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Abstract

We present a new method for representation of volumetric data sets in this thesis. We use trun-
cated discrete distance fields supplemented by additional information about the surface normal.
To reduce memory requirements, we have developed a compression based on a similar idea as
the well-known run-length encoding. Furthermore, we present a new way to perform CSG oper-
ations between volumes at the voxel level. Our technique eliminates artifacts of straightforward
volumetric CSG operations by taking conditions for object representability into account, accord-
ing to which sharp details are not correctly representable in discrete distance fields. Finally, we
are interested in other solids with sharp details and try to remove artifacts in a similar way like in
the process of CSG operations. Both the problems are solved by rounding edges and other sharp
details to get representable objects. The vxtRL library has been created as an implementation
of these algorithms.



Contents

1 Introduction 5
1.1 Volume Graphics and Voxelization . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Representation of Objects by Distance Fields . . . . . . . . . . . . . . . . . . . 7
1.3 Surface Normal Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Object Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Reconstruction Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Representable Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Representation of Volume Data Sets 13
2.1 RL Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Types of Voxels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Voxelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Reconstruction Precision . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Voxelization Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 CSG Operations with Voxelized Solids 30
3.1 Simple CSG Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Enhanced CSG Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Advanced CSG Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Special CSG Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Sharp Details Correction Method 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Voxelization and Detection of the Critical Area . . . . . . . . . . . . . . . . . . 48

4.2.1 Checking of the Gradient Stability . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Checking of the Normals Consistency . . . . . . . . . . . . . . . . . . . 48

4.3 Completion of Information in the Critical Area . . . . . . . . . . . . . . . . . . 49
4.3.1 Extrapolation of Information in the Critical Area . . . . . . . . . . . . . 49
4.3.2 Evaluation of Data in the Critical Area . . . . . . . . . . . . . . . . . . . 53

4.4 Instability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Delimitation of the Working Area . . . . . . . . . . . . . . . . . . . . . 54

1



CONTENTS CONTENTS

4.4.2 Rectification of the Active Front Propagation . . . . . . . . . . . . . . . 54
4.5 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 The Time Complexity of the Algorithm . . . . . . . . . . . . . . . . . . 56
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Implementation 63
5.1 The vxt Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 The vxtRL Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion 67

2



List of Figures

1.1 Grid types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Reconstruction problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Reconstruction errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The problematic area during construction of the union of two objects . . . . . . . 12

2.1 Representation of a compressed row . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Configuration of voxels needed for the normal estimation . . . . . . . . . . . . . 15
2.3 Shortcoming of the homogeneity check . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 An example of useless voxels in the transition area . . . . . . . . . . . . . . . . 17
2.5 Dependence of the error of surface point estimation on the surface curvature . . 18
2.6 Distribution of the error of surface point position . . . . . . . . . . . . . . . . . 19
2.7 Dependence of the surface normal error on the surface curvature . . . . . . . . . 20
2.8 Distribution of the error of surface normal estimation for voxels with one-byte

precision of density and gradient storage . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Distribution of the error of surface normal estimation for voxels with two-byte

precision of density and gradient storage . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Dependence of the memory size on the grid resolution for different objects . . . . 24
2.11 Relative memory costs for different objects . . . . . . . . . . . . . . . . . . . . . 25
2.12 Examples of some voxelized objects . . . . . . . . . . . . . . . . . . . . . . . . 26
2.13 Dependence of the memory size on the grid resolution for different voxel types . . 27
2.14 Dependence of the voxelization time on the grid resolution for different objects . 28
2.15 Dependence of the voxelization time on the grid resolution for compressed and

uncompressed volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Edge artifacts for different implementations of CSG operations I. . . . . . . . . . 31
3.2 Edge artifacts for different implementations of CSG operations II. . . . . . . . . 32
3.3 Intersection of two objects A, B . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Intersection of two planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Intersection of two objects — obtuse angle . . . . . . . . . . . . . . . . . . . . . 35
3.6 Intersection of two objects — acute angle . . . . . . . . . . . . . . . . . . . . . 36
3.7 Classification of the region TA in subregions P, Q and R . . . . . . . . . . . . . . 38
3.8 Addition of missing information for voxel in the critical area . . . . . . . . . . . 39
3.9 The dependence of the object shape on the resolution . . . . . . . . . . . . . . . 40

3



LIST OF FIGURES LIST OF FIGURES

3.10 Problems with representability of almost touching surfaces . . . . . . . . . . . . 41
3.11 Problems with representability . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Examples of voxelized solids - superellipsoids . . . . . . . . . . . . . . . . . . . 45
4.2 Examples of voxelized solids - supertoroids . . . . . . . . . . . . . . . . . . . . 46
4.3 Examples of voxelized solids - supershapes . . . . . . . . . . . . . . . . . . . . 47
4.4 Checking of the normals consistency . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Voxel classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Active front propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 The time complexity of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Comparison of voxelized solids — cube and regular octahedron . . . . . . . . . 59
4.9 Comparison of voxelized solids — superellipsoids . . . . . . . . . . . . . . . . . 60
4.10 Comparison of voxelized solids — supertoroids . . . . . . . . . . . . . . . . . . 61
4.11 Comparison of voxelized solids — supershapes . . . . . . . . . . . . . . . . . . 62

4



Chapter 1

Introduction

1.1 Volume Graphics and Voxelization
Volume graphics, introduced by authors Kaufman, Cohen and Yagel in 1993 [1], is a sub-area
of computer graphics, which studies space objects in their true three dimensional essence. This
approach is considerable different than the traditional one used in surface graphics. Whereas the
goal of surface graphics is to create models which strive to simulate the appearance of the real
world, volume graphics examines the inside substance of solids. Many years ago some artists
(for example Michelangelo) had realized that to make a picture of reality it is not sufficient just
to look around, but it is necessary to have a good knowledge about the inside structure of objects
to understand also the surface properties. Surface graphics has accomplished admirable results
in many areas of modelling, but it is still limited by a level of complexity of the surface. It is very
difficult to handle objects, which do not have surface defined, for instance fire, smoke, mist, or
fog. Moreover, various applications need to visualize data sets, which are three dimensional in
the principle. As an instance we can mention medicine (tomography, magnetic resonance, ultra-
sound), biology (microscopic systems), geography (seismology), particle physics (electron den-
sity), industry (material structure, liquid and gas flow), meteorology (atmospheric phenomena),
and many others. Volume graphics comes into being as a natural tool to solve these problems, but
also it has a potential to compete with surface graphics in areas, where the traditional approach
still dominates.

The most cited disadvantages of volume graphics are huge requirements on memory and
processing time. However, with the increasing power of computer technology these drawbacks
will probably soon stop to play an important role. On the other hand, we can mention benefits
of volume graphics: independence of the scene complexity, uniform manipulation with different
types of data (sampled or evaluated data, parametric and implicit surfaces) and simple realization
of CSG operations [1].

The basic term of volume graphics is voxel, which is an abbreviation of volume element. Each
voxel stores an information that characterizes locally given volume. The type of this information
depends on the particular implementation. There is a wide range of options from a binary voxel
(it can have just one of two values depending on whether it lies outside or inside the object) up
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Introduction 1.1 Volume Graphics and Voxelization

(a) (b) (c)

Figure 1.1: Grid types
(a) Cartesian, (b) regular, (c) rectilinear

to a voxel with many attributes (density, normal, color, material, reflection and refraction index,
. . . ). Voxels can be arranged in various ways inside the volume, but the most common way is to
use a kind of orthogonal grid (see Figure 1.1). In the case of Cartesian grid we can define a voxel
unit (VU) as the distance between two neighbouring voxels.

The process of conversion from surface to volume representation is called voxelization. As
first, some techniques for generation of binary data have been presented. This approach is not
ideal from the point of view of subsequent rendering of such data, because it leads to undesirable
aliasing. The problem is especially with the estimation of surface normal. Several methods for
its computation from wider voxel neighbourhood have been proposed, but they are not precise
enough for simulation of such phenomena as reflection or refraction on the surface. Better results
have been achieved using discrete raytracing [2], where the analytical description of objects has
been used. However, it is necessary to store an additional information in each voxel to identify
which object it belongs to.

An other way to overcome the problem of aliasing are filtered techniques [3][4]. There is
used a low pass filter for modification of binary data (for example Barlet filter, Gaussian filter
or oriented box). By convolution of object with the filter an continuous function is defined and
it is sampled into the grid. If the size of filter domain is less than the voxelized object then
the inside of the object is represented with specific inside density and the outside with specific
outside density. In the surface vicinity there is a thin transition area where the density changes
continuously from inside to outside value. Data that is obtained during this process has properties
similar to the data that is obtained by scanning of real objects (for instance using tomography),
so it is possible to combine and visualize them easy in an uniform way. There are various
possibilities how to use the transition area. We can define the surface exactly by thresholding at
the middle value of density, or we can exploit this “blurred” surface for antialiasing directly so
that the ray takes the intensity according to densities of voxels which are hit [3].

An important question is what filters to use to get the best results. Authors of paper [4] have
found out that the choice of filter is closely associated with the methods we want to use for the
density interpolation and the normal estimation. Using an improper combination of voxelization
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Introduction 1.2 Representation of Objects by Distance Fields

filters with reconstruction techniques we get a systematic error which does not depend on the
surface curvature, but on its orientation what is undesirable. We are going to discuss it later in
the section Reconstruction Errors.

1.2 Representation of Objects by Distance Fields
The next approach that is able to reduce aliasing is the volume representation by distance fields
(DFs). In this method each voxel stores an information about the distance from the nearest sur-
face point. To distinguish between outside and inside area, voxels on different sides of the surface
have opposite signs (for example positive outside and negative inside). Firstly, DFs were imple-
mented by filling whole the grid with values of distance function defined by the surface [5], so
all the voxels stored information about the object. It is in contrast with the traditional conception
of an object which can be located in the space. The goal of more sophisticated methods is to
identify more precisely the set of voxels which are useful for the surface reconstruction and to
store the information just in these voxels. As examples we can mention truncated distance fields
[4] and adaptively sampled distance fields — ADF [6].

