
Interactive Information Visualization using Graphics Hardware

Martin Florek∗

Comenius University Bratislava
Matej Novotńy†

Comenius University Bratislava

Figure 1: A parallel coordinates display rendered using proper hardware acceleration is capable of visualizing hundreds of thousands of
records. Thanks to overcoming the performance penalty that is usually caused by massive overplotting of semi-transparent lines, this display
does not lose the essential interactivity.

Abstract

The actual technology behind visualization is meant to provide fast
and accurate rendering results and thus to support the exploratory
data analysis in an information visualization environment. A cru-
cial element in the exploratory process is overall interactivity, es-
pecially when dealing with multidimensional data. However, with
the ever growing volume of nowadays data, a fast and interactive
display easily becomes static, giving only slow or even none actual
interaction feedback.

The technical improvements presented in this paper are oriented on
using modern graphics hardware to modify the standard rendering
process of a popular information visualization display, the parallel
coordinates, in an interaction-oriented way. By intelligently using
the advanced features of the now common hardware we achieved
great improvement over standard CPU-oriented implementations in
terms of both speed and visual quality.

Keywords: GPU, hardware accelration, information visualization,
parallel coordinates

∗e-mail:mflorek@gmail.com
†e-mail:mnovotny@fmph.uniba.sk

1 Introduction

Information visualization uses graphical representation of data to
support and accomplish important tasks like decision making, data
exploration or analysis. Compared to scientific visualization, where
the data usually contains an underlying spatial geometry, the data in
the information visualization domain are often highly multidimen-
sional and usually have no a priori structure or layout.

The motivation for graphical depiction of data is the wide infor-
mation highway that is provided to humans through the sense of
vision. Even some of the most complicated structures and informa-
tion can (using a proper visualization) be communicated between
the man and the machine. Numerous projection methods and graph-
ical metaphors were designed in the field of information visualiza-
tion [Tufte 1990; Ware 2000; Card et al. 1999]. However, the fully
comprehensive mental image of a multidimensional information is
only built through the means of user interaction [Kosara et al. 2003].

1.1 Interaction

By performing direct manipulation inside the display, through ob-
serving the data from different aspects and under different condi-
tions the users immerse themselves in the data. If the display reacts
within a fraction of a second (say 100 ms) the user gets the feeling
of actually touching the data [Eick and Wills 1995] and can better



Figure 2: Parallel Coordinates. PointC(c1, c2, c3, c4) is represented
by a polygonal line.

understand the intrinsic structures of the observed space or model.

In an information visualization environment the interaction pro-
vides (among others) an access to changing parameters of the vi-
sualization and to selecting and emphasizing areas of interest. But
if the actual time to refresh the display after such an action takes
too long for the user to notice the difference or to perceive the flu-
ent changes the interaction suffers greatly. This happens for large
data cases in combination with demanding visualization techniques.
Parallel coordinates are an example of a popular and widely ac-
claimed visualization method that faces severe problems when large
data is observed.

1.2 Parallel Coordinates

As originally introduced by [Inselberg and Dimsdale 1990], the par-
allel coordinates utilize the axis reconfiguration approach to multi-
dimensional data visualization. Everyn-dimensional point is repre-
sented by a polyline according to its position in the original space
(Figure 2.)

N copies of the real line are placed equidistant and parallel to each
other. They are the axes of the parallel coordinate system forRN.
A pointC with coordinates (c1, c2, . . . ,cN) is represented by a poly
line connecting the positions ofci on their respective axes [Insel-
berg and Dimsdale 1990].

This projection provides a 2-dimensional display of the whole data
set and is capable of displaying up to tens of different dimensions.
An unpleasant drawback is the cluttered display when trying to ren-
der a large number of samples. Interaction and even mere under-
standing of such a display is complicated.

A common graphical feature of the parallel coordinates is semi-
transparency of the poly lines. It gives better understanding of an
overplotted display by steering the visual importance towards the
dense areas where multiple semi-transparent lines overlap. How-
ever this improvement has certain limitations due to the dynamic
range of the alpha channel [Johansson et al. 2005]. In addition to
that the use of transparency and color blending introduces a signif-
icant performance issue.

