the water plane (approximation of the water surface) to
store little bit more geometry.

Figure 1. Clipping pane.

Then we move main camera to more suitable position (we as-
sume here a�oat camera in this example, we will discuss under-
water camera later). We compute vector J (vector from bottom
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center point of the screen to the camera) with directiom same as
ray in bottom plane of view frustum. We �nd intersection point
O of this ray with the water plane. Intersection is given by

C1 - N.(C1−V)
N.J J (1)

where N is normal of clipping plane, C1 is position of main
camera and V is arbitrary point in the water plane. See Figure
1. Then we compute refraction vector R by formula

k = 1 - n12
2(1 - (N.I )2)

R = n12I - N ( n12 N.I +
√
k ) (2)

where n12= n1/n2 ; n1, n2 are indices of refraction and I
is normalized -J . We rotate camera around intersection point O
about same angle as between I and R. See Figure 1.

Then we render from this refraction camera just the underwa-
ter part of the environment (i.e. bottom part of the lake). See
Figure 2. Finally, we copy frame bu�er into our refraction texture
resulting in refraction texture consisting of the image of the lake
bottom. For future computation (e.g. deep) we may need depth
texture of the underwater part of environment. Therefore, it is
time to store the depth bu�er to a texture at this step.

Figure 2. Refraction camera.
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Consider the solid objects that are intersected by the plane.
After splitting them and removing their a�oat part, we may see
back faces inside them. See Figure 3.

Figure 3. Back face culling.

Note that appearance of back faces is not suitable. To avoid
this artifact, we should enable back face culling before clipping.

Once we have �nished generating refraction texture, we can
start to generate re�ection texture in the second pass.

5.2 Re�ection texture

To obtain this texture we must put clipping plane little bit
down and the main camera upside-down into its mirror position
(just scaling with Y=-1 if water plane is in the axes origin and
vertically to Y). We render the upper part of the split environ-
ment, as shown in Figure 4. After the rendering it, we store the
frame bu�er to the re�ection texture.
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Figure 4. Re�ection camera.

This approach has the problem of missed texels because rays
changed their direction on the water surface due to refraction and
re�ection. This causes us to see on the surface a larger area than
is actually stored in our refraction and re�ection textures. See
Figure 5. To restore the missing texture parts we extend the
�eld of view before rendering of the re�ection and the refraction
texture. In our case extending the �eld of view about 50% with
camera near the water surface was appropriate. When camera is
farther from the water surface then extension could be 20%.

Figure 5. Missing texture parts.
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Chapter 6
Colouring

Let us suppose a lake under the blue sky during daylight. What
attributes determine the ambient colour of the water surface? It
is the illumination and the water mixture. We simplify the out-
door scene to include sunlight and sky illumination. The water
consists of particles such as green algae or other impurities giving
the water its inherent colouring, such as the commonly encoun-
tered blue and greenish tones. Once we have obtained the global
colour of our water, we should deal with its transparency. Density
of the mentioned particles a�ects dirty appearance of the water
volume. Scattering of the light in water volume causes its atten-
uation. Note the visibility of underwater objects is dependent on
the amount of water between the object and the viewer. As a
result the lake bottom is visible in shallow water but not in deep
water. See Figure 6.

Figure 6. Colour of the water.
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Chapter 7
Pixel Shading

In this section we discuss how to obtain the colour of certain
pixels on water surfaces. We assume the water surface is repre-
sented by the mesh as an input. Let's summarize that we have
available surface refraction texture, depth texture of the underwa-
ter part, surface re�ection texture and global colour of the water
at this moment. First, we render the whole scene without water
using the �xed pipeline.

Then we render the surface and compute the colour of pixels
in fragment shader. Note that we have all the necessary stu� in
the shader now.

7.1 Intersection algorithm

Assume that we are in camera coordinates system. The a�oat
camera is looking at certain point U on the water surface. See
Figure 7 . We have depth texture of the bottom rendered from this
camera and vector R pointing to the bottom from U . Our task
is to estimate intersection of line from U in direction of R and
the bottom. We denote this line as p. Our �rst approximation is
point W 1.

