
Geometric
Structures

3. BSP

Martin Samuelčík
samuelcik@sccg.sk, www.sccg.sk/~samuelcik, I4

mailto:samuelcik@sccg.sk
mailto:samuelcik@sccg.sk
http://www.sccg.sk/~samuelcik

 Geometric Structures 2

BSP trees

• Binary Space Partitioning

• Generaliyation of k-d trees, partitioning of
space using arbitrary hyperplanes

• Enabling sorting of objects

• Doom, Quake, Half-life...

 Geometric Structures 3

BSP tree

• Let S is set of objects (points, polygons,...)

• S(v) is set of objects for BSP tree node v

• BSP tree T(S) for set S is defined:

– If |S| <= 1, then T(S) is leaf containing S

– If |S| > 1, then v is root T and v contains divider
hyperplane hv, set S(v)={x S, x hv} and two
sibling nodes(subtrees) for objects on left
respectively right side of hyperplane hv

 Geometric Structures 4

BSP tree creation
BSPTreeNode* BuildBSPTreeNode (list polygons)
{

if (polygons.IsEmpty ()) return NULL;
BSPTreeNode* tree = new BSPTreeNode;
polygon* root = polygons.GetFromList ();
tree->partition = root->GetHyperPlane ();
tree->polygons.AddToList (root);
list front_list, back_list;polygon* poly;
while ((poly = polygons.GetFromList ()) != 0)
{

int result = tree->partition.ClassifyPolygon (poly);
switch (result)
{

case COINCIDENT:
 tree->polygons.AddToList (poly);
 break;
case IN_BACK_OF:
 back_list.AddToList (poly);
 break;
case IN_FRONT_OF:
 front_list.AddToList (poly);
 break;
case SPANNING:
 polygon *front_piece, *back_piece;
 SplitPolygon (poly, tree->partition, front_piece, back_piece);
 back_list.AddToList (back_piece);
 front_list.AddToList (front_piece);
 break;

}
}
tree->front = BuildBSPTreeNode (front_list);
tree->back = BuildBSPTreeNode (back_list);

}

struct BSPTreeNode
{

List polygons;
HyperPlane partition;
BSPTreeNode* front;
BSPTreeNode* back;

}

struct BSPTree
{

BSPTreeNode* root;
}

BSPTree* BuildBSPTree(List polygons)
{

result = new BSPTree;
result->root = BuildBSPTreeNode(polygons);
return result;

}

struct HyperPlane
{

vector<float> coefficients;
}

 Geometric Structures 5

Hyperlpanes

• Line, plane, ...

• Implicit representation for d-dimensional space:
a1.x1+a2.x2+…ad.xd+ad+1=0

• (a1,a2,…ad) – normal, representing also orientation
of hyperplane, defining inside or outside part

• Point test – sign od result after computation of
implicit representation with point coordinates

• Polygon test – comparing point test signs for each
vertex of polygon

• Splitting polygons– searching for intersection of
boundary segments with hyperplane

 Geometric Structures 6

BSP tree splitting techniques

• Auto-configuration ‒ O(n2)

• Arbitrary splitting techniques, time complexity
computation:
– ɑ = average count of polygons split in nodes

• For each polygon, choose point-
representative (barycenter, center of BB, ...)
and find hyperplane, that splits set of
representatives into two subsets with same
count

 Geometric Structures 7

Cost heuristics for split

• Computing quality cost of split

• Tree cost

– C – cost function, P – probability of visiting tree

– For example for point location(inside or outside
of object) P(Tˉ) = Vol(Tˉ)/Vol(T), for raytracing
area of cell bounding subtree

• Local heuristics

– S – number of polygons, objects, s – split
objects count

 Geometric Structures 8

Automatic subdivision

• Hyperplane defined by one of given polygons

• Choose large polygons

– Large polygons have higher probability to be split, so this
way remove it sooner from set of polygons

– For first k largest polygons, compute cost function C(T)
and choose polygon with lowest cost

• Random choose k polygons

– From k polygons, choose one that will create smallest
count of fragments

• Used constants for cost function computation

– α = 0.8, …, 0.95; β = 1/4 ,…, 3/4

– k = 5

 Geometric Structures 9

BSP tree for raytracing

• Organizing tree based on specifics of geometric
search – for example rays emit from one point

• Cost of queries

• We want to hit as less nodes as possible, polygons
with higher hit probability are places in higher in
tree hierarchy

• Probability of ray-polygon intersection:

– If the angle of ray direction and polygon normal is
smaller, probability is higher

– If the polygon is larger, probability id higher

 Geometric Structures 10

Self-organizing BSP trees

• If distribution of polygons is not known or cost
function is harder to compute

• Constructing only necessary parts of BSP tree

• Each node also holds info about currently unused
polygons, that were not used until now

• Remembering how many times node of tree was
visited, if counter is above limit, the node is
subdivided and new subtree of node created

• Computing also intersection count of ray and
polygons in unsplit node, this counter is later used
for choosing split hyperplane

 Geometric Structures 11

Visibility determination

• Determine occluded parts of polygons in 3D scene

• Painter algorithm – painting from background
towards front (polygons must be in simple
positions)

