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Abstract 

Design solutions for a program library are presented for combinato- 
rial data structures in computational geometry, such as planar maps 
and polyhedral surfaces. Design issues considered are genericity, 
flcsibility, time and space efficiency, and ease-of-use. We focus 
on topological aspects of polyhedral surfaces. Edge-based repre- 
w%ations for polyhedrons are evaluated with respect to the design 
goals. A design for polyhedral surfaces in a halfedge data structure 
is developed following the generic programming paradigm known 
from the Standard Template Library STL for C++. Connections 
arc shown to planar maps and face-based structures managing holes 
in facets. 

1 Introduction 

Combinatorial structures, such as planar maps, are fundamental in 
computational geometry. In order to use computational geometry 
in prxtice, a solid library must provide generic and flexible solu- 
tions as one of its fundamental cornerstones. Other design criteria 
are time and space efficiency. Ease-of-use is necessary to m&e 
the power of a design accessible and to attract users. We report a 
solution proposed for the Computational Geometry Algorithms Li- 
bray CGAL’, which is a joint effort of seven academic institutes in 
Europe [7.6,27]. 

We focus on edge-based representations of three-dimensional 
polyhedral surfaces and illustrate connections to planar maps and 
face-based structures, which may have holes in their facets. We 
concentrate on the topological aspects and derive solutions appli- 
cable to other data structures as well. In particular, we want to vary 
the internal storage organization and the kind of incidences that are 
actually stored. Additional user data can be integrated easily. A 
top-level interface ensures ease-of-use and combinatorial integrity. 
On the other hand, a protected access to the internal representation 
is granted. 
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Figure 1: Hammerhead, an orientable 2-manifold of 2560 vertices. 
This one is homeomorphic to a sphere. 

In the first part of the paper we define polyhedral surfaces and 
review known edge-based boundary representations. In the second 
part we start with a short introduction to the modem design prin- 
ciples available in C++ and known as the generic programming 
paradigm from the Standard Template Library, STL 14, 25, 291. 
We derive design goals and evaluate previous work. We continue 
with an overview of our design, present several aspects in more 
detail and conclude with its evaluation. The two main advantages 
of our design are: The flexibility is completely handled at compile 
time, i.e. there is no runtime overhead due to the flesibility, and 
memory is only allocated for the features actually used. For csam- 
ple, a polyhedron with no information in facets does not allocate 
facet nodes and facet pointers at all. 

2 Polyhedral Surfaces 

A boundary representation of a polyhedral surface consists of a set 
of vertices V, a set of edges E, a set of facets F and an incidence 
relation on them. Introductions can be found in [13, 21-J. For a 
living esample see Figure 1. 

The two types of boundary representations are 2-manifold and 
non-manifold surfaces. A Zmanifold surface is a surface where 
for each point on the surface there exists a neighborhood that is 
homeomorphic to the open disc. Non-manifold esamples are two 
tetrahedrons glued together at a single vertex or a common edge. 
The nest distinction is between orlentable and non-orlentable 2- 
manifold surfaces. Without going into details, a surfxe is orl- 
entable if a consistent orientation can be assigned to each facet 
such that for each edge the two incident facets have opposite nricn- 
tations at this edge. An esample of a non-orientable 2-manifold is 
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Figure 2: Euler operator examples for polyhedral surfaces. 

the Klein bottle. We consider only orientable 2-manifolds. 
The natural operations under which 2-manifolds are closed are 

Euler operations; Four of them are shown in Figure 2. The principal 
characteristic of an Euler operation is the invariance of the Euler- 
Polncare formula. A sufficiency proof for a specific set of Euler 
operations can be found in [21]. Note that 2-manifolds are not 
closed under (regularized) boolean operations. 

The class of representable surfaces is further restricted by the 
kind of geometry associated with vertices, edges and faces. Ver- 
tices map to points in R3. For polyhedra the edges are typically the 
straight line segments between their two endpoints and the facets 
are simple, planar polygons. Other classes might allow curved sur- 
fnccn a5 facets, 

We now present a definition for polyhedral surfaces following 
Stelnitz [30]. It is the basis for the combinatorial integrity definition 
of the polyhedral surface data structure and will lead to a stricter 
class of representable surfaces, which provides more insight in the 
comblnatorlal structure of the representation. 