Figure 7. First approximation.
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It is point on the line p, where distance:|A1 � U |=|W 1 �U |.
Distance |A1 � U | is obtained by comparing Z coordinate of the
A1 and U . Z coordinate of A1 is computed from depth texture.
Next step is to obtain point A2 by transforming the coordinates
of W 1 to the texture space and obtaining Z of the bottom from
depth texture. See Figure 8. We denote T as transformation from
the camera space to the texture space. If p has intersection with
line from A1 to A2 then we denoteW 2 as this intersection. See
Figure 8. We get this intersection by formula:

W 2 = U + ((A1 −U )×Q).(R×Q)
|R×Q |2 R (3)

where Q = A2 - A1.

Figure 8. Second approximation.

PointW 2 is between A1 and A2 i� |W 2 � A1| + | A2 �W 2|
= | A2 � A1|. Now we �nd intersection A3 of line from camera
through W 2 with the bottom. See Figure 9. This is computed
by obtaining Z coordinate of this intersection A3. Z coordinate is
obtained by transformation T of W 2 coordinates to the texture
coordinates and looking to depth texture at this coordinates. If p
intersects line between A2 and A3 then we compute intersection
point W 3. See Figure 9. Now we compute intersection A4 of
line from camera through W 3 with the bottom using our depth
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texture. Note that in the Figure 10 line p does not intersect the
line segment between A3 and A4. In this case we have two
con�gurations. In �rst con�guration Z coordinate of W j is closer
to camera then Z coordinate of Aj+1 (Z coordinate of camera is
0).

In Figure 10 is example for W 3 and A4. In this case we
compute W 4 on line from W 3 in direction R where length

|A4 � W 3| = |W 4 � W 3|. See Figure 11. In second con�gu-
ration Z coordinate of W j is farther from camera then Z coordi-
nate of Aj+1. See Figure 12. In this case we �nd W j+1 on line
from point W j up through point U where also |Aj+1�W j| =
|W j+1�W j|. See Figure 12.

We perform certain amount of steps of this algorithm. We
get point W i from step number i where for lengths stand:
|Ai�W i|≤|Aj�W j| where j is number of arbitrary step. Then
point W i is supposed to be rough approximation of intersection
of ray from U in direction R with the bottom.

Figure 9. Third approximation.
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Figure 10. Vector R do not point between A3 and A4.

Figure 11. Fourth approximation.

Figure 12. Z coordinate of Aj+1 is closer to camera then Z coordinate of W j.
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Next follows code of this algorithm. First function gives inter-
section of two lines.

vec3 RayIntersec(vec3 P1, vec3 P2, vec3 v1, vec3 v2)

{

vec3 c = P2-P1;

float m = dot(cross(c,v2),cross(v1,v2));

float n = pow(length(cross(v1,v2)),2.0);

return P1 + (m/n)*v1;

}

W0 = A0 = U;

dist = ∞;

for(int i = 0; i < n; i++)

{

uv = CameraSpaceToTextureSpace(Wi);

Z = DepthToZ(texture2D(depthTex, uv));

Ai+1 = vec3(Wi.x * Z/Wi.z, Wi.y * Z/Wi.z, Z);

if(|Ai+1-Wi| < dist){

W = Wi;

A = Ai+1;

dist = |Ai+1-Wi|;

}

Wi+1 = RayIntersec(Wi, U, Ai+1-Ai, R);

zn = 1;

if(|Ai+1-Ai| < |Wi+1-Ai|+|Ai+1-Wi+1| OR i = 0){

if(|Wi.z| > |Ai+1.z|) zn = -1;

Wi+1 = Wi + zn*|Ai+1-Wi|*R;

}

}

After n iterations we have as resultW one point fromU=W 0,W 1,...
...,W n-1.

7.2 Refracted colour from texel

When we are treating a certain pixel, we have got coordinates
of its corresponding point on the surface in camera coordinate sys-
tem. We have also got surface normal N at this point. We can
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easily compute normalized eye vector E , because the camera po-
sition is the origin of camera coordinate system. Once we have
the eye and the normal vector, we can compute the normalized re-
fraction vector R using air-water refraction index n12. Refraction
vector formula is (1) where I is -E . The direction of this refraction
vector is essential for determining which part of the underwater
part of the scene is mapped to current fragment of the surface.
Note that the functions computing re�ection and refraction vec-
tors are de�ned in the OpenGL Shading Language.

