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Outline of Lessons 02-03

 Representation of curves

 Representation of surfaces

 Representation of volumes



  

Dimension of Objects

 Object = set of points in n-dimensional space
 “An object is k-dimensional if there is a continuous 

one-to-one mapping of the k-dimensional square 
on this object”

 0-dimensional objects = points

 1-dimensional objects = curves

 2-dimensional objects = surfaces

 3-dimensional objects = solids



  

  Representation
  of Curves



  

What is Curve in CG

 Informal definition
 Curve is the path of a continuously moving point in 

the space (2d or 3d) - is the set of all points where 
the moving point emerge during its motion

 Mathematical descriptions
 Parametric Curves
 Implicit Curves

 Application-based classification
 Interpolation Curves
 Approximation Curves



  

Parametric Curves

 Parametric curves in 2D
 C(t) = (x(t), y(t))   where   C: R → R2

 x and y are any functions  R → R

 Parametric curves in 3D
 f(t) = (x(t), y(t), z(t))   where   C: R → R3

 x, y and z are any functions  R → R

 Example: parametric circle
 f:(t) → (cos(t), sin(t))   |   t ∈ [0, 2π]



  

Implicit Curves

 Implicit curves (only in 2D)
 Implicit curve C is a set of points (x,y) where a 

given function c(x,y) is zero
 C = { (x,y)  |  c(x,y) = 0 } where c: R2 → R

 Example: implicit circle
 C = { (x,y)  |  sqrt(x2 + y2) - 1 = 0 }



  

Parametric Polynomial Curves

 Parametric curve C(t) = (x(t),y(),z(t)) is 
polynomial iff functions x,y,z are polynomials
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Application of Curves

Interpolation Curve Approximation Curve

 Curves are used in CG mainly for
 Interpolation of data
 Approximation of data



  

Approximation Curves

 Approximation Curves do not need to 
interpolate input data points (but can)

 Common approximation curves
 Bézier Curve
 B-Spline Curve
 Catmull-Rom Spline
 Cardinal Spline...



  

Linear Bézier Curve

 B1(t)=(1-t)P
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 Recursive evaluation
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B



  

Quadratic Bézier Curve

 B2(t)=(1 - t)2P
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 Recursive evaluation:
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Cubic Bézier Curve

 B3(t)=(1 - t)3P
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n-th Bézier Curve

 Bn(t)=∑
i=0..n

(n
i
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 Recursive evaluation (de Casteljau algorithm)
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Properties of Bézier Curve

 Interpolation of P
0
 and P

n

 Curve is straight line iff all P
i
 are collinear

 The start (end) of the curve is tangent to the first 
(last) section of the Bézier polygon

 Always lies in convex hull of Bézier polygon
 Can be split at any point into two Bézier sub-curves
 Each n-th Bézier curve has an equally shaped 

(n+1)-th Bézier curve (degree elevation)
 Is affine invariant → Affine transformation of 

curve is equal to curve produced from equally 
transformed control polygon



  

Rational Bézier Curves

 Weighted version of Bézier curve

 Bn(t)=(1/W(t))∑
i=0..n

(n
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)(1 - t)n - i ti w
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i
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i

 Pros
 Better local control
 Can express conics

 Cons
 Need more computation



  

Interpolation Curves

 Given n interpolation points p
0
 … p

n-1
 we want 

to construct an interpolation curve C(t)

 C(k) = p
k
   where  k = 0 … n - 1

 t ∈ [0, n – 1]

 Common interpolation curves
 Lagrange interpolation
 Piecewise Bezier Curve
 Piecewise B-Spline Curve
 Piecewise combinations...
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Interpolation Types

Original
Data

Constant
Interpolation

Linear
Interpolation

Polynomial
Interpolation



  

Lagrange Interpolation

 Given n+1 interpolation points Lagrange 
interpolation is

 Ln(t) = ∑ 
k = 0 .. n 

l
k
(t) P

k
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 (t-i) / (k-i)
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 (t-i)

 w
k
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0 ≤ i ≠ k ≤ n
 (k-i)

 Pros: Polynomial, easy to implement 

 Cons: huge Oscillations, large interpolation 
error



  

Piecewise Interpolation Curves

 Known as “Poly-Curves”
 Each segment between two interpolation points is 

a given curve

 Linear Poly-curve

 Cubic Bezier Poly-curve



  