Dcllnltlon 2.1. A struclurul co~nplcx is a union C = V U E U F 
of three disjoint sets together with an incidence relation. We call V 
the vcrticcs, B the edges and F the facets of the structural complex. 
The incidence relation on C must be symmetric. No two elements 
from the same set V, E or F are incident. If w E V is incident to 
c E B and e is incident to f E F then v is incident to f. 

Dcflnitlon 2.2. A poIylrcdruf complex is a structural complex with 
four additional conditions. 

(1) Every edge is incident to two vertices. 

(2) Every edge is incident to two facets. 

(3) For every incident pair v, f, there are exactly two edges inci- 
dent to both. 

(4) Every vertex and every facet is incident to at least one other 
c!emcnt. 

The ncig/tbor/lood of a vertex is the set of edges and facets in- 
cident to the vertex. If we restrict the incidence relation to this 
neighborhood then each facet is incident to exactly two edges and 
ench edge is incident to exactly two facets. The neighborhood de 
composes into disjoint cycles. As for the dual, the neighborhood 
of a facet is the set of incident edges and vertices and decomposes 
Into cycles too. Assuming that the neighborhood of each facet is 
a single cycle (geometrically speaking: no holes in the facet), we 
can defme a polyhedral complex as oriented if each cycle around 
a facet is oriented and if, for each edge, the two cycles of its two 
incident facets are oriented in opposite directions. A polyhedral 
complex is orientable if there exists such an orientation. 

Dclinition 2.3, The boundary rcprcscnrurion ofa polyhedron is a 
polyhedral complex with a mapping V + R3. This extends to the 

Figure 3: A winged-edge. 

edges by mapping them to the open, straight line segments between 
their two incident endpoints. The follovring additional conditions 
must hold. 

(5) The neighborhood of each vertex and each facet is a single 
cycle. 

(6) The polyhedral complex is orientable. 

(7) The mapping of the cycle of the neighborhood of each facet 
is the boundary of a simple, planar polygon. The mapping 
extends for F to the open region of these polygons. 

(8) The images of V, E and F are pairwise disjoint. 

The surface defined by such a boundary representation is an ori- 
entable 2-manifold where the neighborhoods of two vertices have 
at most one edge and two facets in common, the edge and vertex 
graphs are connected within each connected component of the sur- 
face and where each facet has at least three edges on its boundary. 
The smallest possible configuration is a tetrahedron. 

The closed surfaces considered so far can be extended to sur- 
faces with boundaries by two changes in the definition: Condition 
(2) can be relaxed to allow edges that are incident to one facet; 
they are called border edges. This induces a modification of (5): 
The neighborhood of a vertex decomposes into either a cycle or a 
collection of open paths going from border edge to border edge. 
Although the surface is no longer closed, the orientation still dz- 
fines a “solid” side of the surface. The minimal configuration for 
surfaces with boundaries is a triangle. The data structures we will 
describe can be used for polyhedrons as well as for surfaces with 
boundaries with a simple extension denoting “empty” facets. 

A suitable data structure based on the Definition 2.3 for polyhe- 
dral surfaces has been used suceessfnlly for three years in a project 
on contour-edge-based polyhedron visualization where we take ad- 
vantage of the strict properties imposed by the definitions: For ex- 
ample the definition for contour-edges is based on the orientable 2- 
manifold property, and the lack of holes in facets simplifies certain 
algorithms2 [18]. Art initial implementation of the data structure 
made it easy to compute the silhouette for a polyhedral surface [ 141. 
The extension of this data structure design and their advantages are 
presented in the following sections. 

3 Data Structures for Boundary Representations 

The following survey of edge-based data structures addresses their 
sufficiency for modeling topology and the efficiency of their primi- 

2And holes are not represented in the file-formats that occur usually in 
visnahzation. for example VRML [12]. Open Inventor [34] or the Object 
File Format OFF [28]. These consist of a list of vertices followed by a list 
of facets. Each facet is a list of indices denotinc a subset of the noints. 
Edges are not e..plieitly stored but M be derived%om the vertices &red 
by facets. These formats are not strict enough for oar purpose since they can 
represent non-manifold eonfigorations where three or more facets are inci- 
dent to asingle edge, non-orientable 2-manifohis, and alsoviolate condition 
(3) for polyhedral eomple..es. But they cannot represent holes in facets. 
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FiFre 4: FE-structure (left) and VE-structure (right). 

tive operations and storage costs. The representative esample cho- 
scn is the traversal around a vertes to the next counterclockwise 
edge. Figure 5: Quad-edge data structure. 