Since we do not perform the ray casting, we are unable to �nd
where the ray with direction R hits the bottom. See Figure 13.
We propose to estimate the hitting point by performing mentioned
intersection algorithm.

Figure 13. Refraction vector.

If we have obtained some approximationW by this algorithm,
we transform the coordinates of W to the texture coordinates of
our stored refraction texture by transformation T . Finally we ob-
tain the refracted colour C refract from the texel of the refraction
texture at this coordinate. This transformation T transforms co-
ordinates of points in camera coordinate system to texture coor-
dinates of corresponding points in the texture rendered from the
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same camera. T just determines where the speci�c object with
certain camera coordinates lies within the texture. Since refrac-
tion and main camera are not the same, we need trnsformation
M from main camera to refraction camera. When we are looking
up for texture coordinates of certain point in main camera coor-
dinates, we need �rst use transformation M to get coordinates in
refraction camera space and then apply transformation T to get
texture coordinates.

To achieve more foggy appearance of water we must mix in the
global colour of water in to refracted colour. First we de�ne the
attenuation coe�cient:

a := e(- kd) (4)

where k is a suitable constant which determines transparency
and d is the length |A - U | of the ray from surface to bottom
where A is computed in intersection algorithm. Now the new
refraction colour is updated by:

C newrefract := Cwater + a( C refract - Cwater ) (5)

where Cwater is global colour of water. Figure 6 shows variance
of the colour in the dependence of the deep.

7.3 Re�ected colour from texel

Let us consider re�ection. In this case we have to compute
the re�ection vector. See Figure 14. Letter R denotes normal-
ized re�ection vector. We determine re�ection colour C re�ect by
obtaining a texel form re�ection texture. This texel lies at the tex-
ture coordinates obtained by transformation T from coordinates
(in re�ection camera space) of the following point (see Figure 14):

W = U + cR (6)
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where U is a point on the surface that corresponds to the cur-
rent fragment in the camera coordinate system and c is a suitable
scaling factor. Factor c depends on scale range of the model.
Since we are using 1 meter, factor c equal 1 is suitable.

Figure 14. Re�ection vector.

This approach is a very coarse approximation. However, a
visual result is plausible. See Figure 15.

Final colour of the fragment is a combination of the new refrac-
tion colour C newrefract computed above and the re�ection colour
C re�ect obtained from texel in the re�ection texture. To add
Fresnel phenomenon we make the simplifying assumptions of the
Fresnel equations, because they are relatively complex. An ap-
proximation for the ratio between re�ected light and refracted
light according to [Ros06] is

F := f + (1 - f) (1 - ( E.N )) q (7)

In this equation, q is a suitable positive constant, E.N is a
dot product of normal and eye vector and f is the re�ectance of
the material
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f = (
1−n1

n2

1+n1

n2

)2 (8)

where n1 and n2 are the indices of refraction for air and water.

Figure 15. Re�ection.

7.4 Fragment colour

Final colour is calculated by the following formula:

C := C newrefract + F(C re�ect - C newrefract) (9)

where C is the �nal colour, C newrefract is new refraction colour
and C re�ect is the re�ection colour. Some artifacts may appear
in the water near the shore that can be �xed by moving camera
a little bit and adjusting the position of the bottom before the
rendering of refraction texture.
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7.5 Underwater camera

Proposed approach works �ne for camera with a�oat position.
Now we will discuss how to deal with camera underwater. When
we are underwater then we are surrounded just by the underwater
objects (including bottom) and the water surface. See Figure 16.
We are mixing in fragment shader global water colour into every
object in the scene except water surface. We render the scene
with underwater objects without the water surface (we will render
water surface later with another shader). Then we blend colour
of objects in the water volume by:

C := Cwater + a( C obj - Cwater ) (10)

where C is �nal colour, C obj is colour of objects under water
including bottom, d in attenuation coe�cient (4) is equal to dis-
tance from camera to object (|A1 � C1| in Figure 16, where A1 is
point correspondent to treated fragment in shader). Let us now
focus on rendering of the water surface from underwater camera.
Refraction texture is obtained from main camera C1. Re�ection
texture is obtained from camera C2 in mirror position. During
rendering of re�ection texture we mix (in fragmnet shader) global
water colour into the texture by formula (10). In attenuation co-
e�cient (4) parameter d is equal to |A2 � C2| (attenuation along
A2 � C2 is involved, where A2 is point correspondent to treated
fragment in shader).