Continuity in Poly-Curves

 Parametric Continuity Cn

 Segments have equal n-th derivative in 
interpolations points

 Tangents have equal direction and length

 Geometric Continuity Gn

 Tangents have equal direction but not length

Parametric Continuity Geometric Continuity



  

Continuity in Poly-Curves

 Parametric continuity classes
 C-1 = curves include discontinuities
 C0 = curves are joined (continuous)
 C1 = first derivatives are continuous
 C2 = first and second derivatives are continuous
 Cn = first trough n-th derivatives are continuous

C-1 Continuity C0 Continuity C1 Continuity



  

Continuity in Poly-Curves

 Geometric Continuity at joint point
 G0 = Curves touch at the join point (= C0)
 G1 = Curves share a common tangent direction
 G2 = Curves share a common center of curvature

 Curve is Gn continuous if it can be 
reparametrized to have Cn continuity

G0 Continuity G1 Continuity G2 Continuity



  

Representation

of Surfaces 



  

Surface Definition

 Formally: “Surface is an orientable continuous 
2d manifold embed in R3”

 Informally: “Surface is the boundary of non-
degenerate 3D solid”

 Non-degenerate solid object
 Each point is the space can be uniquely classified 

as either interior or exterior w.r.t. given object



  

Surface Classification

 Orientable / Non-orientable

 Open / Closed (with/without boundaries)

 Manifold / Non-manifold



  

Orientable   |   Non-orientable



  

Open | Closed Surface



  

Non-manifold Cases



  

Non-manifold Cases

 A) Strictly non-manifold vertex

 B) Non-manifold edge

 C) Weak non-manifold vertex

         A)                            B)                           C)



  

Topological Classification

 Topological equivalence
 Two surfaces are topological equivalent if we can 

transform one to each other using only continuous 
stretching and bending

 Genus of surface
 The maximum number of cuttings along non-

intersecting closed simple curves without 
rendering the resultant manifold disconnected



  

Surface Genus

 Genus 0 (Sphere):
 Surfaces topologically equivalent to sphere

 Genus 1 (Torus): …

 Genus 2 (Double torus): ...



  

Operational Classification

 Evaluation
 The sampling of the surface geometry or of other 

surface attributes, e.g., the surface normal field.
 A typical application example is surface rendering

 Modification
 A surface can be modified either in terms of 

geometry (surface deformation), or in terms of 
topology, e.g., when different parts of the surface 
are to be merged.



  

Operational Classification

 Query
 Spatial queries are used to determine whether or 

not a given point p∈R3 is inside or outside of the 
solid bounded by a surface S

 This is a key component for solid modeling 
operations.

 Another typical query is the computation of a 
point's distance to a surface.



  

Parametric vs Implicit Surfaces

 Parametric surfaces
 [3d] f: P → C  |  P ⊂ R2, C = f(P) ⊂ R3 

 Implicit surfaces
 [3d] f: R3 → 0

 Parametric circle
 f:(s,t) → (cos(t),sin(t))   |   f: [0,2π]x[0,2π] → R3

 Implicit sphere
 F:(x,y) → sqrt(x2 + y2 + z2) - 1   |  f: R3 → R



  

Mesh Representation

 Mesh: Piecewise linear approximation with 
error O(h2)

 Mesh elements
 Face – subset of a 3d plane 
 Edge – Incident points of two (or more) faces
 Vertex – Incident points of min two edges

246 123



  

Mesh – Local Structure

 Element type
 Triangular, Quadrilateral meshes...
 Polygonal (general) meshes

 Element shape
 Isotropic – locally uniform in all directions
 Anisotropic – prolong non-uniform elements



  

Mesh – Element Shape



  

Mesh – Local Structure

 Element density
 Uniform distribution of elements
 Nonuniform (adaptive) distribution

 Element alignment and orientation
 Alignment for sharp features of original object
 Properly represent tangent discontinuities
 Viable orientation of anisotropic elements



  

Mesh – Element Density



  

Mesh – Global Structure

 Topological Complexity
 2 - manifolds
 Complex non-manifold edges, singular vertices

 Regularity
 Irregular – any number of irregular vertices
 Semiregular – small number of irregular vertices
 Highly regular – most vertices are regular
 Regular – all vertices are regular



  

Mesh – Regularity

       Irregular Mesh             Semi-regular mesh              Regular mesh



  

Mesh Data Structures

 Face-based data Structures
 Face Set
 Indexed Face Set (+ topology data)

 Edge-based data Structures
 Winged Edge / Quad Edge
 Half Edge (DCEL)
 Directed Edge
 ...