Winged-Edge Data Structure. The winged-edge data struc- 
ture [1, 10-J stores, for each oriented edge, eight references: two 
vertices (PVT, NW), two faces (PFACE, NFACE) and four inci- 
dent edges that share the same faces and vertices (PCW, PCCW, 
NCW and NCCW), the so-called wirzgs, see Figure 3. An edge is 
oriented from the source vertes PVT to the target vertex NVT. The 
kce PFACE is to the left of the oriented edge when the surface is 
seen from the outside. 

This data structure is able to model orientable 2-manifolds. It 
is even sufficient for curved-surface environments where loops and 
multi-edges are allowed [33]. The basic operations include trawr- 
sal around a vertex and around a facet. High-level operations main- 
taining integrity are Euler operators. The next edge counterclock- 
wise around a vertex v for an edge e is equal to e->PCpJ if e-> 
PVT == v and e->fiICW otherwise. 

Variants are possible where vertex and facet pointers can even 
be omitted without loosing the traversal capabilities knowing the 
edge visited previously. However, all four edge pointers must re- 
main if loops or multi-edges are allowed since otherwise the traver- 
sal around a vertex or facet is no longer uniquely defined [33]. The 
winged-edge data structure where the wings PCCW and NCCW 
are omitted has been called Doubly Connected Edge List (DCEL) 
by [24] though this name is now more commonly used for the half- 
edge data structure [S]. 3 

The two symmetric parts in the winged-edge correspond to the 
two possible orientations of the edge. The inefficient case distinc- 
tion in the traversal computation results from the fact that a pointer 
to an edge does not encode the orientation it is currently used with. 
One estension of the winged-edge maintains an additional bit with 
each edge-pointer to code the orientation, but this leads to cumbzr- 
some storage layouts and function interfaces. 

Halfedge Data Structure. The orientation problem can be 
solved for the winged-edge data structure by splitting the edge into 
the two symmetric records, called Italjkiges, and adding mutual 
links to each other [33]. There are two ways of splitting the edge, 
which are actualls dual to each other. In both situations the hdf- 
edge contains a pbinter to an incident vertes, an incident facet and 
the opposite halfedge. It is a matter of convention whether the 
source or target vertes is the one chosen to be stored in a halfedge or 
whetizr the facet to the left or the right is stored. In [33] the source 
sertes and the facet to the right were chosen. The FE-structure in 
Figure 4 additionally stores a pointer to the nest clockwise halfedge 
and optionally a pointer to the previous counterclockwise halfedge 
around the facet. It is therefore biased towards traversals around 
the incident facet. The dual VE-structure is depicted in Figure 4 

“In order to void confusion we will not use the name DUEL sine: it 
tumcd out to be ambiguous. In fact, the name is misleading when denoting 
halkdges and the possible variants of single linking. 

on the right. Its nest and optional previous pointer refer to half- 
edges counterclockwise and clockwise around the incident vcrtes. 
The traversal operation that is not directly accessible with a single 
pointer access is available through the opposite halfedge. For es- 
ample the nest halfedge around the incident source vertes for the 
FE-structure is opposite ( ) -z-next ( 1. The different conven- 
tions are not independent. If the convention defines the halfcdgc 
order around a facet to be clockwise, the halfedge order around the 
vertex will be counterclockwise, and vice versa. 

The halfedge data structure is able to model orientable 2-manl- 
folds. It is sufficient for modeling topology even in the presence of 
loops and multi-edges, which can occur in curved-surface cnviron- 
ments [33]. High-level operations maintaining integrity are again 
Euler operators. The solid modeling system GWB [21] is based on 
a halfedge-data structure, though it uses an additional edge word 
between two opposite halfedges, which makes this access less efti- 
cient. The Minimal Rendering Tool MRT [2] uses a halfcdge data 
structure for polygonal surfaces. 

