

Juraj O
nderik | onderik@sccg.sk

Scene
Representation

Lesson

02
Lesson

03

Outline of Lessons 02-03

 Representation of curves

 Representation of surfaces

 Representation of volumes

Dimension of Objects

 Object = set of points in n-dimensional space
 “An object is k-dimensional if there is a continuous

one-to-one mapping of the k-dimensional square
on this object”

 0-dimensional objects = points

 1-dimensional objects = curves

 2-dimensional objects = surfaces

 3-dimensional objects = solids

 Representation
 of Curves

What is Curve in CG

 Informal definition
 Curve is the path of a continuously moving point in

the space (2d or 3d) - is the set of all points where
the moving point emerge during its motion

 Mathematical descriptions
 Parametric Curves
 Implicit Curves

 Application-based classification
 Interpolation Curves
 Approximation Curves

Parametric Curves

 Parametric curves in 2D
 C(t) = (x(t), y(t)) where C: R → R2

 x and y are any functions R → R

 Parametric curves in 3D
 f(t) = (x(t), y(t), z(t)) where C: R → R3

 x, y and z are any functions R → R

 Example: parametric circle
 f:(t) → (cos(t), sin(t)) | t ∈ [0, 2π]

Implicit Curves

 Implicit curves (only in 2D)
 Implicit curve C is a set of points (x,y) where a

given function c(x,y) is zero
 C = { (x,y) | c(x,y) = 0 } where c: R2 → R

 Example: implicit circle
 C = { (x,y) | sqrt(x2 + y2) - 1 = 0 }

Parametric Polynomial Curves

 Parametric curve C(t) = (x(t),y(),z(t)) is
polynomial iff functions x,y,z are polynomials

 x(t) = x
0
 + x

1
t + x

2
t2 + x

3
t3 + … + x

nx
tnx = ∑

i=0..nx
x

i
ti

 y(t) = y
0
 + y

1
t + y

2
t2 + y

3
t3 + … + y

ny
tny = ∑

i=0..ny
y

i
ti

 z(t) = z
0
 + z

1
t + z

2
t2 + z

3
t3 + … + z

nz
tnz = ∑

i=0..nz
z

i
ti

 Curve Cn(t) is n-th degree polynomial if
n

x
=n

y
=n

z
=n

 Let c
k
=(x

k
, y

k
, z

k
) then

 Cn(t) = c
0
 + c

1
t + c

2
t2 + c

3
t3 + … + c

n
tn = ∑

i=0..n
c

i
ti

Application of Curves

Interpolation Curve Approximation Curve

 Curves are used in CG mainly for
 Interpolation of data
 Approximation of data

Approximation Curves

 Approximation Curves do not need to
interpolate input data points (but can)

 Common approximation curves
 Bézier Curve
 B-Spline Curve
 Catmull-Rom Spline
 Cardinal Spline...

Linear Bézier Curve

 B1(t)=(1-t)P
0
 + tP

1

 Recursive evaluation

 B = (1 - t)P
0
 + tP

1
 (linear interpolation)

B

Quadratic Bézier Curve

 B2(t)=(1 - t)2P
0
 + 2(1 - t)tP

1
 + t2P

2

 Recursive evaluation:

 Q
0
 = (1 - t)P

0
 + tP

1
 | Q

1
 = (1 - t)P

1
 + tP

2

 B = (1 - t)Q
0
 + tQ

1

Cubic Bézier Curve

 B3(t)=(1 - t)3P
0
 + 3(1 - t)t2P

1
 + 3(1 - t)2tP

2
 + t3P

3

 Recursive evaluation:

 Q
0
 = (1-t)P

0
 + tP

1
 | Q

1
 = (1-t)P

1
 + tP

2
 | Q

1
 = (1-t)P

1
 + tP

2

 R
0
 = (1-t)Q

0
 + tQ

1
 | R

1
 = (1-t)Q

1
 + tQ

2

 B = (1-t)R
0
 + tR

1

n-th Bézier Curve

 Bn(t)=∑
i=0..n

(n
i
)(1 - t)n - i ti P

i

 Recursive evaluation (de Casteljau algorithm)

