02

RENDERING PARTONE

RECOLLECTION

GEOMETRY SPACE – 3D SCENE

GEOMETRY VS. SCREEN SPACE

3D CONTINUOUS PARAMETRIC MODELS

2D DISCRETE NON-PARAMETRIC PIXELS

RENDERING

 $\mathsf{MODELS} \to \mathsf{PIXELS}$

GEOMETRY TRANSFORMATIONS CLIPPING RASTERIZATION TEXTURING + LIGHTS & SHADOWS

IT HURTS BUT IT HAS TO BE DONE

ESSENTIAL GEOMETRY

COORDINATE SYSTEM IN 3D

CARTESIAN COORDINATES IN 2D Origin (0) x axis y axis

ORTHOGONAL

COORDINATE SYSTEM IN 3D

CARTESIAN COORDINATES IN 3D Origin (0) x axis y axis z axis z axis

ORTHOGONAL

POINTS & VECTORS

LOCAL COORDINATES

EACH OBJECT HAS ITS OWN COORDINATE SYSTEM

GLOBAL COORDINATES

ONE SYSTEM FOR THE WHOLE SCENE

TRANSLATION

ROTATION

SCALING

ALL TRANSFORMATIONS COMBINED

TRANSFORMATIONS

TRANSFORMATION FROM ONE COORDINATE SYSTEM TO ANOTHER ONE IS A COMPOSITION OF PARTIAL TRANSFORMATIONS:

Translation Rotation Scaling

MODEL TRANSFORMATION

TRANSFORMATION LOCAL \rightarrow GLOBAL COMBINATION OF ROTATE, TRANSLATE, SCALE MATRIX MULTIPLICATION

CAMERA COORDINATES

XY OF SCREEN + Z AS DIRECTION OF VIEW

ALL TRANSFORMATIONS

MODEL TRANSFORMATION Unify coordinates by transforming local to global coordinates

VIEW TRANSFORMATION Transform global coordinates so that they are aligned with camera coordinates To make projection computable

PROJECTION

ORTHOGONAL PROJECTION

PERSPECTIVE PROJECTION

PROJECTIONS - PARALLEL

PROJECTIONS - PERSPECTIVE

PROJECTIONS – DISTORTED PERS.

ORTHOGONAL PROJECTION

ONLY 2 DIMENSIONS ARE VISIBLE

PERSPECTIVE

3 DIMENSIONS, NEAR OBJECTS ARE LARGER

ISOMETRIC

3 DIMENSIONS, ALL OBJECTS SAME SIZE

VIEWPORT TRANSFORMATION

GLOBAL COORDINATES e.g. (-50..50 cm, -50..50 cm, -50..50 cm)

CAMERA COORDINATES e.g. (-1..1, -1..1, -1..1)

VIEWPORT (WINDOW) e.g. (0..1200 px, 0..800 px)

VIEWPORT TRANSFORMATION

AND AGAIN, THERE'S A MATRIX FOR THAT!

$$(x_{v}, y_{v}, 1) = (x_{p}, y_{p}, 1) \begin{pmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ -s_{x}xc_{\min} + xv_{\min} & -s_{y}yc_{\min} + yv_{\min} & 1 \end{pmatrix}$$

WELCOME TO THE MATRIX!

1. LOCAL \rightarrow GLOBAL COORDINATES

translate, rotate, scale, translate 2. GLOBAL \rightarrow CAMERA

translate, rotate, rotate

3. PROJECTION

e.g. perspective or orthogonal 4. CAMERA \rightarrow VIEWPORT

translate, scale, translate

COMBINE TRANSFORMATIONS = MULTIPLY MATRICES

WHO DOES ALL THE WORK?

MATRIX OPERATIONS SLOW ON CPU,

GPU BUILT TO ACCELERATE MATRIX CALCULATIONS

EXAMPLE – WORLD

EXAMPLE – FROM CAMERA

EXAMPLE – OUTPUT

RENDERING

MODELS → PIXELS MODEL TRANSFORMATION

VIEWPORT TRANSFORMATION

CLIPPING, CULLING

RASTERIZATION TEXTURING & LIGHTING

WHAT THE EYE DOESN'T SEE, THE HEART DOESN'T GRIEVE OVER

CLIPPING AND CULLING

GENERAL PROBLEM:

WHICH OBJECTS / OBJECT PARTS ARE VISIBLE?

OBJECTS OUTSIDE THE VIEW CAN BE IGNORED

SPEEDS UP THE RENDERING

VISIBLE VOLUME

FAR

RIGHT

NEAR

Except when they are: reflections, global illumination, shadows

BACK-FACE CULLING

PARTS OF OBJECT NOT FACING THE CAMERA ARE ALSO INVISIBLE Except for semi-transparency, mirrors etc.

BACKFACE CULLING

WHICH OBJECT FACES ARE VISIBLE? REMEMBER NORMAL VECTOR (FACE ORIENTATION)

OCCLUSION CULLING

SOME OBJECTS ARE FULLY OCCLUDED BY OTHERS

PORTAL CULLING

SOME PARTS OF THE SCENE ARE NOT VISIBLE FROM SOME OTHER PARTS OF THE SCENE

RASTERIZATION

GENERAL PROBLEM

GIVEN A CONTINUOUS GEOMETRIC REPRESENTATION OF AN OBJECT

DECIDE WHICH PIXELS ARE OCCUPIED BY THE OBJECT

LINE RASTERIZATION

SCAN-LINE ALGORITHM

ALIAS

$\begin{array}{l} \mbox{CONTINUOUS} \rightarrow \mbox{DISCRETE} \\ \mbox{ARTIFACTS MIGHT APPEAR} \\ \mbox{RASTERIZATION ALIAS - JAGGED EDGES} \end{array}$

SAMPLING creating observation of a continuous phenomenon at discrete points

FORMS OF ALIAS

SPATIAL ALIAS jaggy edges moiré texture distortion

TEMPORAL "wagon wheel"

ANTI-ALIASING

GENERAL (GLOBAL) ANTI-ALIASING -**SUPERSAMPLING** works on all objects - that's good

works on ALL objects - that's bad

OBJECT (LOCAL) ANTI-ALIASING

line anti-aliasing silhouette anti-aliasing texture anti-aliasing

SUPER-SAMPLING

FOR EACH PIXEL PERFORM MULTIPLE SUB-PIXEL SAMPLINGS AND COMBINE THE RESULTS Various sub-pixel distributions:

SUPER-SAMPLING EXAMPLE

LINE SUPER-SAMPLING

OBJECT ANTI-ALIASING: LINE

AND WE DRAW WIREFRAMES!

Computer graphics

VISIBILITY

Computer graphics

TEXTURE

Computer graphics

SHADING

SHADOWS

