OBJECT REPRESENTATION

GERI'S GAME

GERI'S GAME

PIXAR (1997)

SUBDIVISION SURFACES

POLHEMUS 3D SCAN

OVER 700 CONTROLS

QUICK TEST #1

DESCRIBE THE PICTURE

QUICK TEST #2

DESCRIBE THE PICTURE

DESCRIBE THE PICTURE

SEMANTIC VS. NUMERIC

HUMANS - SEMANTIC REPRESENTATION concepts, notions, meanings, emotions... imprecise, ambiguous

COMPUTERS - NUMERIC REPRESENTATION exact, mathematical, straightforward

DETAILED REPRESENTATION

WHAT OBJECT PROPERTIES ARE THERE?

OBJECT PROPERTIES - ADVANCED

PHYSICAL OBJECT PROPERTIES mass, stiffness, elasticity

MATERIAL PROPERTIES shininess, roughness light behavior friction etc.

We'll deal with materials later

OBJECT DEFINITION

GEOMETRY plus model transformation (local \rightarrow global)

MATERIAL color, shininess, index of refraction

TEXTURE MAPPING

UV mapping, wrapping of texture around the object

BODY PROPERTIES weight, elasticity...

2D OBJECTS

LET'S DEFINE THESE OBJECTS

2D OBJECTS

POLYGONS

CONTROL VERTICES x,y coordinates in order CCW

EDGES

width shape style (solid, dotted etc.)

CURVES

PRIMITIVE SHAPES Circle, Ellipse, ...

GENERAL SHAPES Parametric curves

PARAMETRIC CURVES

BEZIER CURVES SPLINE CURVES

CAD MODELING Cars Shoes Product design

 $\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3(1-t)^2 t \mathbf{P}_1 + 3(1-t)t^2 \mathbf{P}_2 + t^3 \mathbf{P}_3 \ , \ t \in [0,1].$

INTERPOLATION PARAMETRIC CURVES

CONTROL VERTICES + TANGENT VECTORS corner (cusp) smooth symmetrical

USUALLY CUBIC SPLINES - GOOD MANIPULATION

$\mathsf{PARAMETRIC} \longrightarrow \mathsf{POLYGONAL}$

 $\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3(1-t)^2 t \mathbf{P}_1 + 3(1-t)t^2 \mathbf{P}_2 + t^3 \mathbf{P}_3 , t \in [0,1].$

3D GEOMETRY

FROM 2D POLYGONS TO 3D POLYHEDRA

FROM 2D CURVES TO 3D SURFACES

BOUNDARY REPRESENTATION

ONLY THE SURFACE OF THE OBJECT

NO INFORMATION ABOUT THE INSIDES

POINT CLOUD WIREFRAME POLYGONAL MESH PARAMETRIC SURFACES SUBDIVISION SURFACES IMPLICIT SURFACES

POINT CLOUD

SET OF POINTS ON OBJECT SURFACE USUALLY OBTAINED BY 3D SCANNING CONNECTIVITY INFORMATION?

http://www.photomodeler.com

WIREFRAME

SET OF VERTICES EDGES

V(X,Y,Z)E(V_I,V_J)

POLYGONAL REPRESENTATION

POLYGONAL MESH

VERTICES V(x,y,z)

FACES F(V₁, V₂, ... V_n)

(EDGES) E(V_i, V_j)

PARAMETRIC SURFACES

SMOOTH 3D GENERALIZATION OF PARAMETRIC CURVES M * N CONTROL POINTS PARAMETERS U,V Control Point

C(X,Y,Z) = F(U,V)

Control Polygon >

http://cadauno.sourceforge.net/

PARAMETRIC SURFACES EXAMPLES

PARAMETRIC VS. POLYGONAL

PARAMETRIC

smooth, re-parametrizable harder rendering precise rendering

POLYGONAL

discrete, hard to re-parametrize faster rendering or rasterization approximation

PARAMETRIC → POLYGONAL

SUBDIVISION SURFACES

RECURSIVE SUBDIVISION OF A POLYGONAL MODEL LIMIT SURFACE = SMOOTH

EASY MODELING, SMALL DATA SIZE

HTTP://WWW.HOLMES3D.NET/GRAPHICS/SUBDIVISION/

SUBDIVISION EXAMPLE

"REAL WIREFRAME"

BENEDICT RADCLIFFE'S TOYOTA COROLLA

OTHER 3D REPRESENTATIONS

VOLUMETRIC REPRESENTATION

NOT ONLY BOUNDARY BUT ALSO THE INSIDES OF THE OBJECT

MEDICINE PHYSICS SIMULATIONS ANIMATION

Copyright 2001 Institute of Mathematics and Computer Science in Medicine University of Hamburg

VOXELS

VOLUME ELEMENTS, "3D PIXELS"

DISCRETE

BINARY VALUES FLOAT VALUES

CONSTRUCTIVE SOLID GEOMETRY

PRIMITIVES + BOOLEAN OPERATORS ON SETS AND, OR, NOT

CAREFUL ABOUT SINGULARITIES - MANIFOLDS

CSG CONTINUED

HIERARCHY Leaves = primitives Nodes = operators

VOLUME-REP Good

BOUNDARY-REP Difficult

IMPLICIT SURFACES

F(X,Y,Z) = O

SPHERE: $x^{2} + y^{2} + z^{2} - r^{2} = 0$

METABALLS:

$$\sum R / ((x - x_m)^2 + (y - y_m)^2 + (z - z_m)^2) - c = 0$$

EXAMPLES:

HTTP://IAT.UBALT.EDU/SUMMERS/MATH/PLATSOL.HTM

VIDEO

FUNCTIONAL REPRESENTATION

F-REP ~ GENERALIZATION OF CSG & IMPLICIT MORE NODE FUNCTIONS - OPERATORS e.g. object blending


```
center = [0, 0.5, 0];
se = hfSuperell(x, center, 8, 2.5, 8, 0.3, 0.3);
```

```
center = [0, -0.5, 0];
el_cly = hfEllCyl2(x, center, 4, 2);
```

```
wrist = el cly & (8-x[3]) & (x[3]+20);
```

```
center = [0, 3.5, 0];
el1 = hfEllipsoid(x, center, 8, 1, 8);
```

```
center = [-2, 3.5, 0];
el2 = hfEllipsoid(x, center, 8, 1, 8);
```

```
center = [2, 3.5, 0];
el3 = hfEllipsoid(x, center, 8, 1, 8);
```

```
center = [-0.5, 3.5, -2];
el4 = hfEllipsoid(x, center, 8, 1, 8);
```

el = el1 | el2 | el3 | el4;

```
palm = hfBlendUni(se, wrist, 5, 2, 2) \ el;
```