The main idea of truncated DFs is that we need just a thin layer of voxels in the surface
vicinity for coding of the surface. Inside this thin layer (called transition area) the density changes
linearly with respect to the distance from the surface and other voxels store constant inside or
outside density. More formally, the density d(x,y,z) is according to [4] defined by function:

d(x,y,z) =





2T for D(x,y,z)<−δ
0 for D(x,y,z)> δ
T
(

1− D(x,y,z)
δ

)
else

, (1.1)

where D(x,y,z) is the distance of the point (x,y,z) from the surface (negative inside), 2δ is the
width of the transition area and T is the threshold value defining the surface. It is important
to choose the constant δ properly. Its size determines dimensions of the smallest detail that is
representable. If this value is too high, small details are smoothed. On the other hand, too small
δ leads to problems with surface reconstruction, in the limit case we actually get binary data.
From results presented in [4] we know that the ideal value of δ is approximately 1.8 what is a
little bit more than the length of the unit cube diagonal. It comes from the fact that for the surface
reconstruction we need to interpolate values of nearest eight voxels lying in vertices of the cube
inside which the surface point is located, so it is desirable to have all these eight voxels in the
transition area. In the situation where the surface point lies near a vertex of the cube, the distance
from the opposite vertex is equal just to the length of the above mentioned unit cube diagonal
(
√

3).
Technique called adaptively sampled distance fields enables to represent efficiently espe-

cially scenes where large smooth surfaces are combined with small details. Using homogeneous
sampling of the scene we need extremely high resolution for the sake of representation of some
details also if they occupy only a fraction of the space. ADF solve this problem using a hi-
erarchical subdivision of the space. In the comparison with other systems where the recursive
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Introduction 1.3 Surface Normal Estimation

subdivision runs on the base of space blocks categorization into inside, outside and transition,
ADF control the construction of octree by taking local curvature of the surface into account. The
result is that the sampling is around details denser than in homogeneous areas, so the memory is
employed reasonable.

DFs have been implemented successfully in various kinds of applications, as for example
in robotics (motion planning, swept volumes), volume rendering, offset surfaces, morphing and
sculpting systems [7].

1.3 Surface Normal Estimation
To make a high-quality visualization of volumetric data we have to reconstruct from the discrete
information in the grid not only the surface, but also the surface normal for simulation of various
light effects (shading, reflection, refraction, . . . ). The most common method for the surface
normal estimation is the evaluation of density gradient using central differences and following
normalization of this vector:

gx
i, j,k = di+1, j,k−di−1, j,k

gy
i, j,k = di, j+1,k−di, j−1,k

gz
i, j,k = di, j,k+1−di, j,k−1 (1.2)

ni, j,k =
gi, j,k

‖gi, j,k‖
. (1.3)

Some authors have referred to the fact that this filter blurs details in the picture. So, there has
been proposed an adaptive technique [8] which takes the maximum of forward and backward
difference into account:

gx
i, j,k = max(di+1, j,k−di, j,k, di, j,k−di−1, j,k) . (1.4)

An other approach was chosen by Goss [9] who developed an adjustable filter based on the
truncation of the ideal gradient filter cosπx

x using Kaiser window. The sensitivity for higher fre-
quencies can be set by parameter α which modifies the width of the Kaiser window.

Reconstruction filters for the gradient estimation are usually used without specific require-
ments on the properties of volume data (except of the condition for bounded band). If we voxelize
geometric objects, we can exploit the advantage that we have properties of our volume data un-
der control. In particular, we can choose the voxelization filter consistent with the reconstruction
one to get the best results. The advantage of the filter that uses central differences is a simple
implementation and low computation demands. Šrámek and Kaufman showed in [4] that using
this filter we obtain the true surface normal just in the case where the density changes linearly
with respect to the distance from the surface. It means that central differences give us the best
result just in the combination with DFs.
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Introduction 1.4 Object Representability

A B

V

(a)

V

A

B

(b)

Figure 1.2: Reconstruction problems
(a) detail, (b) edge

1.4 Object Representability

1.4.1 Reconstruction Errors
Voxelization is a conversion from continuous data to the discrete one, so it is necessarily followed
by some information loss. By reconstruction there is an effort to get the original data, but in fact
we are able to obtain only certain approximation of it. Quality of this approximation depends
on the properties of given objects and on the sampling density. As we try to capture objects for
which the representation is not suitable, some errors arise during the visualization in the form of
various artifacts.

We have to realize that a voxel carries information about distance just from one (the nearest)
surface. If there are more surfaces in the voxel vicinity, then we are not able to capture this fact
in a voxel with just one value of density, so of course we do not avoid some reconstruction errors.
The situation is illustrated in Figure 1.2. For coding of the surface around points A and B we need
the information in the voxel V . However, we can store the correct information about only one of
points A, B — for instance A. When we use this information from voxel V for reconstruction of
the surface around the point B, it is obvious that we obtain incorrect results. In the case of a small
detail coding the problem can be overcome by increase of the grid resolution (voxel V would not
be “in the vicinity” of both surfaces any more). Around an edge the problem is more principal —
problematic voxels exist for arbitrarily high resolution (it leads to artifacts as in Figure 1.3 (a)).
Although, using high enough resolution this reconstruction error can be invisible in the picture,
nothing changes in the fact that angular objects are not correctly representable in this way.

The reconstruction error also arises if all voxels store correct information about the surface.
The magnitude of this error depends on the interpolation method and on the surface curvature.
From Figure 1.3 (b) according to [5] can be derived the dependence for density d in the point P2:

d(P2) = (P2−A1) · ~n1 + (P2−A2) · (~n2− ~n1)− (A2−A1) · ~n1 , (1.5)

where A1, A2 are respectively the nearest points of the surface from points P1, P2 and ~n1, ~n2 are
surface normals in these points. The first term in the equation constitutes a linear component
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Introduction 1.4 Object Representability

(a)

P
P

A
A
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n
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2

2
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1

(b)

Figure 1.3: Reconstruction errors
(a) artifacts around edges, (b) illustration to the error estimation

of the three dimensional DF, the remaining terms are non-linear. The bigger is the local surface
curvature, the stronger is the weight of non-linear terms. In the case of locally plane surface
these terms are zero, otherwise they are very small in the surface vicinity but dominate in a
bigger distance from the surface. As we use linear reconstruction filters, we can derive the
optimal sampling for given object from this equation, if we define the maximal acceptable error
of the surface reconstruction. We have to be aware that the curvature is a quantity inversely
proportional to the chosen unit of length which is in our case determined by the distance between
two neighbouring voxels. By increasing resolution we get a less curvature for given surface, so
we get a less reconstruction error.

Authors of the paper [4] made a set of experiments to compare various voxelization filters
from the point of view of error that occurs during reconstruction of the data which was acquired
by filtered voxelization. The exact position of the surface point is obtained by thresholding at
the middle value of density which we get in the continuous space using trilinear interpolation
of values from eight voxels in the current cell (cell is the smallest cube with vertices in voxels).
Experiments showed that the usage of Barlet filter causes a big systematic error — the surface
is moved inside the object. Distance techniques seem to be more suitable, because they do not
induce such a movement.

The goal of the next experiment in [4] was to examine the error of surface normal estimation.
The conclusion of the analysis says that the usage of Gaussian produces about 50 times bigger
error than the usage of filter oriented box. From the observation it is also obvious that the most
proper method for the normal computation are central differences.

The filtration of objects using oriented box leads to an identical representation as the tech-
nique of DFs. All the mentioned facts imply our decision to use DFs together with the method
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Introduction 1.4 Object Representability

of central differences in this thesis.

1.4.2 Representable Objects
As it was mentioned before, some objects are not correctly representable using DFs. The pa-
per [10] discusses this problem more in detail. There have been set two conditions which an
object has to fulfill to be suitable for voxelization:

Condition 1: The curvature of the surface has to be relatively small with respect to the grid
resolution.

Condition 2: Filters for surface and normal reconstruction can not use samples located on both
sides of the medial surface. The medial surface is defined as a set of points P for which
there exist at least two surface points in the distance d from P, where d is the distance of
point P from the surface. In other words: there exists more than one nearest surface point
for the point P.

The reason for the first condition is obvious from the observation in previous pages — the
bigger is the curvature, the bigger is the reconstruction error. Also the second condition was
explained already in an informal way — it is implied by problems illustrated in Figure 1.2.

Taken these two conditions into account, authors of the paper [10] made the result that a
geometric object X is suitable for the voxelization with given resolution, if X is both Sr-open
and Sr-closed, where r >

√
6 is chosen in a way to make the reconstruction error acceptable for

the particular application. Here, we have to be aware that the choice of r determines also the
resolution, because r is expressed in voxel units. The criterion of openness and closeness can be
said in other words as the property of a surface around which it is possible to round a sphere of
radius r from both its sides.

The problem of objects representability touches also the realization of CSG operations with
volume data. Whereas CSG operations with binary data can be implemented very easily using
block operations, the situation with DFs is more complicated. The main problem is caused by
the fact that the CSG result has some edges in general, so it does not fulfill the criterion of
openness and closeness. Thus, our goal is to create the CSG result as an object which does
fulfill this criterion and it is as near as possible to the ideal analytical result. Authors of [11]
chose an approach where the CSG operation is performed regardless of potential edges on the
result and then artifacts around edges are corrected using following revoxelization. This method
has brought some visual enhancement, but there is no guarantee that the mentioned criterion
has been fulfilled. It seems to be more correct to voxelize directly a representable object. In
the paper [12] there was proposed following scheme: (a) reconstruct original solids from their
volume representation; (b) perform the CSG operation in the continuous space; (c) modify the
result to fulfill the criterion of openness and closeness; (d) get the final volume representation
by its voxelization. There was presented an algorithm that does not proceed exactly according to
this scheme, but it gives the same result.

The main idea is to use morphological operators erosion and dilation to make the CSG re-
sult representable. In volumetric intersection, for example, in order to enforce the condition

11



Introduction 1.4 Object Representability

I

B B

A A1

0
1

P

0

U1

Figure 1.4: The problematic area during construction of the union of two objects

of representability, both objects are Sr-eroded first and the results is obtained as Sr-dilation of
intersection of such eroded objects:

A∩B = ((A	Sr)∩ (B	Sr))⊕Sr . (1.6)

The algorithm works with one solid in the grid and one object defined analytically in the
continuous space. The second object is used to modify the given volume by means of CSG
operation. The process runs in two phases where we traverse all voxels in each of them. We
describe this method for the realization of union of two objects (intersection and subtraction can
be done analogically). As we create the DFs of the union, we need to know just the distance from
both objects for the most of voxels and we get the resulting value as the maximum of these two
distances (or minimum — it depends on the sign convention) — we name this approach minmax
criterion. An other situation is in the vicinity of surfaces intersection where we need to compute
the distance in a more complicated way. This is illustrated in Figure 1.4. Objects A, B have the
outside surface respectively A0, B0 and the inside surface A1, B1 (the density changes linearly
between these surfaces and it is constant elsewhere). Intersection of outside surfaces is the set I,
a space curve in general. Our aim is to create the union in a way to make the inside surface U1.
There is a problematic (inconsistent) point P laying in the vicinity of I. In the first phase, the
set I is constructed and inconsistent voxels are detected. In the second phase, values of voxels
are computed where we use the distance from I for inconsistent voxels and minmax criterion for
the others.