• BSP – having partition of space, each hyperplane in
node splits space into two halves, half-space where
camera is positioned contains objects nearer to
camera, other half-space contains objects far from
camera

• Always comparing split hyperplane with camera
position

 Geometric Structures 12

Visibility determinantion

void DrawBSPTree (BSP_tree *tree, point eye)
{
 if (tree == NULL) return;

real result = tree->partition.ClassifyPoint (eye);
if (result > 0)
{

DrawBSPTree(tree->back, eye);
tree->polygons.DrawPolygons();
DrawBSPTree(tree->front, eye);

}
else if (result < 0)
{

DrawBSPTree(tree->front, eye);
tree->polygons.DrawPolygonList();
DrawBSPTree (tree->back, eye);

}
else
{

// the eye point is on the partition plane...
DrawBSPTree(tree->front, eye);
DrawBSPTree(tree->back, eye);

}
}

 Geometric Structures 13

Visibility determination

• Combination of several algorithms

• Bbackface culling

• Frustum culling

• Pixel rewriting in color buffer when rendering

– Rendering in front to back order

– Structure in screen space for remembering which
pixels were already filled – using 2D BSP tree

 Geometric Structures 14

Transparency

• Using blending (alpha-blending) in 3D
– Fragments of currently rendered polygon are

blended with color in framebuffer with some ratio

• Ordering of rendered polygons is needed
– Front-to-back order

– Back-to-front order

• Additive blending

 Geometric Structures 15

Objects representation

• Closed objects
• Border of objects defines subdivision

hyperplanes
• Representation used for point test
• Unappropriate for smooth surfaces

 Geometric Structures 16

Set operations on objects

• Crucial operations in geometric modeling

• BSP tree representation – connecting two
BSP trees

• Union, intersection, difference – in BSP
representation, difference only in elementary
leaf operations

 Geometric Structures 17

1. Part – BSP tree split

• For given BSP tree T and hyperplane H, create new
BSP tree T1, such that T1

- = T H- a T1
+ = T H+

• H will be new root

• Node T consists of (HT, pT, T
−, T+)

– H id split hyperplane

– p is polygon inside H

• Several configurations for hyperplane H in node T
based on relative position of H and hyperplane in T

• Bounding volumes of each BSP tree node are
needed

 Geometric Structures 18

1. Part – BSP tree split

split-tree(T, H, P)
{
 //{P = H ∩ R(T)}
 // R(T) – region of the cell of node T (it is convex)
 case T is a leaf :
 return (H, T, T);
 case “anti-parallel” and “on” :
 return (H, T+,T−)
 case “pos./pos.” :
 (T+1, T+2) = split-tree(T+, H, P);
 T1 = (HT, pT, T

−, T+1);
 T2 = T+2;
 return (H, T1, T2);
 case “mixed” :
 (T+1, T+2) = split-tree(T+, H, P ∩ R(T+));
 (T−1, T−2) = split-tree(T−, H, P ∩ R(T−));
 T1 = (HT, pT ∩ H−, T−1, T+1);
 T2 = (HT, pT ∩ H+, T−2, T+2);
 return (H, T1, T2);
}

+ analogic cases

 Geometric Structures 19

2. Part – BSP trees connection

• For given 2 BSP trees, concatenate it into
one by inserting hyperplanes from first
inside second

• If Ci are sets of elementary cell of i-th tree
(represented by leafs of trees), then
resulting tree T3 has leaf cells:

 Geometric Structures 20

2. Part – BSP trees connection

merge(T1, T2) → T3
{

if (T1 or T2 is a leaf)
{

perform the cell-op as required by the Boolean
operation to be constructed

}
else
{

(T2
+, T2

-) = split-tree(T2, H1, …);
T3

-
 = merge (T1

-, T2
-);

T3
+ = merge (T1

+, T2
+);

T3 = (H1, T3
-, T3

+);
return T3;

}
}

Operation

T1

Result

in

T1

out

T2

in

T2

out

T1

\

in

T2
c

out

T1

in

T2
c

out

T2

cell-op, T1 is leaf

 Geometric Structures 21

Collision detection

• Checking intersection between nodes of two
BSP trees

• Similar to raytracing algorithm

• Computation of hyperplanes intersections
between cells

• When checking for collision of camera and
object, computing intersection of segment
and BSP tree

 Geometric Structures 22

Shadow volumes

• BSP tree storing polygons of shadow volume

• Determination if given surface point is inside
shadow volume = is in shadow

 Geometric Structures 23

Shadow volumes

• Algorithm

– From light position, find all silhouette edges of
objects casting shadows

– Each silhouette edge expand in the direction of
light, creating polygons of shadow volumes

– Create BSP tree for boundary polygons of
shadow volumes

– For any point in scene, find leaf node where it is
positioned and read shadow information

– Can be used stencil buffer instead of BSP tree

 Geometric Structures 24

Dynamic scenes

• Dynamic objects are reinserted into BSP tree
each frame

• Usually dynamic objects are represented as
points and rendered before static objects

• Inserting one point is much faster than
whole object with all boundary polygons

• Another option is to insert hyperplane
perpendicular to view direction

 Geometric Structures 25

Questions?