  

Mesh - Algorithmic Requirements

 What kind of algorithms will be operating on 
the mesh data structure ?

 Do we need topology data accessible ?

 Do we want to render or edit mesh ? Change 
topology during editing ?

 What are the memory requirements ? How big 
will be our mesh ?

 …



  

Mesh – Topology Requirements

 Access to individual vertices, edges and faces
 Enumeration of all elements in unspecified order

 Oriented traversal of the edges of a face
 Finding previous/next edge in a face
 Additional access to vertices (for rendering)

 Access to incident faces of an edge
 Enables access of neighboring (left/right) faces



  

Mesh – Topology Requirements

 Access to vertices of an edge
 Enables traversal from edge to incident edges

 Access to at least on incident edge/face of 
vertex
 For manifold meshes all other elements 

(edges/faces) in one-ring neighborhood are 
accessible



  

Mesh – Face set

Face
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Mesh – Face Set

 Pros – Suitable for static meshes, rendering

 Cons - No explicit connectivity information. 
Replicated vertices and associated data

 Storage – 72 bytes per vertex

 Applications - Stereo-lithography

 Performance
 Rendering – fast
 One-ring traversal – slow
 Boundary traversal – slow



  

Mesh – Indexed Face Set

Vertices
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FaceData data

Vertex

Point x, y, z

FaceRef face

VertexData data

Face-to-Vertex references
Vertex-to-Face references
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Mesh – Indexed Face Set

 Pros – Simple and efficient storage. Suitable 
for static meshes and rendering

 Cons – No explicit connectivity information. 
Not efficient for most topology algorithms

 Storage – 36 bytes per vertex

 Applications – Rendering (OpenGl, DirectX)

 Performance
 Rendering – fast
 One-ring traversal – slow
 Boundary traversal – slow



  

Mesh – Winged Edge

Vertex

Point position

EdgeRef edge

VertexData data

Face

EdgeRef edge

FaceData data

Edge

VertexRef v0 v1

FaceRef fL fR

EdgeRef ePrevL ePrevR

EdgeRef eNextL eNextR

EdgeData data

f
L

f
R

v
1

v
0

e
prevL

e
nextR

e
nextL

e
prevR

e



  

Mesh – Winged Edge

 Pros - Arbitrary polygonal meshes

 Cons - Massive case distinctions for one-ring 
traversal

 Storage – 120 bytes per vertex

 Applications – Rarely used today

 Performance
 Rendering – medium
 One-ring traversal – fast
 Boundary traversal – medium



  

Mesh – Half Edge

Vertex

Point position

HalfedgeRef edge

VertexData data

Face

HalfedgeRef edge

FaceData data

Edge

VertexRef vertex

FaceRef face

HalfedgeRef prev

HalfedgeRef next

HalfedgeRef opposite

EdgeData data

f

v

e
prev

e
next

e
e
opposite



  

Mesh – Half Edge

vertex
next
opposite
face



  

Mesh – Half Edge

 Pros – One-ring traversal. Explicit 
representation of edges

 Cons – Slow rendering

 Storage – 144 bytes per vertex

 Applications - Mostly used for mesh 
refinement, decimation, smoothing

 Performance
 Rendering – Medium
 One-ring traversal – fast
 Boundary traversal – fast



  

Mesh – Directed Edge

 Half Edge modification for triangular meshes
 Store all 3 half-edges of common face next to each 

other in memory
 Let f be index of some face. Place its k-th (0,1,2) 

half-edge on index hIdx(f,k) = 3f + k
 Then h-th half-edge belongs to f-th (= h div 3) face
 Index of h-th half-edge within its face (= h mod 3)

 We do not need to store face-to-edge and 
edge-to face references ! They are implicit 
from face and half-edge storage order



  

Mesh – Directed Edge

 Pros – Memory efficient, one-ring traversal

 Cons – Only for tri/quad-meshes, no edge info

 Storage – 64b per vertex

 Applications – Mesh refinement, decimation, 
smoothing of tri-meshes

 Performance – Fast/Medium



  

Mesh – Performance Comparison

Data Structure Space / 
Vertex

Mesh Topology Rendering One-Ring 
Traversal

Boundary 
Traversal

Face Set 72 bytes Static, fixed (3,4) Fast Slow Slow

Indexed Face 
Set

36 bytes Static, fixed (3,4) Fast Slow Slow

Indexed Face 
Set
+ Topology

64 bytes Usually static Fast Fast (if 
static 
topology)