One goal of this thesis is to propose a method for performing of CSG operations with two
volumes (with no information about their analytical description), just using one run through all
voxels without the necessity of the set I construction.
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Chapter 2

Representation of Volume Data Sets

2.1 RL Compression
Among the most cited drawbacks of the volume graphics belong its huge memory requirements.
Although, the continual progress in the hardware development reduces this difficulty, it is obvi-
ous that we have always not enough memory, because our demands on the technique increase
simultaneously with its growing power. This is a strong impulse for proposing methods to de-
crease memory requirements of volumetric representation.

In the introductory chapter we mentioned the technique called adaptive distance fields [6]
which uses a hierarchical subdivision of the space. The general disadvantage of hierarchical
stored data sets lies in the fact that manipulation with them is quite complicated. In the following
pages, we present a new method which chooses an other approach. The core of this method is
well-known compression run-length (RL) encoding that has been modified to enable effective
representation of truncated distance fields.

Our implementation of the RL compression comes from the observation that the information
about an object is stored just in voxels located in the surface vicinity. The typical row in the grid

datadata data data

State: TRANS State: IN

Length: 10Length:  4Length: 14

State: OUT

Figure 2.1: Representation of a compressed row
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consists of several long sequences of outside or inside voxels separate with short sequences of
transition voxels. Therefor, our idea is to divide the row into segments of three types: outside,
inside and transition. For coding of an outside or inside segment we need to store just its length
and flag (OUT, IN). In addition the transition segment also stores a pointer at a list of voxels which
form the segment. The principle of this compression is illustrated by Figure 2.1. Whole the grid
is stored as two dimensional array of compressed rows. A similar method for representation of a
volume was used by authors of papers [13, 14], but not for distance fields.

2.2 Types of Voxels
The original technique of truncated distance fields makes do with voxel which stores just den-
sity given by its distance from the surface. During visualization, when we need to know the
gradient of density for normal estimation, we usually evaluate it using values of densities stored
in neighbouring voxels (most often by above mentioned central differences). In the case when
we voxelize geometric objects where we know the gradient from their analytical description, we
have the occasion to store the gradient in voxel together with the density. So we save some ren-
dering time and we can achieve higher precision, because we use the true gradient instead of the
estimated one. Of course, we need more memory, but the increase of memory requirements is
not such critical due to the RL compression.

Strictly speaking, we do not need to remember the gradient, but only its direction which
is obtained by normalization of given vector. The vector in three dimensional space is usually
represented by three coordinates (x, y, z), but for direction storage we need just two numbers
(φ, ψ), which can be computed for example using sphere parametrization:

x = cosφ cosψ
y = sinφ cosψ
z = sinψ . (2.1)

So we save some memory, but on the other hand the conversion to spherical coordinates and the
inverse conversion will need some extra processing time.

The next important question is, how many bytes to use for density and gradient storage. For
the testing purposes we have implemented all the combinations of one-, two-, and four-bytes
density with one, two, and four bytes for each component of the gradient. There are three classes
of voxels:

vxtPlainVoxel: Just density is stored.

vxtGradVoxel: Both density and gradient (three components) are stored.

vxtSphGradVoxel: Both density and gradient are stored. The gradient is stored using spherical
coordinates (two components).

In the first case there are 3 possibilities and in the other cases there are 9 possibilities according
to different precision of the density and gradient storage. Altogether we have 21 different kinds

14
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A

B

(a)

B

A

(b)

Figure 2.2: Configuration of voxels needed for the normal estimation
(a) voxel without gradient, (b) voxel with gradient

of voxels. Indeed, some of them are not very meaningful, for instance the combination of very
precise gradient with inaccurate density. For the sake of completeness we have to remark that
some voxels take more memory in the real implementation than it is the theoretically evaluated
value. It is because the size of complex data structures is aligned to a multiple of two or four
bytes.

The selection of voxel type hangs together with the selection of the width of the transition
area. For the surface normal estimation we need wider neighbourhood of a point for voxels with-
out gradient than for voxels with gradient. The configuration of voxels needed for the gradient
estimation is depicted in Figure 2.2. If the surface point is located in the vicinity of voxel A, then
the furthermost needed voxel (B) lies in the distance

√
6 for voxels without gradient, otherwise it

lies in the distance
√

3. These numbers determine the radius of the transition area. The value
√

6
is not given very strictly. If the radius is slightly shorter, the error does not grow dramatically,
because voxels on the border of the transition area have low weight in the computation. Never-
theless, we use the values theoretically derived:

√
6 for the vxtPlainVoxel, and

√
3 for the

vxtGradVoxel and the vxtSphGradVoxel.

2.3 Voxelization
The RL compression has been tested for implicit surfaces. We have proposed two different
methods for their voxelization. The first one (taken from [15]) is based on the space subdivision
using homogeneity check, the second one fills the grid slice by slice and uses an efficient run
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Figure 2.3: Shortcoming of the homogeneity check

through the row. The distance d(P) of a point P from the surface is computed by

d(P) =
f (P)

‖5 f (P)‖ , (2.2)

where f is the function defining the implicit surface f (P) = 0 and ‖5 f (P)‖ is the gradient
magnitude. This linear approximation is precise enough in the surface vicinity, if we assume that
the gradient magnitude does not change radically.

The first step of the space subdivision method is to divide the volume into small blocks of
voxels (for example 8× 8× 8). In each vertex of the block densities are evaluated. If all the
values are identical, that block does not cross the transition area, so we fill all its voxels with
the same value of density. Otherwise, the block is subdivided recursively, until the homogeneity
check passes or the block has dimensions 2× 2× 2. Of course, the homogeneity check is not
fully ideal. Figure 2.3 illustrates some situations, where this check fails. It is in the case, when
the surface crosses just the margin of the block or when whole the object lies inside the block.
So, the size of the initial block has to be chosen appropriately with respect to expected properties
of objects, which are going to be voxelized.

The core of the second method is voxelization of one row. We move along the row in sequence
and fill visited voxels with values of density. If current voxel lies in the transition area, the
neighbouring voxel is visited in the next step. Otherwise, we try to estimate its distance from
the surface and skip appropriate number of voxels. The problematic point of the algorithm is
the distance estimation, because the formula (2.2) is precise enough just in the surface vicinity.
Fortunately, we need to get just a crude guess of the distance. If we skip too far (the new voxel
has different density than the previous one), we correct the skip to the half of its original length.

The voxelization of a row is a part of more complex process, during which the grid is filled
using sweeping planes. The original idea was to determine during voxelization if the voxel in the
transition area is really needed for the surface reconstruction (in Figure 2.4 there is an example
of some useless voxels). As sweeping are called two neighbouring planes in the grid, which
move step by step through whole the volume. This sweeping process consists of three phases:

1. Filling of the sweeping plane using row voxelization.

2. Marking of useful voxels.
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Figure 2.4: An example of useless voxels in the transition area
White voxels lie approximately 1.5 (less than

√
3) VU from the surface, but they are not needed

for its coding (in representation using vxtGradVoxel and vxtSphGradVoxel).

3. Conversion of data from the sweeping plane to the grid.

During the second phase, each transition voxel is checked, if it is an component of at least one
cell, which is crossed with the surface. That is the reason, why we need two sweeping planes.

The goal of this method was saving some memory by elimination of useless voxels. Unfortu-
nately, as we have discovered later, to perform more sophisticated CSG operations we also need
this “throwaway information”. So, the second phase of this process has to be removed and we
actually make do just with the efficient pass through rows.

Our observation has showed that both mentioned methods have similar time complexity. For
testing purposes described in following pages, there was used the voxelization with sweeping
planes.

2.4 Results

2.4.1 Reconstruction Precision
To test the precision of the surface and its normal reconstruction, we have used an experiment
proposed in the paper [4]. There is a sphere voxelized in the grid. We shoot a ray from its centre
and find the intersection point with the surface. In this point also the surface normal is estimated.
Then we determine the difference between the true surface point and the evaluated one, and
the angle between the true and the estimated surface normal. In this evaluation we use the
trilinear interpolation of values from eight voxels of current cell. In the case of voxels without the
gradient, the normal is estimated using central differences. We send a number of rays in different
directions. We repeat this experiment for 125 (5×5×5) positions of the sphere centre distributed
homogeneously inside the cell to minimize the influence of the choice of centre position on
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Figure 2.5: Dependence of the error of surface point estimation on the surface curvature
x-axis: radius of the sphere (in VU), y-axis: error of the estimation (in VU). Precision of voxels:
(a) 1 byte for density storage, (b) 2 bytes for density storage.

results. We examine, how the above mentioned errors depend on the surface curvature, so we
change the sphere radius from 1VU to 40VU .

Our experiment has showed that two bytes are fully enough for the density storage, because
the four-bytes density do not bring higher reconstruction precision. Figure 2.5 illustrates com-
parison of errors for one- and two-bytes density. The reconstructed surface is moved inside the
sphere against the true surface. For the radius of 40VU , the error is approximately three times
less for the two-bytes density than for the one-byte density.

Figure 2.6 illustrates the error distribution in different directions for a sphere with its centre
in the middle of a cell. As we have expected the error pattern is symmetrical and gets more soft
as the radius grows.

As we have mentioned above we can choose theoretically from 21 different possibilities,
how to form a voxel. Although, it would be very complicated to test all of them and make
results well-arranged. Fortunately, the normal estimation is not significantly influenced with the
surface point estimation in our experiment. So, we can ignore the number of bytes for the density
storage, when we test the dependence of the normal estimation error from the precision of the
gradient storage. Results of this experiment have showed that for the gradient storage two bytes
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Figure 2.6: Distribution of the error of surface point position
Radius of the sphere: (1) R=11VU, (2) R=33VU. Precision of voxels: (a) 1 byte for density
storage, (b) 2 bytes for density storage. The intensity indicates the error of surface point position
in given direction, where the direction is represented in spherical coordinates.

for each component are quite enough, because four-bytes gradient storage does not bring higher
precision, likewise in the case of the density storage. The reason is that the error is influenced
much more with the space discretization than with the variable quantization.