 Bk
i
(t) = (1-t)Bk-1

i
(t) + t Bk-1

i
(t)

 B0
i
(t) = P

i

 B = Bn
0
(t)

Properties of Bézier Curve

 Interpolation of P
0
 and P

n

 Curve is straight line iff all P
i
 are collinear

 The start (end) of the curve is tangent to the first
(last) section of the Bézier polygon

 Always lies in convex hull of Bézier polygon
 Can be split at any point into two Bézier sub-curves
 Each n-th Bézier curve has an equally shaped

(n+1)-th Bézier curve (degree elevation)
 Is affine invariant → Affine transformation of

curve is equal to curve produced from equally
transformed control polygon

Rational Bézier Curves

 Weighted version of Bézier curve

 Bn(t)=(1/W(t))∑
i=0..n

(n
i
)(1 - t)n - i ti w

i
P

i

 W
i
(t)=∑

i=0..n
(n

i
)(1 - t)n - i ti w

i

 Pros
 Better local control
 Can express conics

 Cons
 Need more computation

Interpolation Curves

 Given n interpolation points p
0
 … p

n-1
 we want

to construct an interpolation curve C(t)

 C(k) = p
k
 where k = 0 … n - 1

 t ∈ [0, n – 1]

 Common interpolation curves
 Lagrange interpolation
 Piecewise Bezier Curve
 Piecewise B-Spline Curve
 Piecewise combinations...

p
0

p
1

p
2

p
3

p
4

p
5

t

0 10 2 3 4 5

C(t)

Interpolation Types

Original
Data

Constant
Interpolation

Linear
Interpolation

Polynomial
Interpolation

Lagrange Interpolation

 Given n+1 interpolation points Lagrange
interpolation is

 Ln(t) = ∑
k = 0 .. n

l
k
(t) P

k

 l
k
(t) = v

k
(t) / w

k
 = ∏

0 ≤ i ≠ k ≤ n
 (t-i) / (k-i)

 v
k
(t) = (t-0)...(t-(k-1))(t-(k+1))...(t-n) = ∏

0 ≤ i ≠ k ≤ n
 (t-i)

 w
k
 = (k-0)...(k-(k-1))(k-(k+1))...(k-n) = ∏

0 ≤ i ≠ k ≤ n
 (k-i)

 Pros: Polynomial, easy to implement

 Cons: huge Oscillations, large interpolation
error

Piecewise Interpolation Curves

 Known as “Poly-Curves”
 Each segment between two interpolation points is

a given curve

 Linear Poly-curve

 Cubic Bezier Poly-curve

Continuity in Poly-Curves

 Parametric Continuity Cn

 Segments have equal n-th derivative in
interpolations points

 Tangents have equal direction and length

 Geometric Continuity Gn

 Tangents have equal direction but not length

Parametric Continuity Geometric Continuity

Continuity in Poly-Curves

 Parametric continuity classes
 C-1 = curves include discontinuities
 C0 = curves are joined (continuous)
 C1 = first derivatives are continuous
 C2 = first and second derivatives are continuous
 Cn = first trough n-th derivatives are continuous

C-1 Continuity C0 Continuity C1 Continuity

Continuity in Poly-Curves

 Geometric Continuity at joint point
 G0 = Curves touch at the join point (= C0)
 G1 = Curves share a common tangent direction
 G2 = Curves share a common center of curvature

 Curve is Gn continuous if it can be
reparametrized to have Cn continuity

G0 Continuity G1 Continuity G2 Continuity

Representation

of Surfaces

Surface Definition

 Formally: “Surface is an orientable continuous
2d manifold embed in R3”

 Informally: “Surface is the boundary of non-
degenerate 3D solid”

 Non-degenerate solid object
 Each point is the space can be uniquely classified

as either interior or exterior w.r.t. given object

Surface Classification

 Orientable / Non-orientable

 Open / Closed (with/without boundaries)

 Manifold / Non-manifold

Orientable | Non-orientable

Open | Closed Surface

Non-manifold Cases

Non-manifold Cases

 A) Strictly non-manifold vertex

 B) Non-manifold edge

 C) Weak non-manifold vertex

 A) B) C)

Topological Classification

 Topological equivalence
 Two surfaces are topological equivalent if we can

transform one to each other using only continuous
stretching and bending

 Genus of surface
 The maximum number of cuttings along non-

intersecting closed simple curves without
rendering the resultant manifold disconnected

Surface Genus

 Genus 0 (Sphere):
 Surfaces topologically equivalent to sphere

 Genus 1 (Torus): …

 Genus 2 (Double torus): ...

