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Abstract

We present a new technique for CSG operations with
voxelized geometric objects, which are represented by trun-
cated discrete distance fields supplemented by additional
information about the surface normal. The technique re-
moves artifacts of straightforward volumetric CSG oper-
ations by taking into account conditions for object repre-
sentability, according to which sharp details are not cor-
rectly representable in discrete distance fields. The pro-
posed technique solves this shortcoming by rounding edges
and other sharp details. It works at the voxel level without
the necessity for reconstruction of continuous object mod-
els.

1 Introduction

In this paper we present a new method for perform-
ing CSG operations with voxelized objects, which are rep-
resented by the technique called truncated distance fields
(TDF) [5]. The TDF representation differs from the full
signed distance field (DF) one in that the distances are
stored only in a thin layer in the surface vicinity and con-
stant values are stored otherwise. The main problem is that
the result of CSG operation is often a solid with edges,
which does not fulfill the morphologic criterion for suit-
ability of an object for voxelization at a given resolution,
introduced by Bærentzen et al [2]. According to it, a sur-
face of an object can be successfully reconstructed from the
corresponding distance field, if the object is both Sr-open
and Sr-closed in respect to a spherical structuring element

with radius r. In other words, one can roll a sphere with
radius r on both inner and outer side of the whole object’s
surface, in such a way as to have everywhere only a single
common point with the object—the surface contact point. It
is obvious, that suitable solids do not have any sharp details,
and if they do, the details have to be smoothed out before
voxelization. The radius r of the sphere is defined by the
size of the reconstruction filter. If only the DF is stored, r is
defined by the gradient reconstruction kernel r =

√
6. If the

gradient of the field is stored along with the distances, r is
determined by the size of the trilinear reconstruction kernel,
r =
√

3.
Complex solids obtained by CSG operations (intersec-

tion, union and difference) on solid primitives are typical
representatives of the category of solids with sharp details.
The goal of this paper is to propose such an implementation
of the CSG operations between voxelized primitives, which
delivers correct results from the point of view of the afore-
mentioned representability criterion and, moreover, which
does not necessitate the reconstruction of continuous mod-
els of the involved primitives.

2 CSG Operations

2.1 Simple CSG Operation

CSG operations between binary voxelized models can be
easily performed on the voxel level as operations between
the values of the corresponding voxels [4]. For example, the
minmax implementation in the case of DF models:

A ∩ B : dA∩B = min(dA, dB)
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Figure 1. Intersection of two objects A, B. (a) edge
with an obtuse angle, (b) edge with an acute angle

A ∪ B : dA∪B = max(dA, dB) (1)
A− B : dA−B = max(0, dA − dB)

gained a lot of interest [3, 1, 6], since it keeps the DF correct
almost everywhere except in the edge areas which are influ-
enced by both original solids. This insufficiency however is
the source of severe problems in reconstruction sometimes,
since it results in an unbounded DF error (Figure 5, upper
row).

2.2 Advanced CSG Operation

Here we describe a new technique which works in a sin-
gle run through all voxels and it identifies voxels where the
simple minmax criterion (1) yields correct values. For the
remaining voxels the resulting densities are computed by
checking a local voxel neighborhood.

When object A is represented by a TDF, each voxel of its
grid belongs either to the inside IA, outsideOA or transient
area TA. We denote the boundaries of the transition area as
inner surface IA and outer surfaceOA—the real object sur-
face passes between them in the center of the transition area.
Since the thickness of the transient area is 2r, the distance
from a surface point to IA is r and therefore the inside area

is identical to the Sr-erosion of the object. In order to com-
pute the intersection of objects A and B, it is necessary to
reconstruct the inner surface IA∩B, find points in the tran-
sient area of A ∩ B and correctly compute the distances of
these points to IA∩B. This approach is illustrated in Fig-
ure 1, which shows orthogonal cuts through edges with ob-
tuse and acute angles. The minmax criterion (1) is applied
in such areas, where the corresponding voxels of both solids
are non-transitional. The remaining space can be divided in
areas P, Q and R according to the geometry of the newly
created edge. We apply the minmax criterion also in the P
area, while in the voxels of Q and R areas, we ideally have
to compute the distance to line S instead. Line S is defined
as the intersection of the inner surfaces of A and B.

The core of the advanced CSG operation resides in a lo-
cal approximation of the inner surface of both objects by a
plane. Here, we have to identify regions P, Q and R. We
cannot distinguish between regions P and Q solely by point
operations. Furthermore, in the region Q we need infor-
mation about both surfaces, but we have it just about one
surface. How to overcome this problem, we are going to
discuss later.

In a voxel V of the region R or Q we estimate density
and gradient so that it corresponds to the direction and dis-
tance to the nearest point of line S, which is an estimate of
the intersection of the inner surfaces (Figure 1). The outer
surface of the result then forms an arc with center S, ra-
dius 2r and endpoints Ca, Cb, where r is the radius of the
transitional area. Likewise, the real surface is formed by an
arc with the same center, but with radius r. Thus we exactly
fulfill the Sr-openness and Sr-closeness criterion for object
representability.
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Figure 2. Intersection of two planes. Planes α, β
are given by point P and vectors ~u, ~v. X is to P the
nearest point of the intersection of these planes. Our
goal is to determine vector ~x.