Now we assume certain point U on the water surface (see
Figure 16). Note that N is surface normal (normal direction is
from water surface up toward sky) and E is eye vector. According
to [Ros06] when:

1 - 1,332 (1 - (N.E )) < 0 (11)

function refract() in GLSL returns 0. For this reason may
occurs some artifacts (no refraction appears) when is camera near
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the water surface. To avoid this we do not compute refraction
vector by function refract(), but we are using approximation:

R1 = 1,33 (-N-E ) + N (12)

Figure 16. Underwater camera.

Now we obtain W 1 by the formula:

W 1 = U + m R1 (13)

where m is suitable scaling parameter (in our example we use
1.5). We transform W1 to texture coordinate space and ob-
tain colour Crefract from texel in refraction texture at this
coordinates.

Re�ection vector R2 is obtained by standard formula:

R2 = 2(N.E )N � E (14)

where N is surface normal and E is eye vector. We obtain
W 2 similar by formula:

W 2 = U + m R2 (15)
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We transform W2 to texture coordinate space and obtain
colour Cre�ect from texel in re�ection texture at this coordinates.

To assign colour to fragment corresponding to point U on
water surface, we need mix refracted and re�ected colour. We use
formula (5) to add global water colour to refracted colour and get
C newrefract. In attenuation coe�cient (4) d is equal to |U�C1|.
Now we mix this C newrefract with C re�ect by (9) (in underwa-
ter camera case is n1 index of refraction for water and n2 for
air). Note that when we are blending between new re�ected and
refracted colour we always assume attenuation along U � C1 be-
cause it is involved in C newrefract. In C re�ect we have attenuation
along U � C2 (it was added during rendering of re�ection tex-
ture), but |U � C2| is close approximation of |U � C1|. Therefor
its close approximation is involved in C re�ect. In C re�ect we have
also involved attenuation along A2 � U (also added during ren-
dering of texture) which appears just in re�ection case because
the ray is redirected back into the water volume.
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Chapter 8
Caustics mapping

Caustics are observed as brightness; an increase due to many
light paths hitting a bottom at the same position. We will map
caustics to the bottom during rendering of the refraction texture.
For this reason we create the caustics texture and then we map this
texture using shadow mapping technique to the bottom. Firstly,
we set up an orthogonal camera in the light direction. See Figure
17. We use orthogonal projection because the sun rays are almost
parallel. Then we render underwater part of the scene from light
position and store the Z bu�er to the depth texture.

8.1 CPU approach

Creating the caustics texture is performed by casting of the
photons to the surface. We just render the water surface from our
orthogonal camera with speci�c shader program. In this shader
we approximate the position where the photon hits the bottom or
underwater object by position of the pointW in the same way as
intersection in the refraction case. Then we transform coordinates
of W in camera space to texture coordinates and store these uv
coordinates to the fragment colour in RG components. Next we
estimate photon contribution, based on Fresnel transmittance and
the traveled distance. This contribution is obtained in the same
way as the colour was obtained; the refraction colour is now white
and the others are black. We store the result into the B component
of the fragment colour. Then we store the frame bu�er obtained
by this shader to array in the main memory. Finally we create the
caustics texture by searching this array on CPU and adding the
stored amount of light (B component) to stored coordinates (RG
components). The algorithm outline of searching is the following:
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for x = 1 to viewport_width

for y = 1 to viewport_height

u_coord = array[x][y].r

v_coord = array[x][y].g;

illum = array[x][y].b;

caustics_texture(u_coord,v_coord) += illum;

Thus the caustics texture consists of the values of light that
reach a bottom or underwater object from light a position. We
map the caustics texture to the lake bottom.