Operational Classification

 Evaluation
 The sampling of the surface geometry or of other

surface attributes, e.g., the surface normal field.
 A typical application example is surface rendering

 Modification
 A surface can be modified either in terms of

geometry (surface deformation), or in terms of
topology, e.g., when different parts of the surface
are to be merged.

Operational Classification

 Query
 Spatial queries are used to determine whether or

not a given point p∈R3 is inside or outside of the
solid bounded by a surface S

 This is a key component for solid modeling
operations.

 Another typical query is the computation of a
point's distance to a surface.

Parametric vs Implicit Surfaces

 Parametric surfaces
 [3d] f: P → C | P ⊂ R2, C = f(P) ⊂ R3

 Implicit surfaces
 [3d] f: R3 → 0

 Parametric circle
 f:(s,t) → (cos(t),sin(t)) | f: [0,2π]x[0,2π] → R3

 Implicit sphere
 F:(x,y) → sqrt(x2 + y2 + z2) - 1 | f: R3 → R

Mesh Representation

 Mesh: Piecewise linear approximation with
error O(h2)

 Mesh elements
 Face – subset of a 3d plane
 Edge – Incident points of two (or more) faces
 Vertex – Incident points of min two edges

246 123

Mesh – Local Structure

 Element type
 Triangular, Quadrilateral meshes...
 Polygonal (general) meshes

 Element shape
 Isotropic – locally uniform in all directions
 Anisotropic – prolong non-uniform elements

Mesh – Element Shape

Mesh – Local Structure

 Element density
 Uniform distribution of elements
 Nonuniform (adaptive) distribution

 Element alignment and orientation
 Alignment for sharp features of original object
 Properly represent tangent discontinuities
 Viable orientation of anisotropic elements

Mesh – Element Density

Mesh – Global Structure

 Topological Complexity
 2 - manifolds
 Complex non-manifold edges, singular vertices

 Regularity
 Irregular – any number of irregular vertices
 Semiregular – small number of irregular vertices
 Highly regular – most vertices are regular
 Regular – all vertices are regular

Mesh – Regularity

 Irregular Mesh Semi-regular mesh Regular mesh

Mesh Data Structures

 Face-based data Structures
 Face Set
 Indexed Face Set (+ topology data)

 Edge-based data Structures
 Winged Edge / Quad Edge
 Half Edge (DCEL)
 Directed Edge
 ...

Mesh - Algorithmic Requirements

 What kind of algorithms will be operating on
the mesh data structure ?

 Do we need topology data accessible ?

 Do we want to render or edit mesh ? Change
topology during editing ?

 What are the memory requirements ? How big
will be our mesh ?

 …

Mesh – Topology Requirements

 Access to individual vertices, edges and faces
 Enumeration of all elements in unspecified order

 Oriented traversal of the edges of a face
 Finding previous/next edge in a face
 Additional access to vertices (for rendering)

 Access to incident faces of an edge
 Enables access of neighboring (left/right) faces

Mesh – Topology Requirements

 Access to vertices of an edge
 Enables traversal from edge to incident edges

 Access to at least on incident edge/face of
vertex
 For manifold meshes all other elements

(edges/faces) in one-ring neighborhood are
accessible

Mesh – Face set

Face

Vertex v
1
=(x

1
,y

1
,z

1
)

Vertex v
2
=(x

2
,y

2
,z

2
)

Vertex v
3
=(x

3
,y

3
,z

3
)

v
21
= v

12

v
11
= v

52

v
31
= v

22

f
1

f
5

f
2

f
4

f
3

v
51
= v

42

v
41
= v

32

v
13
= v

23
= v

33
= v

43
= v

53

Faces

f
1
=(v

11
,v

12
,v

13
)

f
2
=(v

21
,v

22
,v

23
)

...

f
k
=(v

k1
,v

k2
,v

k3
)

