06

COMPUTER ANIMATION

WHAT IS MOTION?

Eadweard Muybridge - The Horse in Motion (1878)

TIME IN COMPUTER GRAPHICS

3DIMENSIONAL GRAPHICS = GEOMETRY 4TH DIMENSION = TIME OBJECT ATTRIBUTES CHANGE OVER TIME RESULT = MOVIE

MOVIE

SEQUENCE OF FRAMES

FRAME RATE

~ 25FPS AND MORE IS FLUENT

~10⁵ FRAMES / MOVIE E.G. 129 311 FRAMES \rightarrow

FRAME RATES

FRAME RATE FOR MOVIES/TV 24 (Cinema, Blu Ray) 23.976, 29.97 (NTSC) 25 (PAL)

FRAME RATE FOR REAL TIME CG 30+ 60hz = monitor frequency

COMPUTER ANIMATION

REAL-TIME Speed is priority Quality is second

OFFLINE Quality is priority Speed is second

WHAT CAN BE ANIMATED?

POSITION ROTATION SCALE **GEOMETRY TEXTURE** COLOR TRANSPAR.

... ANY NUMERIC PARAMETER

HOW TO CREATE ANIMATION

CHANGE VALUES OVER TIME MANUALLY Values are set for each individual frame

PROCEDURALLY Values are computed by algorithm

KEYFRAMING Important frames are manual, rest is interpolated

MOTION CAPTURE Real world motion is scanned to computer

MANUAL ANIMATION

STOP-MOTION ANIMATION e.g. Coraline, Wallace & Gromit, etc.

KEY-FRAME ANIMATION

ANIMATION KEY FRAMES

MANUAL SETTING OF PARAMETERS NOT FOR ALL FRAMES BUT ONLY FOR SOME PARTICULAR

• • • • • • • •

Rotation = 45°

Rotation = 0°

INBETWEENING ("TWEENING")

COMPUTING MISSING VALUES BASED ON EXISTING SURROUNDING VALUES

TWEENING

LINEAR (CONSTANT)

EASE-IN, EASE-OUT

SIMPLE CONTROLLERS

POSITION Follow path

ROTATION Follow path, Look at

ANIMATING COMPLEX OBJECTS

LOCAL COORDINATES - SIMPLE SYSTEM

ANIMATING COMPLEX OBJECTS

LOCAL COORDINATES - SIMPLE SYSTEM

ANIMATING COMPLEX OBJECTS

SKELETONS, CHAINS, SYSTEMS Simulate physical constraints

ANIMATING COMPLEX MODELS

SYSTEM DECOMPOSED INTO HIERARCHY NODES, LINKS, CHAINS, JOINTS, SKELETON MOTION CONSTRAINTS

http://caad.arch.ethz.ch/info/maya/manual/

SKELETON

HIERARCHY

Bones

- Rigid element Joints
 - Rotation
 - Sliding

Springs

Change length

CONTROLLERS

IT'S REUSABLE!

http://en.9jcg.com/comm_pages/blog_content-art-16.htm

REUSABLE ANIMATION

ONE SKELETON - DIFFERENT MODELS

http://www.studiopendulum.com/alterego/

TWO TYPES OF KINEMATICS

FORWARD

INVERSE

FORWARD KINEMATICS

MOTION IS INITIATED ON TOP OF THE HIERARCHY AND PROPAGATES DOWNWARDS IN THE HIERARCHY

INVERSE KINEMATICS

MOTION IS INITIATED ON THE BOTTOM OF THE HIERARCHY AND PROPAGATES UPWARDS

MOTION CONSTRAINTS NEED TO BE SET

SKINNING

SKELETON + DEFORMABLE GEOMETRY

MORPHING

TWEENING BETWEEN DEFORMATIONS OF THE SAME MODEL

FACIAL ANIMATION

FACIAL EXPRESSIONS LIPS TO SPEECH **SYNCHRONIZATION** CONTROLLERS **SKINNING MORPHING**

http://www.anzovin.com/products/tfm1maya.html

ANIMATION BLENDING

SEPARATE ACTIVITIES DONE SIMULTANEOUSLY e.g. walking and shooting

SMOOTH TRANSITIONS BETWEEN ACTIVITIES e.g. standing up and walking

PROCEDURAL AND **PHYSICALLY-BASED** ANMATIONS

MOTIVATION

CAN WE MANUALLY (BY KEYFRAMES) ANIMATE THE MOVEMENT OF WATER, HAIR, SMOKE?