Figure 17. Mapping the photons from the orthogonal camera.

8.1 GPU approach

OpenGL 2.1 adds backwards compatible enhancements to OpenGL's
advanced programmable pipeline including: Pixel Bu�er Objects
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for fast texture and pixel copies between frame bu�er and bu�er
objects in GPU memory; texture images speci�ed in standard
sRGB color space for enhanced application color management �ex-
ibility. Suggestion [Sta08] was based on usage of Pixel Bu�er Ob-
ject. First we attach �oat texture to Frame Bu�er Object and
render water surface by mentioned fragment shader which stores
coordinates of intersection to RG and intensity to B component.
Then we copy this to Vertex Bu�er Object. If we draw this Vertex
Bu�er Object we will get vertices with coordinates: X = R, Y =
G and Z = B. We can now treat this vertices in the vertex shader.
Note that we have uv coordinates of photon in X and Y coordi-
nates of vertex and its intensity in Z coordinate. Before rendering
to caustics texture we setup orthogonal projection where X and Y
are from 0 to 1 (because uv coordinates are from 0 to 1 and then
we do not need to transform it in vertex program). Then we ren-
der this vertices as points and we de�ne its color in vertex program
as photon intensity (Z coordinate of vertex). To achieve e�ect of
caustics we need to increase intensity by every point which hits the
same position. This is done by enabling blending with function
which increase color in framebu�er by incoming color (addition of
both colours). Then we store this to caustics texture.

If graphics card does not support Pixel Bu�er Object, we can
(same as in CPU approach) store fragment bu�er (with uv coor-
dinates and photon intensities) into array in main memory. We
can draw this array as array of vertices. We process this vertices
in vertex program and blend them as points in the same way as
was mentioned.
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Chapter 9
Implementation

As we mentioned earlier, we have decided to use OpenGL
Shading Language. Let us describe the key parts of our fragment
shader.

9.1 Refraction and re�ection

Let E denotes normalized eye vector, N is surface normal in
main camera coordinate space. Now we assume refraction cam-
era. We denote dv as the length from current point to the
bottom (|A1-U | in Figure 7). Following code performs proposed
intersection algorithm.

vec2 TexCoor(vec3 ve){

vec4 pos = gl_ProjectionMatrix * vec4(ve, 0.0);

float s = (pos.x/pos.w)/(2.0*FOV_ext) + 0.5;

float t = (pos.y/pos.w)/(2.0*FOV_ext) + 0.5;

return vec2(s, t);

}

vec3 RayIntersec(vec3 P1, vec3 P2, vec3 v1, vec3 v2){

vec3 c = P2-P1;

float m = dot(cross(c,v2),cross(v1,v2));

float n = pow(length(cross(v1,v2)),2.0);
return P1 + (m/n)*v1;

}

vec3 toRefractionCamSpace(vec3 v){

return vec3 (gl_TextureMatrix[2] * vec4(v, 0.0));

}

//refraction, step1 - computation A1 W1

vec3 refrvec = refract(-E,N,0.75);

vec3 R1 = toRefractionCamSpace(refrvec);

vec3 u1 = toRefractionCamSpace(u);

vec3 E1 = normalize(-u1);

vec3 A1 = u1 + dv*(-E1);

vec3 W1 = u1 + dv*R1;
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//step 2 - computation A2 , W2

vec2 t_coor = TexCoor(W1);

depth = ConvertDepth(texture2D(depthTex, t_coor).z);

vec3 A2 = -vec3(W1.x*depth/W1.z, W1.y*depth/W1.z, depth);

W = W1;

dist = length(A2-W1);

A = A2;

vec3 W2 = RayIntersec(A1,u1,A2-A1,R1);

float len1=length(A2-A1);

float len2=length(W2-A1);

float len3=length(A2-W2);

float zn = 1.0;

if(len1*1.1 < len2+len3){

if(abs(W1.z)> abs(A2.z)) zn = -1.0;

W2 = W1 + zn*length(A2-W1)*refrvec;