...

f
F
=(v

F1
,v

F2
,v

F3
)

Mesh – Face Set

 Pros – Suitable for static meshes, rendering

 Cons - No explicit connectivity information.
Replicated vertices and associated data

 Storage – 72 bytes per vertex

 Applications - Stereo-lithography

 Performance
 Rendering – fast
 One-ring traversal – slow
 Boundary traversal – slow

Mesh – Indexed Face Set

Vertices

v
1
=(x

1
,y

1
,z

1
)

...

v
V
=(x

V
,y

V
,x

V
)

v
2

v
1

v
3

f
1

f
5

f
2

f
4

f
3

v
5

v
4

V
6Faces

f
1
=(i

11
,i

12
,i

13
)

f
2
=(i

21
,i

22
,i

23
)

...

f
k
=(i

k1
,i

k2
,i

k3
)

...

f
F
=(i

F1
,i

F2
,i

F3
)

Face

VertexRef v
1
, v

2
, v

3

FaceRef f
1
, f

2
, f

3

FaceData data

Vertex

Point x, y, z

FaceRef face

VertexData data

Face-to-Vertex references
Vertex-to-Face references
Face-to-Face references

Mesh – Indexed Face Set

 Pros – Simple and efficient storage. Suitable
for static meshes and rendering

 Cons – No explicit connectivity information.
Not efficient for most topology algorithms

 Storage – 36 bytes per vertex

 Applications – Rendering (OpenGl, DirectX)

 Performance
 Rendering – fast
 One-ring traversal – slow
 Boundary traversal – slow

Mesh – Winged Edge

Vertex

Point position

EdgeRef edge

VertexData data

Face

EdgeRef edge

FaceData data

Edge

VertexRef v0 v1

FaceRef fL fR

EdgeRef ePrevL ePrevR

EdgeRef eNextL eNextR

EdgeData data

f
L

f
R

v
1

v
0

e
prevL

e
nextR

e
nextL

e
prevR

e

Mesh – Winged Edge

 Pros - Arbitrary polygonal meshes

 Cons - Massive case distinctions for one-ring
traversal

 Storage – 120 bytes per vertex

 Applications – Rarely used today

 Performance
 Rendering – medium
 One-ring traversal – fast
 Boundary traversal – medium

Mesh – Half Edge

Vertex

Point position

HalfedgeRef edge

VertexData data

Face

HalfedgeRef edge

FaceData data

Edge

VertexRef vertex

FaceRef face

HalfedgeRef prev

HalfedgeRef next

HalfedgeRef opposite

EdgeData data

f

v

e
prev

e
next

e
e
opposite

Mesh – Half Edge

vertex
next
opposite
face

Mesh – Half Edge

 Pros – One-ring traversal. Explicit
representation of edges

 Cons – Slow rendering

 Storage – 144 bytes per vertex

 Applications - Mostly used for mesh
refinement, decimation, smoothing

 Performance
 Rendering – Medium
 One-ring traversal – fast
 Boundary traversal – fast

Mesh – Directed Edge

 Half Edge modification for triangular meshes
 Store all 3 half-edges of common face next to each

other in memory
 Let f be index of some face. Place its k-th (0,1,2)

half-edge on index hIdx(f,k) = 3f + k
 Then h-th half-edge belongs to f-th (= h div 3) face
 Index of h-th half-edge within its face (= h mod 3)

 We do not need to store face-to-edge and
edge-to face references ! They are implicit
from face and half-edge storage order

Mesh – Directed Edge

 Pros – Memory efficient, one-ring traversal

 Cons – Only for tri/quad-meshes, no edge info

 Storage – 64b per vertex

 Applications – Mesh refinement, decimation,
smoothing of tri-meshes

 Performance – Fast/Medium

Mesh – Performance Comparison

Data Structure Space /
Vertex

Mesh Topology Rendering One-Ring
Traversal

Boundary
Traversal

Face Set 72 bytes Static, fixed (3,4) Fast Slow Slow

Indexed Face
Set

36 bytes Static, fixed (3,4) Fast Slow Slow

Indexed Face
Set
+ Topology

64 bytes Usually static Fast Fast (if
static
topology)