Figure 2.7 (1) depicts the dependence of surface normal error from the surface curvature for
five chosen types of voxels. We observe that the error is significantly less for two-bytes storage
of density and gradient than for the one-byte storage, for both voxels with gradient and without it.
Figure 2.7 (2) shows that we get higher precision using voxels with stored gradient. The precision
is two times higher for the sphere of radius 4VU and four times higher for the sphere of radius
40VU . Next interesting observation concerns the voxel with one-byte compressed gradient. This
voxel achieves worse results than the voxel without gradient. The explanation is obvious from
Figure 2.8, where we can see that the error is concentrated around the xy plane, whereas it is
minimal around the z-axis. It is caused by the spherical coordinates which do not cover the
surface of a sphere homogeneously, so we can handle vertical direction more precisely than the
horizontal one. This phenomenon is not presented in the case of two- or four-bytes gradient
storage — there are practically the same results for compressed and uncompressed gradient.

The conclusion of this analysis is that with regard to the reconstruction precision and the
memory requirements the best choice of voxels is that one with two-bytes density and two-bytes
gradient represented in spherical coordinates.
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Figure 2.7: Dependence of the surface normal error on the surface curvature
x-axis: radius of the sphere (in VU), y-axis: angle between true and estimated normal (in de-
grees). Precision of voxels: voxel without gradient with one- and two-bytes precision of the
density storage (a, b); voxel with uncompressed gradient (3 components) with one- and two-
bytes precision of the density and gradient storage (c, d); voxel with compressed gradient (2
components) with one-byte precision (e). In the bottom (2) the same dependence is depicted in
detail for voxels with two-bytes precision (b, d).
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Figure 2.8: Distribution of the error of surface normal estimation for voxels with one-byte pre-
cision of density and gradient storage
Sphere radius: (1) R=11VU, (2) R=33VU. Voxel types: (a) without gradient, (b) with uncom-
pressed gradient, (c) with compressed gradient. The intensity indicates the error of surface
normal estimation (in degrees) in given direction, where the direction is represented in spherical
coordinates.
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Figure 2.9: Distribution of the error of surface normal estimation for voxels with two-byte pre-
cision of density and gradient storage
Sphere radius: (1) R=11VU, (2) R=33VU. Voxel types: (a) without gradient, (b) with gradient.
The intensity indicates the error of surface normal estimation (in degrees) in given direction,
where the direction is represented in spherical coordinates.
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2.4.2 Memory Requirements
The memory complexity of the RL compression can be estimated theoretically using a simple
thought. It is given by the number v of voxels in the transition area and the number s of row
segments. Number v depends linearly on the surface area and s can be computed as r + 2p,
where r is the number of rows in the grid and p is the number of intersections between the
surface and rows, because each intersection adds two segments into row. Also p is bounded
above by the surface area and r = n2, so for the memory complexity SRL we have

SRL(k, n) = θ(n2 + kn2) , (2.3)

where factor k characterizes the surface area and n is resolution of the grid (we suppose dimen-
sions n× n× n). So, for given scene the size of used memory depends quadraticly on the grid
resolution in the comparison with an uncompressed volume, where this dependence is cubic. Of
course, RL compression is suitable for scenes with the factor k small enough.

Our experiments are consistent with the theoretical conclusions. We have tested different
objects: empty volume, cube, sphere, union of a sphere with a cube, regular tetrahedron, regular
octahedron, onion — implicit surface defined by function

f (x, y, z) =
√

y2 + z2−0,4
cos2πx + 1

2
·
(

0,3 ·
∣∣∣∣∣ cos

(
10πx + 4 arctg

z
y + 1

1000

)∣∣∣∣∣+ 0,7

)
,

(2.4)
supersphere — given by function

f (x, y, z) =
(
|x|

2
p + |y|

2
p

) p
q

+ |z|
2
q − r

2
q (2.5)

(for p = 0,3; q = 0,7; r = 0,5), sphereflake — union of 91 spheres of different sizes (see Fig-
ure 2.12). All objects have very similar dependence of needed memory on the grid resolution,
some of them are depicted in Figure 2.10 (1). The same dependence is illustrated for a better
demonstration in Figure 2.10 (2) with the addition of uncompressed volume. As we can see in
the next figure (2.11), for resolution 15003 using RL compression, we need only up to 2% of
memory used by uncompressed volume (for all the tested objects).

Figure 2.13 illustrates the dependence of memory size on the voxel type. Although, the
voxel with gradient takes four times more memory than the voxel without gradient, the memory
requirements for whole the volume are only up to two times higher (for tested objects with small
factor k). The reason is that a part of memory serves for the representation of row segments
and pointers between voxels — size of this memory does not depend on the voxel size. So, the
difference between voxel with the uncompressed gradient and the compressed one is not very
significant.
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Figure 2.10: Dependence of the memory size on the grid resolution for different objects
1: (a) empty volume, (b) sphere, (c) onion, (d) union of a sphere with a cube. The same de-
pendence in the comparison with uncompressed volume (e). Voxel stores two-bytes density and
two-bytes gradient (uncompressed).
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Figure 2.11: Relative memory costs for different objects
x-axis: grid resolution, y-axis: ratio R between the size of compressed C and uncompressed U
volume, R = C

U . Objects: (a) empty volume, (b) sphere, (c) onion, (d) union of a sphere with a
cube.
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Figure 2.12: Examples of some voxelized objects
(a) onion, (b) union of a sphere with a cube, (c) sphereflake, (d) supersphere
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Figure 2.13: Dependence of the memory size on the grid resolution for different voxel types
(1) absolute memory costs, (2) relative memory costs in the comparison with uncompressed vol-
ume. Voxel types (four-bytes precision): (a) voxel without gradient, (b) voxel with uncompressed
gradient, (c) voxel with compressed gradient. Tested object: sphere.
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Figure 2.14: Dependence of the voxelization time on the grid resolution for different objects
Time is expressed in seconds. Objects: (a) regular octahedron, (b) sphere, (c) onion, (d) super-
sphere.

2.4.3 Voxelization Time
The voxelization time can be divided into two components:

1. time for evaluation of the implicit function

2. time for writing the information to the grid

The first component does not depend on the representation of the volume, but just on the com-
plexity of the implicit function. As we can see in Figure 2.14, objects defined by more complex
function are voxelized much more slowly than simple objects.

If we voxelize simple objects, the second component gets more relevant. The drawback of
RL compression is that we do not have a direct access to voxels — the speed of access depends
on the surface complexity. On the other hand we can exploit the RL compression for rapid filling
of homogeneous areas — the whole outside or inside segment can be write at once. As we can
see in Figure 2.15, the second effect is stronger, thanks to that the voxelization is faster with the
RL compression than without it. Furthermore, we can notice that the saving of gradient causes
just a small time delay if the RL compression is used.
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Figure 2.15: Dependence of the voxelization time on the grid resolution for compressed and
uncompressed volume
Time is expressed in seconds. Volume types: (a) compressed without gradient, (b) uncompressed
without gradient, (c) compressed with gradient, (d) uncompressed with gradient. Tested object:
sphere.
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Chapter 3

CSG Operations with Voxelized Solids

CSG operations between binary voxelized models can be easily performed at the voxel level as
operations between the values of the corresponding voxels [1]. Unfortunately, this concept does
not directly extend to filtered or DFs representations. In spite of that, the early techniques relied
only on such binary operations between voxel densities. For example, the minmax implementa-
tion in the case of DFs models:

A∩B : dA∩B = min(dA,dB)

A∪B : dA∪B = max(dA,dB)

A−B : dA−B = min(dA,1−dB) (3.1)

gained a lot of interest [16, 17, 15], since it keeps the DFs correct almost everywhere except in
the edge areas which are influenced by both original solids. This insufficiency however is the
source of severe problems in reconstruction sometimes (Figures 3.1, 3.2, left column), since it
results in an unbounded DF error (a point arbitrarily far from the surface of the new solid may
have arbitrarily low density value [12]).

The proposed implementation of CSG operations between voxelized solids represented by
truncated DFs stems from a similar background as the technique proposed in [12]. The repre-
sentability criterion is enforced for the intersection of the solids by means of the relation (1.6)
and by similar relations for union and difference too. However, we present a more general ap-
proach in which both solids participating in the operation are voxelized. This feature renders
the technique suitable also for evaluation of whole CSG trees. The assumption is that the input
models fulfill the representability criterion.

Density d of each voxel in the grid is from the interval 〈0, 1〉. It is 0 outside of the object,
1 inside of it, and 0.5 on the surface. For voxels in the transition region we store also the
normalized gradient of the density ~n. In general, the algorithm works with values da, ~na, db, ~nb
of input voxels and by means of their analysis it acquires resulting values d,~n.

Before we start to study CSG operations, it is useful to realize that there is some relationship
between union, intersection and subtraction:

A∩B = (Ac∪Bc)c A∪B = (Ac∩Bc)c

A\B = (Ac∪B)c A\B = A∩Bc , (3.2)
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Figure 3.1: Edge artifacts for different implementations of CSG operations I.
Operations from left: simple, enhanced and advanced. Object from top: tetrahedron, wedge.

where Ac (complement to the object A) is obtained at the voxel level by a simple calculation:

dc = 1−d
~nc = −~n . (3.3)

It means that all CSG operations can be performed in an uniform way. We just need to know
how to make intersection (or union) and the other operators can be converted into this operator.

When object A is represented by a truncated DFs, each voxel of its grid belongs either to
the inside IA, outside OA or transition area TA. We denote the boundaries of the transition
area as inner surface IA and outer surface OA — the real object surface passes between them
in the center of the transition area. Since the thickness of the transition area is 2r, the distance
from a surface point to IA is r and therefore the inside area is identical to the Sr-erosion of the
object. Therefore, in order to compute the intersection of objects A and B according to (1.6), it
is necessary to reconstruct the inner surface IA∩B, find points in the transition area of A∩B and
correctly compute the distances of these points to IA∩B. This approach is illustrated in Figure 3.3,
which shows orthogonal cuts through edges with obtuse and acute angles. The minmax criterion
(3.1) is applied in such areas, where the corresponding voxels of both solids are non-transitional.
The remaining space can be divided in areas P, Q and R according to the geometry of the newly
created edge. We apply the minmax criterion also in the P area, while in the voxels of Q and
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Figure 3.2: Edge artifacts for different implementations of CSG operations II.
Operations from left: simple, enhanced and advanced. Object from top: dodecahedron
minus sphere, union of two touching spheres.