}

//step 3- computation A3, W3

t_coor = TexCoor(W2);

depth = ConvertDepth(texture2D(depthTex, t_coor).z);

vec3 A3 = -vec3(W2.x*depth/W2.z, W2.y*depth/W2.z, depth);

if(length(A3-W2) < dist){

W = W2;

dist = length(A3-W2);

A = A3;

}

Because of hardware constrains we are not able to perform more
then just three steps of our intersection algorithm. Note that u is
the current point (correspondent to treated fragment) on the sur-
face in main camera coordinates. As a result the point W is sup-
posed to be on the bottom, where the refracted ray hits it. We get
u1 and R1 by transformation M from u and refraction vector.
M is transformation from the main camera coordinate space to
refraction camera coordinate space (see Section 7.2) performed by
toRefractionCamSpace() (in matrix gl_TextureMatrix[2] is
transformation from main camera modelview to refraction camera
modelview).
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Function ConvertDepth() converts depth bu�er values to Z
coordinetes. To get texture coordinates we perform transforma-
tion T (from camera coordinates to texture coordinates) by func-
tion TexCoor(). Since we have extended �eld of view (see Figure
5) during rendering of textures, we assume coe�cient of extension
of �eld of view FOV_ext . Selection of colour of texel in our re-
fraction texture noted by refraTex is then given by the following
two lines.

t_coor = TexCoor(W);

vec4 refrcol = texture2D(refraTex, t_coor);

The rendering pass for re�ection is simpler then the above ap-
proach, and is described by the following code.

vec3 refl = c*reflect(-reflect(-E,N),-wn);

t_coor = TexCoor(ur + refl);

vec4 reflcol = texture2D(refleTex, t_coor);

Here we consider the re�ection texture noted by re�eTex and
determine the texture coordinates using re�ection vector. Con-
stant c is a suitable scaling factor. Note that wn is normal to
our clipping plane used to transform re�ection vector into the re-
�ection camera space. Also ur is mirror position of u on the
other side of the water plane. Then we obtain colour of texel from
re�eTex .

Once we have obtained the colour of both texels, we should mix
them to create the �nal fragment colour. We add colour of water
to refracted colour. We compute d , the length from u to bottom
A from intersection algorithm. Then we update the refraction
colour as we explained earlier. We write this in OpenGL Shading
Language notation as

float d = length(A-u); //length from surface to bottom

float a = exp(-d*k);

newrefrcol = watercol + a*(refrcol-watercol);
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Note that the parameter k determines transparency of the wa-
ter. The Following code will mix it with the re�ected colour.

float f = ((1.0-0.75)*(1.0-0.75))/((1.0+0.75)*(1.0+0.75));

fFresnel= f + (1.0-f)*pow(1.0-max(dot(E,N),0.0), q);

vec4 col = newrefrcol + fFresnel*(newreflcol-refrcol);

This adds Fresnel phenomena to the �nal appearance of our
surface.

9.2 Caustics

For caustics texture the resolution of 256x256 with enabled
�ltering is suitable. To add the caustics we map caustics texture to
bottom using shader which works similar to the shadow mapping.
Therefore we can add also shadows. To create caustics texture we
perform a technique similar to photon mapping. Note that the
sun produces the directional light; for this reason we set up the
orthogonal projection. We put the orthogonal camera above the
water surface to render the bottom from light position and store
Z bu�er to depth texture. This texture is used to compute length
dv=|A1 - U | and d=|A2 - U | from Figure 8 in the fragment
shader.

vec3 W1 = u + refract(-E,N,0.75)*dv;

vec4 refrpos = gl_ProjectionMatrix * vec4(W1,1.0);

float tx2 = (refrpos.x/refrpos.w)/2.0+0.5;

float ty2 = (refrpos.y/refrpos.w)/2.0+0.5;

depth = ConvertDepth(texture2D(depthTex, vec2(tx2, ty2)).z);

vec3 A2 = -vec3(W1.x*depth/W1.z, W1.y*depth/W1.z, depth);

float d = length(A2-u);

float blend = exp(-d*k);

float illum = 1.0 - fFresnel;

illum = blend * illum;