Slow

Winged Edge 120
bytes

Any (2 manifolds) Medium Slow (case
distinctions)

Slow

Quad Edge 144
bytes

Any (2 manifolds) Medium Fast Medium

Half Edge 144 / 96
bytes

Any (2 manifolds) Medium /
slow

Fast Fast

Directed Edge 64 bytes Regular Triangular
/ Quad meshes
(2 manifolds)

Medium /
slow

Medium Medium

Mesh – Pros/Cons
Data Structure Strengths Weaknesses

Face Set Static meshes; rendering No explicit connectivity
information; replicated vertices
and associated data

Indexed Face Set simple and efficient storage;
static meshes; rendering;

No explicit connectivity
information; not efficient for
most algorithms

Indexed Face Set
+ Topology

Access to individual
vertices/edges/faces. Oriented
traversal; access to incident
faces of an edge; access to an
edge’s two endpoint vertices;
one-ring traversal possible

No explicit edge storage (no
data attachments); massive
case distinctions for one-ring
traversal; complex & less
efficient for general polygonal
faces

Winged Edge Arbitrary polygonal meshes Massive case distinctions for
one-ring traversal

Quad Edge One-ring traversal Slow rendering

Half Edge One-ring traversal; explicit
representation of edges

Slow rendering

Directed Edge Memory efficiency; One-ring
traversal for triangular meshes

Only for pure triangle/quad
meshes; no explicit
representation of edges

Mesh – Applications

Mesh Data Structure Common Applications

Face Set stereo-lithography (STL)

Indexed Face Set Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML

Indexed Face Set
+ Topology

2D triangulation data structures of CGAL

Winged Edge Rarely used today

Quad Edge Rarely used today

Half Edge Mostly used for mesh refinement, decimation, smoothing

Directed Edge Mostly used for mesh refinement, decimation, smoothing of
pure triangular meshes

Mesh – Applications

Mesh Data Structure Common Applications

Face Set stereo-lithography (STL)

Indexed Face Set Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML

Indexed Face Set
+ Topology

2D triangulation data structures of CGAL

Winged Edge Rarely used today

Quad Edge Rarely used today

Half Edge Mostly used for mesh refinement, decimation, smoothing

Directed Edge Mostly used for mesh refinement, decimation, smoothing of
pure triangular meshes

of Volumes

Representation

Volumetric Representations

 Octree Adaptive Distance Field BSP tree

 Spatial subdivision

 Implicit (functional) representations

 Constructive (hierarchical) Geometry

Uniform Grid

 Trivial 3d regular lattice of N x N x N cells

 In each cell we store desired data
 Color, density, curvature, normal...

Uniform Grid

Construction of Grid

 Find models minimal and maximal coordinates

 Define grid resolution (manual/automatic)

 Choose indexing and create huge linear array
in memory

 For each cell (3d loop) sample desired values
and store them in cell

 Huge memory footprint !

Uniform Grid – Z-Index

Uniform Grid - Summary

 Pros
 Trivial data structure
 Algorithms can be naturally parallelized
 Natural acquisition for some applications
 Trivial Boolean operations

 Cons
 Huge memory requirements (storing empty cells)
 Large 3d loops make algorithms too slow

 Applications
 Medical Imaging, Many GPGPU applications

Octree

 Octree is an adaptive hierarchy of cells
created only within important (non-empty)
data regions. Each non-leaf cell is subdivided
exactly into 8 half-size sub-cells

Level 0

Level 1

Level 2

Root-node

Inner-nodes

leaf-nodes

Grid vs Octree

Useless cells

Octree Data Structure

 Node
 NodeType type
 NodeRef subNodes[8];

 NodeType
 Empty – all 8 sub-cells are empty
 Mixed – there is at least on non-empty sub-cell
 Full – all 8 sub-cells are full

Octree Construction

 Top-Down (slitting) scheme
 Fit whole data (geometry) into one bounding cell
 If it is mixed split it into 8 sub-cells
 Repeat this with each of 8 sub-cells until there is

nothing more to split (all are small / empty / full

Construction of Octree

 Bottom-Up (merging) scheme
 Create uniform grid with high resolution
 For each 8 neighboring cells do
 If they are all empty (full) merge them into one

empty (full) cell, reject sub-cells
 Otherwise create mixed parent cell and proceed

up in the hierarchy

Octree Boolean

Octree Summary

 Applications
 Volume data storage (compression)
 Color quantization
 Collision detection