R areas, we ideally have to compute the distance to line S instead. Line S is defined as the
intersection of the inner surfaces of A and B.

We present four variants, denoted simple, enhanced, advanced and special, in which the
distance to IA∩B is computed at various levels of correctness, thus trading quality for speed.
Common features of all the variants are that they work in a single run through all voxels and
that they identify voxels where the simple minmax criterion (3.1) yields correct values. For the
remaining voxels the resulting densities are computed in different ways (except in the case of the
simple technique, where (3.1) is used everywhere). The simple and enhanced techniques rely
exclusively on point operations, while the other two compute the distance by checking a local
voxel neighbourhood.

3.1 Simple CSG Operation
As simple CSG operation we denote the implementation according to (3.1). It completely ignores
the sampling theory and therefore results in artifacts around edges (Figures 3.1, 3.2, left column).
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Figure 3.3: Intersection of two objects A, B
(a) edge with an obtuse angle, (b) edge with an acute angle
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3.2 Enhanced CSG Operation
The enhanced CSG operation is similar to the simple one in that it is based only on point op-
erations. Here, we identify only the R region, R ≡ {v : v ∈ TA ∧ v ∈ TB} (because we cannot
distinguish between regions P and Q solely by point operations) and use the minmax criterion
(3.1) elsewhere. We have to distinguish between R regions of obtuse and sharp edges by the dot
product of gradient vectors of voxels in R. The core of this method resides in a local approxima-
tion of the inner surface of both objects by a plane.

Obtuse angle: In a voxel V of the region R we estimate density and gradient so that it cor-
responds to the direction and distance to the nearest point of line S, which is an estimate of the
intersection of the inner surfaces (Figure 3.3). The outer surface of the result then forms an arc
with center S, radius 2r and endpoints Ca, Cb, where r is the radius of the transition area. Like-
wise, the real surface is formed by an arc with the same center, but with radius r. Thus we exactly
fulfill the Sr-openness and Sr-closeness criterion for object representability.

u
v

x

P

X

U

V

α β

Figure 3.4: Intersection of two planes
Planes α, β are given by point P and vectors ~u,~v. X is to P the nearest point of the intersection
of these planes. Our goal is to determine vector~x.

First, we solve the problem depicted in Figure 3.4. Given is point P and two linearly in-
dependent vectors ~u, ~v which determine planes α, β — ~u, ~v are respectively normal vectors of
planes α, β and the distances between the planes and P are ‖~u‖, ‖~v‖. Let X be the nearest point
of intersection of planes α, β to point P. Our goal is to find vector~x =

−→
PX . We use three facts:

1. (~x−~u) ⊥~u
2. (~x−~v) ⊥~v
3. ~x is a linear combination of vectors ~u,~v.

On the basis of this observation we arrange a system of equations, from which we get the fol-
lowing relation:

~x =
(‖~u‖2−~u~v) · ‖~v‖2

‖~u‖2‖~v‖2− (~u~v)2 ·~u +
(‖~v‖2−~u~v) · ‖~u‖2

‖~u‖2‖~v‖2− (~u~v)2 ·~v . (3.4)
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Figure 3.5: Intersection of two objects — obtuse angle
Density and gradient of voxel V ∈ TA∩B are estimated through vector ~g.

Figure 3.5 presents a scheme that we use to evaluate density and gradient of voxels, which lie
around an obtuse edge of intersection of two objects. In voxel V , we know the densities da, db
and the normalized gradients ~na, ~nb of the input volumes A, B and we want to obtain the values d
and~n of the resultant intersection. We use the equations ~a = da~na, ~b = db~nb and exploiting
(3.4) we get:

~g = K~na + L~nb

K =
da−db~na~nb

1− (~na~nb)2

L =
db−da~na~nb

1− (~na~nb)2 . (3.5)

For K > 0, L> 0 voxel V lies in region R, and we use vector~g for the evaluation of its density
and gradient:

d = ‖~g‖

~n =
~g
‖~g‖ . (3.6)

Acute angle: In the case of an acute angle between surfaces of both solids the solution is only
approximate. We construct the distance field in region R so that the outer surface forms an arc
between points Sa and Sb. Its radius is such that this arc touches the outer surfaces of objects A, B.
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Figure 3.6: Intersection of two objects — acute angle
The density and gradient of voxel V ∈ TA∩B are estimated through vector ~g.

Obviously, in this method we do not fulfill the Sr-openness and the Sr-closeness criterion — the
smaller is the angle between surfaces the bigger is the error.

Figure 3.6 illustrates the situation. Using (3.4), vectors~x,~y can be expressed as follows:

~x = −Kx~na + Lx~nb ~y = Ky~na−Ly~nb

Kx = da+(1−db)~na~nb
1−(~na~nb)2 Lx = (1−db)+da~na~nb

1−(~na~nb)2

Ky = (1−da)+db~na~nb
1−(~na~nb)2 Ly = db+(1−da)~na~nb

1−(~na~nb)2

. (3.7)

From these equations we get:

~g = Ky~na + Lx~nb

f = Kx + Ky = Lx + Ly =
1

1− ~na~nb
. (3.8)

The distance of point O from the inner surface is f . Then voxel V is closer to the outer surface
by ‖~g‖, and therefore its density is:

d = f −‖~g‖ . (3.9)

Region R1 is determined by the condition Ky > 0, Lx > 0. The density of voxels which are out
of this region is evaluated using the minmax criterion.

For voxels in regions R1, R2 it is not easy to decide which gradient direction they should be
assigned. If we would take the direction to point S, the gradient would change non-continuously
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across the segments SaS, SbS. If we would take for the gradient the direction to point O in
region R1 and use the minmax criterion elsewhere, the gradient would change non-continuously
across the segment OS. Therefore, we evaluate the gradients in regions R1, R2 as follows:

~n =
da~na + db~nb

‖da~na + db~nb‖
. (3.10)

This equation is derived from the intersection of two perpendicular surfaces. Although the di-
rection of this gradient estimation is not identical to that of the real surface normal, it is good
that it changes continuously, since the error of such an estimation is not as critical as the error
introduced by a non-continuous gradient.

Using the enhanced CSG operation we smooth obtuse edges correctly and we get better
results than with the simple one around acute edges, too. We can see visible differences between
the results of the simple and enhanced implementations for the regular tetrahedron in Figure 3.1,
second column, although the angle between its faces is acute (about 75,5◦). However, in the case
of the wedge, where the edge is sharper, both results are still jaggy.

3.3 Advanced CSG Operation
The goal of the advanced CSG operation is to implement the CSG operations fully according
to the Sr-openness and Sr-closeness criterion in order to remove artifacts around all edges. The
main problem is the above mentioned region Q in Figure 3.3b, where we have information just
about one surface, but where we need information about both surfaces in order to smooth the
edge correctly. If we had this information, the approach for obtuse edges could be extended for
all the edges. For this purpose we have to add to our algorithm the following steps:

1. For voxels lying in the vicinity of just one surface we need to distinguish if they belong to
region P or Q.

2. For voxels in the region Q we have to estimate the missing information about the second
surface before performing the CSG operation.

A test for the classification of voxels in regions P and Q is illustrated in Figure 3.7. Using the
density (distance) and gradient of voxel V : V ∈ TA∧V /∈ TB we construct point P as the foot of
a perpendicular from V to IA. If P ∈ TB, then voxel V ∈Q, otherwise V ∈ P.

It is not quite trivial to test if point P ∈ TB. P as a point of the continuous space is located in
one cell of the grid with 8 voxels in its corners—some of them can be inside and some of them
outside the transition area of B. We use the following rules to decide about P:

• If all voxels of the cell lie outside (inside) TB, then P is outside (inside), too.

• Otherwise we check all 26 neighbouring cells and from them we choose those, which have
all vertices in TB. Using trilinear interpolation for voxels of every chosen cell we estimate
the density at point P. Each selected cell is further assigned a weight on the basis of its
distance from the point P. Finally, we compute a weighted average from the estimated
values of the density at P, which determines if the voxel V lies in the region Q.
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Figure 3.7: Classification of the region TA in subregions P, Q and R

In the second step we add the missing information about the surface B to voxel V . We
distinguish two cases:

• If there are at least in one direction two nearest voxels to V in TB, we use information from
these voxels. For instance, if we want to evaluate density and gradient in voxel Vi, j,k and
we know density and gradient in voxels Vi+1, j,k, Vi+2, j,k, we set:

di, j,k = 2di+1, j,k − di+2, j,k

~ni, j,k = 2~ni+1, j,k −~ni+2, j,k . (3.11)

If we can do this estimation for pairs of voxels in more than one direction, the final values
will be calculated as an average of these estimations.

• If there is no such pair of voxels in the neighbourhood of V , we use the information de-
termined in the first step for point P. The gradient of the point P is calculated in the same
way as its density. We evaluate the difference x of the densities in points V , P from the
known vectors~n, ~u =

−→
PV . Then voxel V has values:

dV = dP + x
~nV = ~nP . (3.12)

As we can see in Figures 3.1, 3.2 third column, sharp edges are now without artifacts. They
are visibly smoothed, but it is the only way to represent them in a grid with the given resolution
if the representability criterion is to be fulfilled. Similarly, in the union of two almost touching
spheres, the thin gap between them is not representable, and therefore is filled.

We have not used any antialiasing method, so some artifacts can occur in pictures around
object contours. It is not a problem of the representation but the rendering technique and can be
easy solved by exploiting common routines.

We successfully solved the problem of representability of CSG solids by rounding sharp
edges and small details, which would otherwise result in reconstruction artifacts. Such rounding
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Figure 3.8: Addition of missing information for voxel in the critical area
(a) using neighbouring voxels, (b) using point P calculated previously.
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may in certain cases significantly change shape of the object, but according to sampling theory,
there is no other way how to solve this problem except of local or global increase of the grid
resolution (Figure 3.9).

Figure 3.9: The dependence of the object shape on the resolution
The cube-sphere object. Operations from top: simple, advanced. Resolution from left: 323, 643,
1283, 2563.

3.4 Special CSG Operation
The advanced CSG operation successfully solves voxelization of representable solids. However,
sometimes we want to voxelize also objects which are beyond the limits of representability.
In this case artifacts may appear (Figure 3.10a). With the special CSG operation we propose
heuristics improving such models by removing the most disturbing artifacts.