2 Incorporating the GPU

The current graphics hardware with its wide range of advanced pro-
cessing features provides a promising solution to improve the inter-
activity of large data visualization. Scientific visualization with nu-
merous volumetric rendering approaches and applications uses the
graphics hardware for quite a long time now.

Figure 3: A simple visualization pipeline. In its original form (top)
the CPU has to perform much more operations that now (bottom).

Figure 4: The same data containing 150.000 samples. Rendering
the parallel coordinates plot using the popular free visualization tool
Xmdv took more than 20 seconds (left). Our implementation (right)
of parallel coordinates works interactively with the data.

However in information visualization domain, the actual technolog-
ical improvements using the GPU receive little attention. In contrast
to that, this project focusses on accelerating parallel coordinates us-
ing the GPU in order to produce a display that is capable of display-
ing data sets with tens or hundreds of thousand samples while still
providing fast interaction options to the user (Figure 4)

2.1 GPU vs CPU

The parallel coordinates projection has a well defined and simple
geometric nature which nicely favors GPU over CPU. With the
powerful geometry processing units and parallel pipelines of the
GPU many sub-tasks of the visualization process can be transferred
to the graphics hardware (Figure 3.)

In addition to that, in the current state of visual exploration,
more and more attention is drawn towards interleaving automatic
data analysis with human visual processing. Therefore practical
application-oriented load balance between the CPU and the GPU is
an important issue.

The comparison of using CPU and GPU to do visualization tasks
is illustrated in Figure 4. The left picture shows a rendition by the
Xmdv visualization tool [Xmd ] that took 20 seconds to accomplish.
The GPU-powered solution (right) performs about 60 times faster.

2.2 GPU features

Even though the advanced rendering and processing capabilities of
nowadays graphics cards are originally oriented on producing real-
istic images and special effects in real time, much of this function-
ality can be used to improve information visualization.



Figure 5: Transparency and alpha blending turn a cluttered and in-
distinct display (left) into a much clearer shape (right).

Apart from the actual processing features, the memory of the graph-
ics adapter is another beneficial factor. Storing the data for the vi-
sualization in the VRAM instead of the RAM improves the perfor-
mance in two ways. First, the CPU is less loaded since the vertex
data do not have to be sent to the GPU by the CPU. Second, the
fetching time when data is read to be processed by the GPU is much
shorter.

3 Data Operations on GPU

This section describes the implementation and the experimental re-
sults of a hardware accelerated parallel coordinates display. The
small space in this paper does not allow for much technical details.
However the detailed description of the overall contribution as well
as issues brought up during the implementation will appear in [Flo-
rek 2006].

3.1 Vertex Arrays

The first natural step to move the border between the CPU and the
GPU closer to the starting point of the visualization pipeline was to
store the actual data on the graphics card and operate on them using
vertex programs.

Nowadays graphics cards are common to have up to 512 megabytes
of memory, which is technically sufficient to store a decent load of
data (e.g. 4 millions of data records in 32 dimensions).

The naive immediate mode for rendering uses the CPU to send in-
dividual vertexes to the GPU to render. Instead of that we can group
the vertex data to sets of batches that can be sent to the graphics card
using only a small portion of the CPU time. Even a simple modi-
fication, as this is, produces great improvements to the application
producing a convincing resulting performance (Figure 4.)

3.2 Vertex Programs

A necessary extension to the previous improvement is to limit the
need for repeated transferring of large amounts of vertex data from
CPU to GPU. Therefore we store the raw original data on the graph-
ics card and perform mapping operations by vertex programs.

Using the advanced shading language of the current graphics hard-
ware many axis-oriented operations can be performed on the GPU
without having to occupy CPU or RAM. Among others, the map-
ping between the original data space and the screen space of the
parallel coordinates is feasible using vertex programs.

By default this mapping is a linear scaling performed on each axis.
Usually after interaction this can change so that the original map-
ping is modified by panning, flipping or scaling the interval that is
mapped onto the axis. Thanks to the state-of-the-art shader capa-
bilities non-linear axis mapping functions (square, square root) are
also possible.