Slow

Winged Edge 120 
bytes

Any (2 manifolds) Medium Slow (case 
distinctions)

Slow

Quad Edge 144 
bytes

Any (2 manifolds) Medium Fast Medium

Half Edge 144 / 96 
bytes

Any (2 manifolds) Medium / 
slow

Fast Fast

Directed Edge 64 bytes Regular Triangular 
/ Quad meshes
(2 manifolds)

Medium / 
slow

Medium Medium



  

Mesh – Pros/Cons
Data Structure Strengths Weaknesses

Face Set Static meshes; rendering No explicit connectivity 
information; replicated vertices 
and associated data

Indexed Face Set simple and efficient storage; 
static meshes; rendering;

No explicit connectivity 
information; not efficient for 
most algorithms

Indexed Face Set
+ Topology

Access to individual 
vertices/edges/faces. Oriented 
traversal; access to incident 
faces of an edge; access to an 
edge’s two endpoint vertices; 
one-ring traversal possible

No explicit edge storage (no 
data attachments); massive 
case distinctions for one-ring 
traversal; complex & less 
efficient for general polygonal 
faces

Winged Edge Arbitrary polygonal meshes Massive case distinctions for 
one-ring traversal

Quad Edge One-ring traversal Slow rendering

Half Edge One-ring traversal; explicit 
representation of edges

Slow rendering

Directed Edge Memory efficiency; One-ring 
traversal for triangular meshes

Only for pure triangle/quad 
meshes; no explicit 
representation of edges



  

Mesh – Applications

Mesh Data Structure Common Applications

Face Set stereo-lithography (STL)

Indexed Face Set Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML

Indexed Face Set
+ Topology

2D triangulation data structures of CGAL

Winged Edge Rarely used today

Quad Edge Rarely used today

Half Edge Mostly used for mesh refinement, decimation, smoothing

Directed Edge Mostly used for mesh refinement, decimation, smoothing of 
pure triangular meshes



  

Mesh – Applications

Mesh Data Structure Common Applications

Face Set stereo-lithography (STL)

Indexed Face Set Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML

Indexed Face Set
+ Topology

2D triangulation data structures of CGAL

Winged Edge Rarely used today

Quad Edge Rarely used today

Half Edge Mostly used for mesh refinement, decimation, smoothing

Directed Edge Mostly used for mesh refinement, decimation, smoothing of 
pure triangular meshes



  
of Volumes

Representation



  

Volumetric Representations

              Octree                Adaptive Distance Field                BSP tree

 Spatial subdivision

 Implicit (functional) representations

 Constructive (hierarchical) Geometry



  

Uniform Grid

 Trivial 3d regular lattice of N x N x N cells

 In each cell we store desired data
 Color, density, curvature, normal...



  

Uniform Grid



  

Construction of Grid

 Find models minimal and maximal coordinates

 Define grid resolution (manual/automatic)

 Choose indexing and create huge linear array 
in memory

 For each cell (3d loop) sample desired values 
and store them in cell

 Huge memory footprint !



  

Uniform Grid – Z-Index



  

Uniform Grid - Summary

 Pros
 Trivial data structure
 Algorithms can be naturally parallelized
 Natural acquisition for some applications
 Trivial Boolean operations

 Cons
 Huge memory requirements (storing empty cells)
 Large 3d loops make algorithms too slow

 Applications
 Medical Imaging, Many GPGPU applications



  

Octree

 Octree is an adaptive hierarchy of cells 
created only within important (non-empty) 
data regions. Each non-leaf cell is subdivided 
exactly into 8 half-size sub-cells

Level 0

Level 1

Level 2

Root-node

Inner-nodes

leaf-nodes



  

Grid vs Octree

Useless cells



  

Octree Data Structure

 Node
 NodeType  type
 NodeRef subNodes[8];

 NodeType
 Empty – all 8 sub-cells are empty
 Mixed – there is at least on non-empty sub-cell
 Full – all 8 sub-cells are full



  

Octree Construction

 Top-Down (slitting) scheme
 Fit whole data (geometry) into one bounding cell
 If it is mixed split it into 8 sub-cells
 Repeat this with each of 8 sub-cells until there is 

nothing more to split (all are small / empty / full



  