gl_FragColor = vec4(tx2, ty2, illum, 1.0);
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First part of this shader code is actually one iteration of
our intersection algorithm. We are here computing the texture
coordinates, but they are not referred to in any texture yet. At
this point, we estimate where the photon cast from camera is
hitting the bottom. See Figure 17. Second part of this shader code
is similar to the computation of a colour, but here we compute
just the intensity noted by illum . It represents the amount of
�not-scattered� or re�ected energy in the place where the photon
hits the bottom. The shader stores coordinates where the photon
hits the bottom into RG component of fragment colour. It stores
illum in B component. We store the frame bu�er rendered by
this shader to the array in the main memory. Finally we can
create the caustics texture by searching this array and adding
illum value into texel in caustics texture on the corresponding
texture coordinates stored in the RG components on CPU. We
can bypass searching of this array on CPU by drawing it as vertex
array and threat it in vertex program. We use transformation
from orthogonal camera to main camera to map caustics texture.
Since we have stored depth texture we can easily add shadows.

9.3 Glow

To achieve this HDR e�ect we render only water surface spec-
ular highlight into low resolution viewport by following fragment
shader:

float RE = dot(R,E);

vec4 sun_color = vec4(1.0,1.0,0.8,1.0);

gl_FragColor = pow(max(0.0, RE),200.0) * sun_color;

where N is surface normal and E is eye vector. Then we store
the framebu�er into the array in main memory. Next we apply
following �lter to this rendered image and store it to glow texture:
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for x = 1 to viewport_width

for y = 1 to viewport_height

color = array[x][y] / 13;

for k = -3 to 3

for l = -3 to 3

if (k<>0 AND l<>0)

color += array[x][y] / 13;

glow_texture(x,y) = color;

We are dividing each intensity by 13 because there are 13 ele-
ments on diagonal of grid 7x7. We are �nally blending this texture
with glow into rendered images.

9.4 Constans and parameters

We have examined variety of parameters. The following table
shows values of constants we found suitable in our example.

c 1.0f

k 0.5f

watercol vec4(0.0, 0.2, 0.1, 1.0)

q 5.0f

FOV_ext 1,5f

Table 1. Constants.
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Chapter 10

Results

The results are obtained from application where are above al-
gorithms implemented in OpenGL. See Figure 18. Our lake scene
consist of 131437 vertices and 85409 faces. To accelerate render-
ing we draw scene using Vertex Bu�er Object. The water surface
was represented by the mesh with 2401 vertices and 4608 faces.
The animation of the surface was performed using sine function.
We tested the application on multiple machines, see Table 2.

Referenced machine
caustics

on o�

Intel P4 3.0Ghz ATI Radeon
X800 256MB

27fps 75fps

Intel Core2Duo 2.66GHz
GeForce 7950GT 512MB

130fps 170fps

Intel P4 2.80Ghz GeForce
6800 128MB

57fps 69fps

Table 2. Framerates.

We create textures using Frame Bu�er Object. We tested mul-
tiple resolutions of re�ection and refraction texture. By extending
the �eld of view we may loose the resolution, which starts to be
notable in case of 512x512. We use 16 bit depth bu�er in Frame
Bu�er Object on ATI Radeon. Since it can cause on some nVidia
cards problems it is suitable to use 24 bit depth bu�er on this
hardware.
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Next table shows performance in dependence of re�ection, re-
fraction and caustics texture resolutions. This result was obtained
from Intel P4 3.0Ghz, 1GB ram, ATI RADEON X800 (256MB).

texture resolution 256x256 512x512 1024x1024

framerates 31fps 28fps 17fps

Table 3. Texture resolutions.
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Chapter 11

Conclusion

We have proposed algorithm for creting realistic refraction (in
deep water refraction is more distorted then in shallow). We have
also discussed implementation of caustics on GPU. We simpli�ed
model of light transport inside the water volume to combination of
refraction with caustics and global water colour. We have adapted
this ideas to underwater camera case. We have also improved
visual aspect of re�ection by addition of glow e�ect to specular
highlight. However, there are still other ways to extend this work
by adding more realistic wave model. Another visual improvement
could be achieved by adding e�ects like foam or god rays.