An example of such problematic configuration is shown in Figure 3.11. We have two objects
A, B and we want to represent their union. If they are apart enough far, their surfaces are sep-
arated. If they intersect their surfaces are joined. It is clear that, when voxelized, there cannot
exist a continuous transition between these two situations, because a thin gap or a thin bridge
between the objects are not representable. This problem can be suppressed by either local or
global increase of the grid resolution, but cannot be removed completely. Fortunately, the critical
distance of two objects is in a narrow range of values—the advanced CSG operation gives correct
results outside of this critical range.

The special CSG operation is an extension of the advanced CSG operation. Its goal is to de-
tect regions, where the aforementioned problems can occur. It is based on the following heuris-
tics:
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(a) (b)

Figure 3.10: Problems with representability of almost touching surfaces
(a) advanced, (b) special CSG operation. Model: sphere minus cylinder.

A B

(a)

A B

(b)

Figure 3.11: Problems with representability
A smooth transition between configurations (a) and (b) is not possible in discrete grids.
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1. During performing the advanced CSG operation we mark voxels created from input voxels
with almost opposite gradients—the angle of these vectors is less than 7◦ (this value was
determined experimentally). These voxels are called dangerous.

2. After that we check all dangerous voxels. Their densities and gradients are compared with
those of their neighbours (non-dangerous only) and if there are significant differences, the
values of the dangerous voxels are changed. This process is quite complicated, because
there is a number of different possible situations, so we do not explain it here in detail.

The special CSG operation brings some visual enhancement, although it is obvious that the result
is not (and cannot be) completely correct (Figure 3.10b).
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Chapter 4

Sharp Details Correction Method

4.1 Introduction
This chapter deals with implicit surfaces, which contain some sharp details. For the illustration
we use various objects from the classes of superellipsoids, supertoroids and supershapes which
are defined by the implicit equation f (x, y, z) = 0.

Superellipsoids:

f (x, y, z) =

(∣∣∣x
a

∣∣∣
2
p

+
∣∣∣y
b

∣∣∣
2
p

) p
q

+
∣∣∣ z
c

∣∣∣
2
q −1 . (4.1)

Supertoroids:

f (x, y, z) =

∣∣∣∣∣∣

(∣∣∣x
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2
q −1 . (4.2)

Between a, b, d and R (radius of the supertoroid) there is following relationship:

d =
R√

a2 + b2
. (4.3)

Superellipsoids and supertoroids belong to the class of superquadrics, which are described
more in detail for example in [18, 19]. Parameters a, b, c, d enable to scale the object and
parameters p, q govern its shape.

Supershapes: Supershapes are defined in 2D space using polar coordinates by the so called
superformula [20, 21]:

r(ω) =

(∣∣∣∣
cos m

4 ω
a

∣∣∣∣
n2

+

∣∣∣∣
sin m

4 ω
b
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n3
)− 1

n1
. (4.4)
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This definition can be extend easy to 3D space using spherical product:

x = r1(φ)cos(φ) · r2(ψ)cos(ψ)

y = r1(φ)sin(φ) · r2(ψ)cos(ψ)

z = r2(ψ)sin(ψ)

−π
2
≤ ψ≤ π

2
−π≤ φ≤ π (4.5)

Now we multiply the first and the second equation by the factor 1
r1(φ)r2(ψ) and the third one

by the factor 1
r2(ψ) . Then we square all the equations and sum them together:

(
x

r1(φ)r2(ψ)

)2

+

(
y

r1(φ)r2(ψ)

)2

+

(
z

r2(ψ)

)2

=

= cos2(φ)cos2(ψ) + sin2(φ)cos2(ψ) + sin2(ψ) . (4.6)

Using the formula cos2(α) + sin2(α) = 1 we get the equation:

(
x

r1(φ)r2(ψ)

)2

+

(
y

r1(φ)r2(ψ)

)2

+

(
z

r2(ψ)

)2

= 1 . (4.7)

So, supershapes are defined by the implicit function f (x, y, z) as follows:

f (x, y, z) =

(
x

r1(φ)r2(ψ)

)2

+

(
y

r1(φ)r2(ψ)

)2

+

(
z

r2(ψ)

)2

−1 . (4.8)

Parameters a, b, m, n1, n2, n3 of the functions r1(φ), r2(ψ) can be mutually different. We
can obtain a wide scale of objects using various values of these parameters. They have
been described in several papers, for instance in [20, 21]. To acquire values of angles φ,ψ
we use spherical coordinates of the point P(x, y, z) given by the formula (2.1).

In figures 4.1, 4.2, 4.3 we present several objects from above mentioned classes. As we can
see, many of them contain some sharp details. Our goal is to voxelize these solids using DFs
in a way to get correct data — it means the reconstruction error should by suitably bounded.
We know from the sampling theory that in the discrete space we are able to capture details in
the data just up to certain level. In other words, the highest feasible frequency is given by the
sampling density. As edges are details with unbounded frequency, we are not able to represent
them in discrete data. If we try to voxelize objects with edges anyway, we see in figures many
disturbing artifacts after following reconstruction — edges are jaggy. The more correct approach
is to modify data during the voxelization process in the way to make edges suitably rounded —
their curvature should correspond with the maximal permissible frequency.

In the solution of this problem we use the same idea as in the Chapter 3, where CSG op-
erations with voxelized models have been discussed. We take into account the representability

44



Sharp Details Correction Method 4.1 Introduction

(a) (b)

(c) (d)

Figure 4.1: Examples of voxelized solids - superellipsoids
In the figure there are superellipsoids with various parameters (p, q) from the formula 4.1, where
a = b = c = 1. Objects are displayed from different views. (a)(4, 1) (b)(1, 4) (c)(0.3, 0.9)
(d)(2.5, 4)
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(a) (b)

(c) (d)

Figure 4.2: Examples of voxelized solids - supertoroids
In the figure there are supertoroids with various parameters (a, d, p, q) from the for-
mula 4.2, where a = b = c. Objects are displayed from different views. (a)(0.4, 0.5, 1, 4)
(b)(0.2, 2, 1, 4) (c)(0.2, 2.5, 2, 4) (d)(0.15, 3, 1, 0.5)
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(a) (b)

(c) (d)

Figure 4.3: Examples of voxelized solids - supershapes
In the figure there are supershapes with various parameters a, b, n1, n2, n3, m, from the for-
mula 4.4 for functions r1(φ), r2(ψ) in the equation 4.8
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criterion given in the paper [10], according to which the object X is suitable for voxelization
just in the case when X is both Sr-open and Sr-closed. Our aim is to adjust objects during the
voxelization process to make them fulfill the given criterion and to be as similar to the original
objects as possible.

We solve this problem by dividing the voxelization into two stages. In the first one we com-
pute values of voxels in the whole volume in a standard way and mark voxels, which value is
problematic by reason of something (it will be explained later). We call these marked voxels crit-
ical — they form the critical area. In the second stage an other process runs, during which voxels
in the critical area acquire new values. We name this new technique Sharp Details Correction
Method (SDCM).

4.2 Voxelization and Detection of the Critical Area
During the voxelization process density and the direction of its gradient is evaluated in each
voxel. Density is given by the distance of the point from the surface. We compute this distance
using formula (2.2). This linear approximation is correct in the surface vicinity, provided that the
gradient does not change too radically. We use two tests to decide if the voxel should be marked
as critical — checking of the gradient stability and checking of the normal consistency.

4.2.1 Checking of the Gradient Stability
Now we describe how we check the gradient stability. We move from current voxel in directions
of all three axes (both forwards and backwards) using a small shift (10−4 VU) and calculate the
direction of gradient in all the six points. If there is at least one point where the gradient direction
differs too much from the direction in current voxel, we deduce that the gradient is unstable. The
evaluation by formula (2.2) is not meaningful, so we mark the voxel as critical.

4.2.2 Checking of the Normals Consistency
If the gradient of function f in voxel V is stable, we evaluate here the density and direction of its
gradient — it is identical with the direction of5 f (V ) and it indicates the direction of the surface
normal. If the voxel lies in the transition area we check the consistency of normals, which is
illustrated in Figure 4.4. The idea is to find points P, Q on the basis of information in voxel V
— they are feet of perpendicular from voxel V to outside and inside surface. We compute the
surface normals in these points. In the ordinary case they are the same as in the voxel V (or their
values are very close to each other). But, if the voxel V lies in the edge vicinity, these directions
are very different. We have to recalculate the voxel in this case, so we mark it as critical.

At the end of this stage of voxelization we have four classes of voxels in the grid:

outside: We know that they lie outside the object.

inside: We know that they lie inside the object.
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Figure 4.4: Checking of the normals consistency
There should be approximately the same normals in points P, Q as in the voxel V (the first case).
If it is not the case, the voxel is located near an edge and its value must be recalculate (the second
case), so we mark it as critical.

transition: We know that they lie in the transition area.

critical: We do not know where they lie. Their values have to be recalculate later.

Above mentioned classes of voxels form four areas in the volume: outside, inside, transition and
critical. Two examples of such voxel classification are depicted in Figure 4.5.

4.3 Completion of Information in the Critical Area
After the first stage of voxelization we need to evaluate correct values in all critical voxels.
They lie around edges and vertices. Our goal is to transfer here information from faces in the
local neighbourhood. We aim to extrapolate these faces linearly so that the information from
them comes into nearest critical voxels. Of course, each voxel can obtain information from
several parts of the surface — voxels around edges from two, voxels around vertices from three
and more. Next, we have to analyze the information in each critical voxel and determine the
resulting values. We use the same approach as in Chapter 3. We regard the faces in the local
neighbourhood as halfspaces and the result is given by intersection of them. We try to solve
this problem just for solids with convex edges and vertices — other sharp details require more
complicated analysis.

4.3.1 Extrapolation of Information in the Critical Area
The propagation of information in the critical area proceeds in a series of steps. At the beginning
we find all critical voxels, which neighbour with a voxel in the transition area. We create so called
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(a) (b)

(c) (d)

Figure 4.5: Voxel classification
Top row: voxelized solids (cube and superellipsoid). Bottom row: one slice of given volumes
— black colour: transition area, white colour: critical area, grey colour: outside or inside
area.
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active entry (AE) in each such voxel — it contains information about density and surface normal
in the voxel. We acquire this data using weighted average of values taken from neighbouring
transition voxels (Vi):

d =
∑k

i=0 wid∗i
∑k

i=0 wi
(4.9)

−→n =
∑k

i=0 wi
−→ni

‖∑k
i=0 wi

−→ni ‖
, (4.10)

where d and −→n are resulting values of density and normal, k is the number of neighbouring
transition voxels, wi is the weight of Vi (1 for face neighbours, 1√

2
for edge neighbours and 1√

3
for vertex neighbours), −→ni is the surface normal of Vi and d∗i is the density of Vi modified in a
way to correspond with the shift from the neighbouring voxel to the current one:

d∗i =
−→ni ·−→vi

2r
+ di . (4.11)

In the last formula di is the density of Vi, r is the radius of transition area and −→vi is the vector
of movement (V −Vi). It comes from the fact that di and −→ni situated in Vi define a plane that
we want to define using d∗i and −→ni situated in V . One should be aware that the density d in the
transition area depends on the distance D linearly according to the formula (1.1):

d =
1
2
− D

2r
. (4.12)

If the normal vectors in two neighbouring voxels are very different from each other — we call
them inconsistent (the difference exceeds certain limit) — we consider that they describe diverse
parts of the surface, so we analyze them apart. In this case we divide neighbouring voxels into
groups with mutually consistent normals and we create an AE on the basis of each such group.
So, one voxel can hold several AEs.