Construction of Octree

 Bottom-Up (merging) scheme
 Create uniform grid with high resolution
 For each 8 neighboring cells do
 If they are all empty (full) merge them into one 

empty (full) cell, reject sub-cells
 Otherwise create mixed parent cell and proceed 

up in the hierarchy  



  

Octree Boolean



  

Octree Summary

 Applications
 Volume data storage (compression )
 Color quantization
 Collision detection

 Pros
 Memory efficient storage
 Adaptive refinement (more details are preserved)

 Cons
 Longer point localization (data search)
 Small change in data → large change in Octree



  

Binary Space Partition (BSP)

 BSP is a method for recursively subdividing a 
space into convex sets by hyperplanes

 Every cell is a convex polyhedron



  

BSP Data Structure

 BSP Node
 Partitioning hyperplane (position, normal, dist)
 List of objects (polygons) “intersecting” this node

 Front child node N
f

 Back child node N
b



  

BSP Construction



  

BSP Generation Algorithm

 Choose a polygon P from the list
 Make a node N in the BSP tree, add P to the list of 

polygons at that node
 For each other polygon Q in the list:

 If Q is wholly in front (behind) of the plane containing  P, 
move it to the front (back) sub-nodes of P

 If Q is intersected by the plane containing P, split it into 
“front” and “back” polygon and move it to respective 
front and back sub-nodes

 If Q lies in the plane containing P, add it to the list of 
polygons at node N

 Repeat this to the list of polygons in front of P
 Repeat this to the list of polygons behind P



  

BSP Generation 1



  

BSP Generation 2



  

BSP Generation 3



  

BSP Generation 4



  

BSP Generation 5



  

BSP Generation 6



  

BSP Generation 7



  

BSP Generation 8



  

BSP Generation 9



  

BSP Raytracing 1



  

BSP Raytracing 2



  

BSP Raytracing 3



  

Orthogonal BSP → kD-tree



  

Constructive Solid Geometry

 Constructive Solid Geometry (CSG)
 Is a volumetric scene representation based on 

combination of Boolean operations on primitive 
geometry or other CSG

 Using only implicitly defined geometry, CSG 
becomes a a special case of F-Rep

 CSG scene definition includes
 Primitive geometry objects
 Tree of Boolean operations



  

CSG Operations

 Union: A+B = { p | p∈A or p∈B }

 Difference: A-B = { p | p∈A and p∉B }

 Intersection: A^B = { p | p∈A and p∈B}

 Any other Boolean operation

Union Difference Intersection



  

CSG Operations

 Complex objects can be created by applying 
Boolean operations on primitive geometries in 
linear order



  

CSG Operations in hierarchy



  

CSG Summary

 Applications are mainly in CAD Industry
 Solid Engineering, Architecture, Security, Army...

 Pros
 Natural and intuitive modeling strategy
 Complex shapes can be created from basic shapes
 Model can always be remodeled

 Cons
 Using parametric (mesh) primitives can be very slow 

and complicated
 Conversion to B-rep can be slow and error-prone



  

Surface Representation Conversion

 Parametric to Implicit
 Algebraic solutions
 Numerical solutions (Scan conversion onto grid)

 Implicit to Parametric
 Marching Cubes
 Marching Tetrahedra
 ...



  

Marching Cubes Algorithm
 1. Specify threshold value
 2. Decide vertex type (in or out) using the threshold

 In: value < threshold value
 Out: value ≥ threshold value
 If all 8 voxel’s vertices are in/out: whole cube is in/out

 3. Based on 8 vertex states create find MC case in a 
table and find intersection edges

 4. Compute vertices coordinates
 Use linear interpolation with threshold value

 5. Compute normals
 Use linear interpolation of vertices normals
 Normal vector is same as a gradient vector (difference)



  

Marching Cubes – 15 Cases



  

Marching Cubes Marching tetrahedra

Marching Cubes / Tetrahedra

 Marching cubes produce mesh with stronger 
turbulence for deforming objects during 
animation then Marching tetrahedra



  

Marching Cubes - Problems

 Local features are not preserved

 Can be improved when exist using normals 
and tangent discontinuities



  

Marching Cubes - Summary

 Applications
 Trimesh construction for any volume data
 Remeshing during simulations
 Surface reconstruction for fluid simulations

 Pros
 Faster than Marching Tets (no neighbor search)
 Semi-regular triangulations

 Cons
 Details are not preserved well
 Mesh turbulence during animations



  

the 
end
that was enough...
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