First, we solve the problem depicted in Figure 2. Given
is point P and two linearly independent vectors ~u, ~v which
determine planes α, β — ~u, ~v are respectively normal vec-
tors of planes α, β. The distances between the planes and
P are ‖~u‖, ‖~v‖. Let X be the nearest point of intersection
of planes α, β to P . Our goal is to find vector ~x =

−−→
PX . We
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Figure 3. Intersection of two objects—obtuse angle.
Density and gradient of voxel V ∈ TA∩B are esti-
mated through vector ~g.

use three facts:

1. (~x− ~u) ⊥ ~u

2. (~x− ~v) ⊥ ~v

3. ~x is a linear combination of vectors ~u, ~v.

On the basis of this observation we arrange a system of
equations, from which we get the following relation:

~x =
(‖~u‖2 − ~u~v) · ‖~v‖2
‖~u‖2‖~v‖2 − (~u~v)2

· ~u +

+
(‖~v‖2 − ~u~v) · ‖~u‖2
‖~u‖2‖~v‖2 − (~u~v)2

· ~v (2)

Figure 3 presents a scheme that we use to evaluate den-
sity and gradient of voxels, which lie around an edge of in-
tersection of two objects. In voxel V we know the densities
da, db and the normalized gradients ~na, ~nb of the input vol-
umes A, B and we want to obtain the values d and ~n of the
resultant intersection. We use the equations ~a = da ~na,
~b = db ~nb and exploiting (2) we get:

~g = K ~na + L~nb

K =
da − db ~na ~nb
1− ( ~na ~nb)2

(3)

L =
db − da ~na ~nb
1− ( ~na ~nb)2

For K > 0,L > 0 voxel V lies in region R or Q, and we
use vector ~g for the evaluation of its density and gradient:

d = ‖~g‖

~n =
~g

‖~g‖ (4)

Otherwise, we use the minmax criterion (1).
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Figure 4. Classification of the region TA in subre-
gions P, Q and R.

Now we explain, how to solve the above mentioned
problem of region Q in Figure 1b, where we have informa-
tion just about one surface, but where we need information
about both surfaces in order to smooth the edge correctly.
For this purpose we have to add to our algorithm the fol-
lowing steps:

1. For voxels lying in the vicinity of just one surface we
need to distinguish if they belong to region P or Q.

2. For voxels in the region Q we have to estimate the
missing information about the second surface before
performing the CSG operation.

A test for the classification of voxels in regions P and Q
is illustrated in Figure 4. Using the density (distance) and
gradient of voxel V : V ∈ TA∧V /∈ TB we construct point
P as the foot of a perpendicular from V to IA. If P ∈ TB,
then voxel V ∈ Q, otherwise V ∈ P.

It is not quite trivial to test if point P ∈ TB. P as a point
of the continuous space is located in one cell of the grid
with 8 voxels in its corners—some of them can be inside
and some of them outside the transition area of B. We use
the following rules to decide about P :

• If all voxels of the cell lie outside (inside) TB, then P
is outside (inside), too.

• Otherwise we check all 26 neighboring cells and from
them we choose those, which have all vertices in TB .
Using trilinear interpolation for voxels of every cho-
sen cell we estimate the density at point P . Each se-
lected cell is further assigned a weight on the basis of
its distance from the point P . Finally, we compute a
weighted average from the estimated values of the den-
sity at P , which determines if the voxel V lies in the
region Q.

In the second step we add the missing information about
the surface B to voxel V . We distinguish two cases:

• If there are at least in one direction two nearest voxels
to V in TB, we use information from these voxels. For



Figure 5. Edge artifacts for different CSG implementations of voxelized models. Operations: top
row - just minmax criterion, bottom row - the new method. Object from left: tetrahedron, wedge,
dodecahedron minus sphere, union of two touching spheres.

instance, if we want to evaluate density and gradient
in voxel Vi,j,k and we know density and gradient in
voxels Vi+1,j,k , Vi+2,j,k , we set:

di,j,k = 2di+1,j,k − di+2,j,k

~ni,j,k = 2~ni+1,j,k − ~ni+2,j,k
(5)

If we can do this estimation for pairs of voxels in more
than one direction, the final values will be calculated
as an average of these estimations.

• If there is no such pair of voxels in the neighborhood
of V , we use the information determined in the first
step for point P . The gradient of the point P is calcu-
lated in the same way as its density. We evaluate the
difference x of the densities in points V , P from the
known vectors ~n, ~u =

−−→
PV . Then voxel V has values:

dV = dP + x
~nV = ~nP .

(6)

3 Conclusion

The advanced CSG operation successfully solves vox-
elization of representable solids. As we can see in Figure 5,
second row, sharp edges are now without artifacts. They are
visibly smoothed, but it is the only way to represent them in
a grid with the given resolution if the representability crite-
rion is to be fulfilled. Similarly, in the union of two almost
touching spheres, the thin gap between them is not repre-
sentable, and therefore is filled.

In our future work we want to focus on other classes of
solids, which are similarly not representable without addi-
tional modifications (e.g., superquadrics).
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