After the above described initialization step we have AEs in some critical voxels. They form
so called active front (AF). We move this AF in next steps until it crosses whole the critical area.

In one step of the AF movement we find for each AE all the neighbouring critical voxels, to
which the information should be transfered. Those voxels have to fulfill two conditions:

1. They did not contribute to this AE in the previous step.

2. They carry no AE, which normal is consistent with this AE.

We create a new active entry (NAE) in each such neighbouring voxel in the same way as in the
initialization step. But, now we use neighbouring AEs (with mutually consistent normals) instead
of transition voxels. As NAEs are created gradually, the new active front (NAF) is generated —
it serves as AF in the next step. The process finishes at the moment when the AF is empty. In
voxels we store values of density and surface normal, as the AF runs through them. One voxel
can be hit by various parts of the front (distributing information from various parts of the surface),
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(a) (b)

(c) (d)

Figure 4.6: Active front propagation
Initialization (a) and first three steps (b, c, d) of AF propagation. Colours of voxels: white —
outside, yellow — inside, green — transition, red — critical, cyan — critical voxels with one AE,
blue — critical voxels with two AEs.
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so it can store more values of density and normal. These values are used in the next phase of the
process to get resulting value of the voxel.

The idea of our algorithm SDCM is similar to the well known fast marching methods (FMM)
of front propagation. In the case of FMM the front is propagated gradually by changing the voxel
from narrow band to frozen followed by an extension of the narrow band. On the other hand, in
the case of SDCM, the front is propagated in several steps (see Figure 4.6). In one step all the
AEs are visited and analyzed and a NAF is generated in their neighbourhood. In the next step the
NAF serves as AF. Actually, the whole wave of information moves in one step and some parts of
this wave can meet together and hit one voxel several times.

4.3.2 Evaluation of Data in the Critical Area
As we have mentioned before, we use the same idea for the evaluation of information in critical
voxels as for the solution of CSG operations with voxelized solids. There are several values of
density and normal stored in one voxel — they define together certain number of halfspaces. The
calculation is sequential. We take the first and the second entry from the list and create a new
entry using the intersection operation. This new entry is then combined with the third entry from
the list — using the intersection operation again. And so on. . . We continue this computation,
until the list of results is empty, and so we obtain the resulting value of voxel.

If the surface contains some too sharp vertices, this evaluation can be affected by certain
errors. It is, because the realization of the CSG operation is derived from an intersection of two
halfspaces. But the result of intersection of two halfspaces is not a halfspace. When we use this
result as input for the next intersection operation (where we assume halfspaces as input), certain
error can occur (it depends on the mutual positions of all halfspaces). It would be more suitable
to solve the intersection of all the halfspaces at once. This approach has not been implemented
yet.

There can be some critical voxels, which are never reached by the AF, because the critical
area can be disconnected through the discretization (Figure 4.5d). In this case we explore the
neighbourhood of given voxel and make it inside or outside according to values of nearest non-
critical voxels.

4.4 Instability Problem
We assume in the above mentioned solution that each critical voxel obtains information exactly
from those parts of the surface from where we want to transfer it. For example, voxel in the edge
vicinity should be hit by information from appropriate two faces, which are joint in the edge
(faces can be curved — we regard them locally as planes). Similarly, voxel in the vertex vicinity
should be hit just by information from faces, which are joint in the vertex. The question is if we
are able to ensure this assumption.

Our experiments have showed that sometimes the information is also distributed to voxels
where it is undesirable. Of course, we evaluate incorrect values in voxels in this case. Therefor
there has been a need for more detailed exploration of the front propagation and its rectification.
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We have proposed several heuristics, which have managed to reduce significantly the number of
errors in the process. However, we have not found an universal solution of this problem.

4.4.1 Delimitation of the Working Area
The first problem is that the topology of the critical area can be complex enough and the front
propagation in the more distant regions can be quite complicated. This can lead to a situation
where a part of front “returns” to the surface vicinity in a totally other location than it comes
from. To avoid this problem we try to delimit the working area before running the process of AF
propagation. To make this we use so called delimitation front. It works in the same way as the AF
with an additional condition that the information is propagated just through voxels, for which the
estimated density corresponds with the outside value. Also here we have to prevent the situation
where the information hits some distant parts of surface. Therefor we stop the delimitation front
in places where it meets a voxel visited before. We know that all the visited voxels should be
outside the solid, because they belong to an outside area of at least one halfspace, from which
the intersection is created. These voxels delimit the working area, in which the AF propagation
proceeds in the next phase of the process.

4.4.2 Rectification of the Active Front Propagation
Also in the delimited working area it can sometimes happen that the information is distributed
to voxels where it is undesirable. The further way how to control the front propagation is to
set a restriction on the direction where the information from given voxel can transfer in the next
step. To enable it we store in each AE an additional information about the direction of the front
movement and about the starting point, in which the information was initialized. In next steps we
acquire this data using weighted average of values from neighbouring AEs in the same way as the
information about density and surface normal. As we decide where to transfer the information
from current voxel we construct a space angle with the vertex in the starting point and the axis
in the direction of the front movement. Then we take only voxels located inside the angle for
the next examination. The open question is how to determine in voxels the direction of AF
movement in the initialization step and what should be the size of the above mentioned angle.

The direction of the AF propagation−→s is obtained in the AE of the voxel V during the initial-
ization step on the basis of configuration of neighbouring transition voxels — we just combine
directions, in which these voxels lie:

−→s =
∑k

i=0 wi(V −Vi)

‖∑k
i=0 wi(V −Vi)‖

. (4.13)

This straightforward solution is not ideal, because two neighbouring AEs can have quite different
directions due to the discrete character of the problem. To “blur” these directions (to get similar
directions in neighbouring AEs), we modify the direction in given entry using information in
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neighbouring entries (we change all entries in several steps):

−−→
snew =

∑n
i=0 wi

−→si +
−→
sold

‖∑n
i=0 wi

−→si +
−→
sold‖

, (4.14)

where
−→
sold is the old value of the direction and

−−→
snew is the new one. Then we use the surface

normal −→n to project the direction vector onto the tangent plane of the surface to make the infor-
mation propagate in the surface direction:

−−→
snew = (−→n ×

−→
sold)×−→n . (4.15)

The computation of ∑k
i=0 wi(V −Vi) in the formula (4.13) is problematic, because we can get

the null vector as the result. According to our experiments, this situation really occurs sometimes.
The reason is that the transition area can have various shapes, so the properties of its boundary
with the critical area are not fully under our control. This properties also influence the geometry
of the AF and can cause its unexpected propagation. That is the reason, why we try to modify
this boundary with several methods.

The first method we have proposed for this purpose is the combination of erosion and dilation
of the transition area. In the process of erosion we remove from the transition area all the voxels
neighbouring with the critical area, whereas in the process of dilation we add to the transition
area all the neighbouring critical voxels. As a result, thin layers of transition voxels are “deleted”.
But, according to our experiments, this method does not bring significant enhancement. On the
contrary, it leads to blurring of some details, which could be represented in given resolution.

As more suitable, it seems to be the approach, where we remove from the transition area those
voxels, which have “too many” non-transition neighbouring voxels. It is not easy to constitute a
criterion what voxels should be removed. We have tested several possibilities and made a result
that the best solution is to remove voxels, which fulfill following condition:

• There are at least two pairs of voxels outside the transition area from three pairs of neigh-
bouring voxels where one pair consists of two opposite face neighbours.

As we remove these voxels, we “cut” from the transition area those parts, which stick out too
much. So we blur the boundary between transition and critical area thanks to that the direction
estimation of the front propagation is more stable.

The next question is, what should be the size of the space angle, inside which the AF has
to move from the starting point. If the angle is too small, there are some voxels, into which the
needed information is not distributed. On the other hand, if the angle is too large, the AF can
be propagated to undesirable areas. The problem is that this question has no universal answer,
because a given angle can be too small for one configuration of voxels and too large for an other
one. We just have been able to tune the right value of the angle size for given object and given
resolution.
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4.5 Algorithm Analysis

4.5.1 The Time Complexity of the Algorithm
Of course, the SDCM needs some extra computation time in the comparison with the common
voxelization. In total, the time of the SDCM can be expressed as:

tSDCM = t + ta + tgs + tnc + tci . (4.16)

In the equation, t is the time of common voxelization, ta is the time needed for the construction
of an auxiliary structure serving for voxel classification and realization of the AF propagation, tgs
is the time needed for checking of the gradient stability, tnc is the time needed for the checking
of normals consistency and tci is the time needed for the completion of information in the critical
area. Now we analyze particular components:

t : Similarly, like in Chapter 2.4.3, we divide this time into two subcomponents: te — time for
the evaluation of density in voxels, tw — time for writing the computed value into memory.

ta : The writing into the auxiliary structure runs in parallel with the writing into the volume and
takes approximately the same time, therefor ta ≈ tw.

tgs : During the evaluation of function f and its gradient in given voxel we also calculate the
gradient in other six points around. The gradient calculation is much more costly than the
function f calculation, therefor tgs ≈ 6te.

tnc : The main part of this time is taken by the evaluation of gradient in two points P, Q in
Figure 4.4. This computation is performed just in voxels V , which are located in the
surface vicinity, so it depends linearly on the surface area. We can make an estimation:
tnc < 2te.

tci : This time involves the AF propagation and the calculation of resulting values in critical
voxels. Each critical voxel is visited at most k times during the AF propagation where k
is the highest number of faces around one vertex. Similarly, we have to handle at most k
entries in each critical voxel during the evaluation of resulting values. This implies that
tci depends linearly on the number of critical voxels, which is given by the total length of
object edges and by their sharpness.