Figure 18. Demonstration application.
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Glossary

GLUT
GLUT is the OpenGL Utility Toolkit, a window system in-

dependent toolkit for writing OpenGL programs. It implements
a simple windowing application programming interface (API) for
OpenGL. GLUT makes it considerably easier to learn about and
explore OpenGL programming. GLUT provides a portable API
so we can write a single OpenGL program that works across all
PC and workstation OS platforms.

GLEW
GLEW is a cross-platform open-source C/C++ extension load-

ing library. GLEW provides e�cient run-time mechanisms for de-
termining which OpenGL extensions are supported on the target
platform.

GLSL
OpenGL Shading Language also known as GLslang is a high

level shading language based on the C programming language. It
was created by the OpenGL Architecture Review Board to give
developers more direct control of the graphics pipeline without
having to use assembly language or hardware-speci�c languages.

Fresnel equations
The Fresnel equations describe the re�ection and refraction

that occur at a material boundary as a function of the angle of
incidence, the polarization and wavelength of the light, and the
indices of refraction of the materials involved. It turns out that
many materials exhibit a higher degree of re�ectivity at extremely
shallow (grazing) angles. Even a material such as nonglossy paper
exhibits this phenomenon. For instance, if we hold a sheet of
paper so that we are looking at a page at a grazing angle and
looking towards a light source. We will see a specular (mirrorlike)
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re�ection from the paper, something we wouldn't see at steeper
angles.

Caustics
Caustics are complex patterns of shimmering light that can be

seen on surfaces in presence of re�ective or refractive objects, for
example those formed on the �oor of a swimming pool in sunlight.
Caustics occur when light rays from a source, such as the sun, get
refracted, or re�ected, and converge at a single point on a non-
shiny surface. This creates the non-uniform distribution of bright
and dark areas.

HDR
Dynamic range refers to the range of brightness levels that ex-

ist in a particular scene � from darkest � before complete and
featureless black, to lightest � before complete featureless white.
High dynamic range rendering is the rendering of 3D computer
graphics scenes by using lighting calculations done in a larger dy-
namic range. One of the primary features of HDR is that both
dark and bright areas of a scene can be accurately represented.

Glow
Glow or light bloom is an e�ect used in high dynamic range

rendering to reproduce an imaging artifact of real-world cameras.
The e�ect produces fringes (or feathers) of light around very bright
objects in an image.
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Figure 19. Glow e�ect.

Figure 20. Re�ection of the tree.
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Figure 21. View from underwater camera.

Figure 22. Refraction.
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Abstrakt

Táto práca sa zaobera implementáciou optických javov na vod-
ných h©adinách. Aj napriek moºnos´iam dne²ného hardvéru, je
aproximácia a imitácia stále podstatnou sú£as´ou gra�ky v reál-
nom £ase. Prezentované algoritmy su zamerané na zobrazenie
známych efektov ako sú re�ekcia, refrakcia a kaustiky. Napriek
jednoduchosti algoritmov dokáºeme dosiahnu´ slu²ný vzh©ad ani-
mácie, £o je dôleºité v sú£astných po£ita£ových hrách a simuláci-
ach v reálnom £ase.

Kategórie: [Po£ita£ová gra�ka] 3D gra�ka a realizmus

K©ú£ové slová: refrakcia, re�ekcia, kaustiky.

55


	1. Overview.
	2. Introductions.
	3. Related work.
	4. Software specification.
	4.1 Development environment.
	4.2 Data structures.
	4.3 Purpose of Program. 
	4.4 Operating description.
	5. Refraction and Reflection texture.
	5.1 Refraction texture.
	5.2 Reflection texture.
	6. Colouring.
	7. Pixel Shading.
	7.1 Intersection algorithm.
	7.2 Refracted colour from texel.
	7.3 Reflected colour from texel.
	7.4 Fragment colour.
	7.5 Underwater camera.
	8. Caustics mapping.
	8.1 CPU approach.
	8.1 GPU approach.
	9 Implementation.
	9.1 Refraction and reflection.
	9.2 Caustics.
	9.3 Glow.
	9.4 Constans and parameters.

	10. Results.
	11. Conclusion.
	Glossary.

	References.





