 Pros
 Memory efficient storage
 Adaptive refinement (more details are preserved)

 Cons
 Longer point localization (data search)
 Small change in data → large change in Octree

Binary Space Partition (BSP)

 BSP is a method for recursively subdividing a
space into convex sets by hyperplanes

 Every cell is a convex polyhedron

BSP Data Structure

 BSP Node
 Partitioning hyperplane (position, normal, dist)
 List of objects (polygons) “intersecting” this node

 Front child node N
f

 Back child node N
b

BSP Construction

BSP Generation Algorithm

 Choose a polygon P from the list
 Make a node N in the BSP tree, add P to the list of

polygons at that node
 For each other polygon Q in the list:

 If Q is wholly in front (behind) of the plane containing P,
move it to the front (back) sub-nodes of P

 If Q is intersected by the plane containing P, split it into
“front” and “back” polygon and move it to respective
front and back sub-nodes

 If Q lies in the plane containing P, add it to the list of
polygons at node N

 Repeat this to the list of polygons in front of P
 Repeat this to the list of polygons behind P

BSP Generation 1

BSP Generation 2

BSP Generation 3

BSP Generation 4

BSP Generation 5

BSP Generation 6

BSP Generation 7

BSP Generation 8

BSP Generation 9

BSP Raytracing 1

BSP Raytracing 2

BSP Raytracing 3

Orthogonal BSP → kD-tree

Constructive Solid Geometry

 Constructive Solid Geometry (CSG)
 Is a volumetric scene representation based on

combination of Boolean operations on primitive
geometry or other CSG

 Using only implicitly defined geometry, CSG
becomes a a special case of F-Rep

 CSG scene definition includes
 Primitive geometry objects
 Tree of Boolean operations

CSG Operations

 Union: A+B = { p | p∈A or p∈B }

 Difference: A-B = { p | p∈A and p∉B }

 Intersection: A^B = { p | p∈A and p∈B}

 Any other Boolean operation

Union Difference Intersection

CSG Operations

 Complex objects can be created by applying
Boolean operations on primitive geometries in
linear order

CSG Operations in hierarchy

CSG Summary

 Applications are mainly in CAD Industry
 Solid Engineering, Architecture, Security, Army...

 Pros
 Natural and intuitive modeling strategy
 Complex shapes can be created from basic shapes
 Model can always be remodeled

 Cons
 Using parametric (mesh) primitives can be very slow

and complicated
 Conversion to B-rep can be slow and error-prone

Surface Representation Conversion

 Parametric to Implicit
 Algebraic solutions
 Numerical solutions (Scan conversion onto grid)

 Implicit to Parametric
 Marching Cubes
 Marching Tetrahedra
 ...

Marching Cubes Algorithm
 1. Specify threshold value
 2. Decide vertex type (in or out) using the threshold

 In: value < threshold value
 Out: value ≥ threshold value
 If all 8 voxel’s vertices are in/out: whole cube is in/out

 3. Based on 8 vertex states create find MC case in a
table and find intersection edges

 4. Compute vertices coordinates
 Use linear interpolation with threshold value

 5. Compute normals
 Use linear interpolation of vertices normals
 Normal vector is same as a gradient vector (difference)

Marching Cubes – 15 Cases

Marching Cubes Marching tetrahedra

Marching Cubes / Tetrahedra

 Marching cubes produce mesh with stronger
turbulence for deforming objects during
animation then Marching tetrahedra

Marching Cubes - Problems

 Local features are not preserved

 Can be improved when exist using normals
and tangent discontinuities

Marching Cubes - Summary

 Applications
 Trimesh construction for any volume data
 Remeshing during simulations
 Surface reconstruction for fluid simulations

 Pros
 Faster than Marching Tets (no neighbor search)
 Semi-regular triangulations

 Cons
 Details are not preserved well
 Mesh turbulence during animations

the
end
that was enough...

	Slide 1
	Slide 2
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