Quad-Edge Data Structure. If we perform both halving steps 
for the halfedge data structure, we end up with the quad-edge data 
structure [I I]. It provides a fully symmetric view on the primal 
and the dual graph, as can be seen in Figure 5. Instead of using 
opposite pointers, a two bit counter F is used to address a slot In an 
edge record of four quad-edges. With an additional bit f per edge 
for the flipped status the quad-edge data structure is able to model 
non-orientable 2-manifolds. 

A quad-edge data structure is defined as an edge algebra with 
three operations: One:& ( 1, Rot ( 1 and Flip ( ) . An edge is rep- 
resented as a triple (e, P, f) with P E (0, 1,2,3} and f E (0, 1). 
e is the base pointer to the quad-edge record with the four incident 
edges e[O] to e[3]. The operations are implemented as follows with 
a calculus modulus 4 for r and modulus 2 for f: 

Rot(e, T, f) = (e, P + 1 + 2f, f), 
F%?(% p, f) = (e, T, f + 11, 

Onext(e, r, f) = Flipf(Rotf(e[T f f])) . 

Four different orientations of an edge are considered: two oricnpd- 
tions from vertes to vertex and two orientations for the dual edge 
from facet to facet. The Rot operator rotates the edge by 90 de- 
grees, oscillating between the primal and the dual view of the strut- 
hire. For non-orientable Zmanifolds an edge can additionally be 
seen from above or below the surface, which is encoded in the f 
bit. The Flip operation changes the view from above to below 
or vice versa. The Onext operation gives the next quad-edge in 
counterclockwise order around the source vertex (origin), or the 
nest quad-edge in clockwise order if f is equal to one. The wlues 
for Onext are simply stored in the record for each edge (i.e. four 
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Table 1: Comparison of the edge-based data structures. Figure 6: Halfedge data structure. 

pointers nnd four times three bits for r and f). The operations sim- 
plify considerably for orientable 2-manifolds. They can be further 
aimpliticd if the dual graph is not necessary. This reduces to tbe 
winged-edge data structure enriched with a bit to encode orienta- 
tion, 

The single high-level operation that modifies a quad-edge data 
slructure is the Splice ( ) operation. It is its own dual. The usual 
Euler operators can be implemented in terms of Splice (1. The 
quad-edge data structure provides a unified view for the primal and 
dual graph. This implies that vertices and facets cannot be dis- 
tinguifihed with strong type checking at compile time. The defi- 
nition used for duality implies, furthermore, that the facets must 
hnvo n single connected boundary. Holes in facets are not allowed. 
If atrong type checking is desired, the Splice ( 1 operation is 
needed twice, once for the primal view and once for the dual view. 
3pZlce ( ) can also be provided for the halfedge data structure. 

Comparison of Edge-Based Representations. The main dif- 
ferences of these edge representations are captured in Table 1. Tbe 
differences in the basic traversal capabilities are not negligible, 
cnpeclaliy when considering modem microprocessor architectures 
where conditional branching can be an order of magnitude slower 
than computing. The storage size requirements are quite similar. 
Our design will focus on the flexibility of trading runtime against 
storage costs, We are interested in the minimal and maximal con- 
@urations for the halfedge data structure and tbe space efficiency 
of the quad-edge data structure. Another issue is the preference for 
strong type checking at compile time. Polyhedral surfaces have dif- 
ferent information stored in the vertices and facets, namely points 
and plnne equations. These can be treated as duals of each other, but 
in a strongly-typed geometry kernel (like the one CGAL provides) 
they are different types and might even be represented differently. 
Additional information, like color, will finally destroy the typeless 
nymmetry of the duality assumed by the quad-edges. We consider 
non-orientabilily as not so important since three-dimensional sur- 
faces of solid objects are always orientable. 

The choice for our design is a halfedge data structure lie the 
FE-r;tmcture. The conventions used are depicted in Figure 6. We 
have next ( 1, opposite (1 and prev( ) pointers for the half- 
edges, The incident vertex is the target vertex of the oriented half- 
edge, The incident facet is to the left of the halfedge which implies 
a counterclockwise ordering of the halfedges around the facet and a 
clockwise ordering around the vertex when seen from the outside. 
Thin complies with the right-hand rule for out-facing normals of 
plane equations for facets. 