The proportion of particular components in tSDCM can be very varied, it depends on specific
object and given resolution. Naturally, it is interesting for us to compare times t and tSDCM . In
Figure 4.7(a), there is depicted the dependence of the ratio tSDCM

t on the resolution for several
objects. We can see that the SDCM takes approximately 5–10 times more time than the common
voxelization.

As we analyze the algorithm, we can notice that a significant distribution to the time tSDCM
is formed by the component tgs. So we can significantly reduce the time requirements of the
SDCM if we remove the checking of gradient stability (Figure 4.7(b)). According to our experi-
ments, SDCM can function without problems on the tested objects also without above mentioned
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Figure 4.7: The time complexity of the algorithm
There is the resolution of volume on the x-axis and the ratio tSDCM

t on the y-axis, where tSDCM is
the time of SDCM and t is the time of common voxelization process. The case (a) includes the
checking of gradient stability, the case (b) does not.
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checking. But it is possible that there are some configurations where the voxelization process
fails without this checking. So we have to decide between the speed and the accuracy of the
algorithm.

4.5.2 Results
The SDCM has been tested on simple objects as cube and regular octahedron (Figure 4.8) and
more complex objects as superellipsoids, supertoroids and supershapes with various parameters
(figures 4.9, 4.10, 4.11). The basic algorithm (described in 4.2 and 4.3) functions correctly for
simple objects — there is no problem with the instability of the AF propagation. But some
problems occur as we voxelize more complex objects. Some heuristics (described in 4.4) extend
significantly the set of objects, which are voxelized correctly, but we have not found an universal
solution. Problems are caused especially by too sharp vertices and too curved edges. It is obvious
from the description of SDCM that it can be not used for objects with non-convex vertices (for
example object (c) in Figure 4.2).

This problem calls for a next deeper research to extend more and more the set of solids, which
can be handled. Presumably, it is suitable to replace the heuristics with a more reliable technique
and to generalize the algorithm to make it able to process solids also with non-convex vertices.
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(a) (b)

(c) (d)

Figure 4.8: Comparison of voxelized solids — cube and regular octahedron
Solids voxelized in the common way (left column) and by the SDCM (right column).
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(a) (b)

(c) (d)

Figure 4.9: Comparison of voxelized solids — superellipsoids
Solids voxelized in the common way (left column) and by the SDCM (right column).
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(a) (b)

(c) (d)

Figure 4.10: Comparison of voxelized solids — supertoroids
Solids voxelized in the common way (left column) and by the SDCM (right column).
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(a) (b)

(c) (d)

Figure 4.11: Comparison of voxelized solids — supershapes
Solids voxelized in the common way (left column) and by the SDCM (right column).
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Chapter 5

Implementation

5.1 The vxt Library
The starting point of this rigorous thesis has been the vxt library written in the C++ language.
Its core is formed by two hierarchies of classes derived from main classes:

vxtObject3D It represents various types of objects and voxelization techniques for them.

vxtGrid3D It represents various types of 3D grids.

The voxelization runs so that the object calls the method Voxelize() with a grid as the pa-
rameter. The class vxtObject3D is divided into two subclasses:

vxtPrimitive It represents simple objects, which play a roll of basic elements.

vxtAggregate It represents complex objects composed of the simple ones using CSG oper-
ations.

CSG operations are performed at two levels:

1. The object calls the method Voxelize() with a grid and a CSG operator as parameters.
The information, created by combination of the original value from the grid with the new
value obtained by the voxelization of given object, is written into the grid.

2. Grid M calls the method Merge()with an other grid N and a CSG operator as parameters.
The result is written into M.

The class vxtGrid3D has subclasses vxtVolume<T> where T is a template parameter
that determines the precision of the density representation.

The vxt library is described in [15] in more detail.
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5.2 The vxtRL Library
The new vxtRL library has been created on the basis of the original vxt library making these
modifications:

• The hierarchy under class vxtGrid3D has been radically changed to enable representa-
tion of both compressed and uncompressed volumes with various types of voxel.

• An alternative voxelization method (using sweeping planes) has been created for the class
vxtImplicitSolid (a subclass of vxtPrimitive).

• There has been added three new subclasses under the class vxtImplicitSolid:

– SolidCylinder — for representation of a solid bounded by the revolving cylin-
drical surface,

– vxtSToroid — for representation of supertoroids,

– vxtSShape — for representation of supershapes.

• The voxelization method in the class vxtAggregate has been modified to be suitable
for more sophisticated CSG operations, too.

• There has been created a new class vxtSpecVolume for representation of an auxiliary
structure that is used by active front propagation described in Chapter 4.

The core of the hierarchy for volume representation consists of following classes:

vxtRLVolume<T>

• It serves for the representation of a volume that is compressed using the modified
run-length encoding (section 2.1).

• It works with an abstract voxel (template parameter T) that needs to have just opera-
tions ==, != and default inside and outside value defined.

• The access to data can be done by voxels, blocks, rows or slices.

• It exploits an auxiliary class vxtRLRow<T>.

vxtRLRow<T>

• It serves for the representation of a compressed row.

• T is the type of voxel.

• It contains methods for construction, updating and destruction of the row.

• The access to data can be done by voxels, segments or the whole row.

• For testing purposes, there are also implemented method for computing memory oc-
cupied by the row and method for detection of the row structure.
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vxtVoxel<T>

• It serves for the representation of a general voxel (section 2.2). There are three sub-
classes derived from this class:

vxtPlainVoxel<T> It stores just density.
vxtGradVoxel<T,G> It stores both density and gradient (three components).
vxtSphGradVoxel<T,G> It stores both density and gradient using spherical co-

ordinates (two components).

T, G are data types used for the representation of density and gradient. They can be
one of these values:

f3dUChar 1 byte
f3dUInt16 2 bytes
f3dFloat 4 bytes

• The class contains methods for reading and writing from/to voxels.

vxtGrid3D

• It is an abstract class for the representation of a grid.

• There is a class vxtVolume<V,T,G> derived from it.

vxtVolume<V,T,G>

• It serves for the representation of an arbitrary volume.

• Template parameters V, T, G are for voxel, density and gradient, respectively.

• It works with density from interval 〈0, 1〉 and gradient from 〈−1, 1〉3.

• Methods for reading and writing from/to voxels work at this level (regardless of com-
pression, type of voxel and the precision of data).

• It contains methods for interpolation of discrete data stored inside for the need of
visualization.

• There are simple methods for rendering of the volume and also for saving and loading
it to/from a file (in the f3d format).

• It exploits the class vxtAnyVolume<V,T,G>.

vxtAnyVolume<V,T,G>

• It serves as an interface between its subclasses vxtUncompVolume<V,T,G>, vxtCom-
pRLVolume<V,T,G> and the class vxtVolume<V,T,G>.

• The conversion of density (gradient) from 〈0, 1〉 (〈−1, 1〉3) to the appropriate range
according to the type T (G) is performed here.

• The CSG operation at the voxel level (Chapter 3) is implemented here.
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vxtUncompVolume<V,T,G>

• It stores the whole volume without compression. The class f3dgrid from the f3d
library is exploited.

• Methods for reading and writing from/to voxel are realized by decomposition of the
voxel into particular components.

• There are methods for saving and loading of data to/from a file, too.

vxtCompRLVolume<V,T,G>

• It stores the volume using the class vxtRLVolume< V<T,G> >

• Methods of the f3d library are exploited to save and load the data to/from a file.

Here follows an example, how a part of program using the vxtRL library can look like:

1. vxtGrid3D *volume = createGrid2(200, 200, 200,
VXT_RL_COMPRESS, VXT_SPH_G_VOXEL, f3dUInt16Type,
f3dUInt16Type);

2. SolidSphere sphere(0.4);

3. sphere.Voxelize(*volume, VXT_WRITE);

4. volume->viewX("image", 3, Vector3D(1,1,1));

5. volume->save("sphere");

In the first step, we create a compressed volume volume of dimensions 200× 200× 200,
which uses a voxel with gradient represented in spherical coordinates (i.e. two components)
and both density and gradient are stored in two-bytes precision. In the second step, we define
an object sphere with the relative radius 0,4 (i.e. 0,4 · 100 VU in the grid) and centre in the
middle of the scene. In the next step we voxelize the sphere into the volume. Then we create
the image image.ppm as a projection in the direction of x-axis where the scene is illuminated
from the direction (1, 1, 1). Finally, we save the volume to files sphere.f3d (density) and
sphere_G.f3d (gradient).

As we can see from the example, the manipulation with grids of various types is uniform, the
definition of particular grid type is performed through the parameters of the function create-
Grid2(...). There is an alternative approach possible:

vxtVolume<vxtSphGradVoxel, f3dUInt16, f3dUInt16> volume(200, 200,
200, VXT_RL_COMPRESS);

The result is the same as in the first step, except of the fact that now volume is directly the
variable of the class type, not a pointer.
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Conclusion

In the submitted thesis, we have proposed a new technique to represent voxelized solids. The
basic idea is to supplement normalized gradient to the representation of truncated distance fields
and exploit this extra information for more precise reconstruction of given objects and realiza-
tion of more sophisticated CSG operations. Our analyses have proved that it is most suitable to
use two-bytes variables for both density and gradient storage. We can spare some memory for
gradient storage using spherical coordinates. We have proposed and implemented a new com-
pression method as a modification of well-known run-length encoding. This technique reaches
quite proper compression ratio for certain class of scenes. We have showed that this compression
can also speed up the voxelization process.

Furthermore, we have proposed and implemented a new method for realization of CSG oper-
ations with voxelized solids. It works at a voxel level without the necessity for reconstruction of
continuous object models. The technique removes artifacts of straightforward volumetric CSG
operations by taking conditions for object representability into account. The idea of our solution
is to round edges and other sharp details.

Finally, we have been interested in voxelization of solids, which contain some sharp details
and so they are not correctly representable in discrete volume data. We have proposed and
implemented a new method SDCM, which solves this problem by rounding sharp details of
voxelized solids — similarly, like the above mentioned method of CSG operations. The SDCM
has been successful for certain set of objects, but there is still a problem with stability.

This set of algorithms is implemented in the vxtRL library, which is an extension of the vxt
package. In the future, we are planning to generalize the SDCM for a wide class of solids and
reduce the instability of this process.

Results of Chapter 3 were published in the Computer Graphics International Conference 2004
with co-authors Leonid I. Dimitrov and Miloš Šrámek.
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