4 Alpha Blending and Stencil Test

A common feature of a parallel coordinates display is the use
of semi-transparent poly lines to clear up an overplotted display.
The resulting frequency-like graphical representation communi-
cates more information than a cluttered and indistinct visualization
without the transparency. Dense areas are preattentively empha-
sized by higher opacity values in contrast to the sparsely populated
areas which are less saturated (Figure 5.)

However introducing transparency to the visualization brings the
unpleasant drawback of reduced performance. The cause is the
large amount of fragments created by numerous lines overlapping
in different relative orientations and the additional computational
demands put on the graphics cards to process the fragments.

Even with simple blending the performance is reduced by up to 70
percent in an average parallel coordinates plot. This could easily
make a visualization incapable of interactive response. We used
stencil test performed on the GPU to eliminate a significant number
of fragments in order to compensate for the performance loss.

The resulting visualization using the stencil test operates 2.5 times
faster than without the test reducing the 70 percent performance
penalty to less than 25 with the alpha blending on.

5 Frame Buffer Objects and Textures

Another performance boost is achieved by reusing rendering output
in cases when no data-oriented operation is performed. Such cases
involve resizing the display, local axis operations or composing sev-
eral segments of data in the display. To achieve this, all rendering is
routed to frame buffer objects and subsequently stored in a texture.



Figure 6: By changing only the transfer function applied on the
texture, various modes of density can be observed without having
to re-render the data.

Afterwards the texture can be processed in several ways. If the
rendition is considered as an density-based representation of the
original data, with dense areas opaque and sparse areas transparent,
transfer functions can be applied to observe the relative densities of
the data without having to actually re-render them (Figure 6.)

This approach was originally introduced by Johansson et al [Jo-
hansson et al. 2005]. The growing range of mathematical functions
supported by the shader models enables us to provide the user with
the option to filter the texture in virtually any arbitrary way.

Moreover, by storing different data segments visualizations in dif-
ferent textures, even the data-oriented actions (selection, deletion
etc.) are improved since only the relevant portion of data has to be
re-rendered. The remaining textures don’t change are only com-
posed one over another to form the final image.

6 Conclusions and Future Work

The presented technical improvement proves that current graphics
hardware can be used also for such a specific rendering task as the
parallel coordinates display. By exploiting features of the shader
models, large GPU-bound memory or parallel processing pipelines
we achieved a significant performance boost. The only bottleneck
that the technical modifications can not improve is the performance
of the actual line rasterization on the GPU.

As the wide variety of GPU functions and features grows with ev-
ery next generation of the graphics cards, there is much space for
extending the concept of hardware-accelerated information visual-
ization. More and more interaction tasks can be performed in par-
allel on the GPU, leaving the CPU free for non-geometric or more
data-oriented operations.

References

CARD, S. K., MACKINLAY , J. D.,AND SHNEIDERMAN, B., Eds.
1999. Readings in information visualization: Using vision to
think. Morgan Kaufmann Publishers, San Francisco.

EICK , S.,AND WILLS , G., 1995. High interaction graphics.

FLOREK, M. 2006. Using Modern Graphics Hardware for Inter-
active Information Visualization of Large Data. Master’s the-
sis, Faculty of Mathematics, Physics and Informatics, Comenius
University, Bratislava.

INSELBERG, A., AND DIMSDALE , B. 1990. Parallel coordinates:
a tool for visualizing multidimensional geometry. InIEEE Visu-
alization ’90 Proceedings, IEEE Computer Society, 361–378.

JOHANSSON, J., LJUNG, P., JERN, M., AND COOPER, M. 2005.
Revealing structure within clustered parallel coordinates dis-
plays. InINFOVIS, 17.

KOSARA, R., HAUSER, H., AND GRESH, D. 2003. An interaction
view on information visualization. InEUROGRAPHICS 2003.

TUFTE, E. R. 1990.Envisioning Information. Graphics Press.

WARE, C. 2000.Information visualization: perception for design.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Xmdvtool homepage: http://davis.wpi.edu/xmdv/.