PHYSICALLY BASED ANIMATION

LAWS OF PHYSICS → ALGORITHMS Gravity, wind, friction, collisions

RIGID BODIES No geometry deformation Collision response

SOFT BODIES Allow for deformation Energy damping

PROCEDURAL ANIMATION

PROGRAMMED RULES FOR CHANGING PARAMETERS OF THE ANIMATED OBJECTS

e.g. according to music, physics, psychology, etc.

PROCEDURAL ANIMATION CONSTRUCTION

SET BODY PROPERTIES Mass, elasticity, friction, ...

SET PHYSICAL RULES Gravity, collisions, wind, ...

SET INITIAL STATE Position, velocity, direction, ...

RUN SIMULATION / ANIMATION

PARTICLE SYSTEM

EMITTER direction, speed, frequency

FORCES gravity, collision, wind

PARTICLE TYPE simple object (ball, drop) complex object (model)

http://www.republicofcode.com/tutorials/maya/particle_aziz/

PARTICLE SYSTEMS DEMO

http://www.youtube.com/watch?v=bYttMMXZw38

PROFESSIONAL EXAMPLES

www.realmatter.com www.realflow.com www.massivesoftware.com www.audio-surf.com www.lagoatechnologies.com

MOTION CAPTURE

REAL WORLD ACTION CAPTURED

MARKERS ON BODY + SENSORS Optical Magnetic Kinetic

RECONSTRUCTION OF SKELETON IN 3D

MOTION MAPPING TO VIRTUAL CHARACTER

FACIAL MOTION CAPTURE

http://www.pop-gamer.com/2012/07/making-beyond-two-souls-with-performance-capture/

EVERYTHING TOGETHER

KEY-FRAMED ANIMATION

PROCEDURAL ANIMATION

MOTION CAPTURE

WHAT DO WE DO WHEN SPEED IS THE PRIORITY?

REAL-TIME RENDERING

SPRITES (BILLBOARDS)

OBJECTS FAKED BY A PICTURE TREES, GRASS FIRE, SMOKE LIGHT EFFECTS **DISTANT OBJECTS** CAN BE ANIMATED

Animated Sprite Pack http://www.thegamecreators.com/?m=view_product&id=2154

BILLBOARD TREE

MULTIPLE SPRITES

FAKING GEOMETRY – BUMP MAPPING

FAKING GEOMETRY – NORMAL MAPPING

30,000 polys

632 polys

632 polys + normal map

http://www.bencloward.com/tutorials_normal_maps1.shtml

NORMAL MAPPING EXAMPLE

531 POLYGONS + NORMAL MAP

www.tomas-studio.com

ADVANCED EFFECTS

PARALLAX OCCLUSION MAPPING

TESSELLATION

PRE-COMPUTED REFLECTIONS

ENVIRONMENT MAPPING

APPROXIMATES REFLECTIONS

TEXTURE APPLIED TO A SURROUNDING SPHERE TO SIMULATE WORLD REFLECTIONS

PRE-COMPUTED LIGHTING

LIGHT MAPS

PRE-COMPUTED HIGH-QUALITY LIGHTING STORED INTO SPECIAL TEXTURE (LIGHT MAP). LIGHT MAP COMBINED WITH THE TEXTURE TEXTURE BAKING (PERMANENT)

Keshav Channa: Light Mapping - Theory and Implementation