4 Generic and Object-Oriented Programming 

The major design issues considered for polyhedral surfaces are ge- 
nericity, flexibility, time efficiency, space efficiency and ease-of- 
use, ‘R/o techniques are available in C++ for realizing generic and 
flexible designs: Object-oriented programming, using inheritance 

from base classes with virtual member functions, and generic pro- 
gramming, using class templates and function templates. 

The flexibility in the object-orientedprogromming paradigm is 
achieved with a virtual base class, which defines an interface, and 
as many derived classes as different actual implementations of the 
interface are present in a system. The technique of so-called virtual 
member functions and runtime type information allows a user to se- 
lect any of the derived classes wherever the base class is required - 
even at mntime. Generic functionality can be programmed in terms 
of tbe base class without knowing all possible derived implementa- 
tions beforehand. 

The advantages are the clear definition of the interface and the 
flexibility at nmtime. There are four main disadvantages: This 
paradigm cannot provide strong type checking at compile time, en- 
forces tight coupling through the inheritance relationship [19], it 
adds additional memory to each object derived from the base class 
(the so-called virtuul function table pointer) and it adds an indi- 
rection through the virtual function table for each call to a virtual 
member function [20]. The latter one is of particular interest when 
considering runtime performance since virtual member functions 
can usually not be made inline and are therefore not subject to code 
optimization within the calling fnnction. Modem microprocessor 
arcbitecture~~ can optimize at mntime, but, besides that nmtime 
predictions are difficult, these mechanisms are more likeIy to fail 
for virtual member functions. These effects are negligible for larger 
functions, but small functions will suffer a loss in runtime of one 
or two orders of magnitude. Significant examples are coordinate 
access and arithmetic for low-dimensional geometric objects and 
traversals of combinatorial structnres. Vertices, edges and facets for 
polyhedrons are anticipated to be small objects with simple mem- 
ber functions. The space and runtime overhead introduced through 
virtual member functions would not be negligible. 

The generic programming paradigm features what is known in 
C++ as class templates andfunction remphes. Templates are pro- 
gram recipes where certain types are only given symbolically, the 
so called template arguments. The compiler replaces these argu- 
ments with actual types where the program recipe is actually used, 
at the place of the template instantiation. The recipe transforms to 
a normal part of a program. For function templates tbis can even be 
done automatically by the compiler, since the types of the function 
parameters are known to the compiler. Examples are a generic list 
class for arbitrary item types or a swap function exchanging vari- 
able values for all possible types. The following definitions would 
enable us to use listcint> as a list of integers or to swap two 
integer variables x and y with swap (x, y) . 

template <class Tz- class list { 
// ..* , uses T as item type. 

1; 

4Pipelining. branch prediction, speculative execution and reordering, 
global optimizers using nmtime statistics and the interplay with the cache 
tXChitecture. 
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template <class T> void swap( T& a, T& b) { 
T tmp = a; a = b; b = tmp; 

1 

The example of the swap function illustrates that a template usually 
assumes some properties to hold for the template arguments, here 
that variables of those type can be assigned to each other. These 
rquirements are not espressed within C*+, only in the accompa- 
nying documentation. An actual type used in the template instan- 
tiation must fulfill the requirements of the template argument in 
order of the template to work properly. Requirements can be clas- 
sified into syntactical ones, there must be an assignment operator, 
and semantical ones, the implementation of the operator must re- 
dly do what it is supposed to do. Syntactical requirements will be 
checked by the compiler at instantiation time of the template. Se- 
mantical requirements cannot be checked. In certain situations it 
might be wishful to stress semantical requirements with additional 
syntactical, i.e. checkable, requirements, e.g. symbolic tags. 

For class templates esist the specialty that different member 
functions might impose different requirements on the template ar- 
guments, but a certain instantiation of the class template uses only 
a subset of the member functions. Here, the arguments must only 
fulfill the requirements imposed by the member functions actually 
used. In particular, the compiler is only allowed to instantiate those 
member functions of an implicit instantiation of a class template 
that are actually used [4]. This enables us to design class templates 
with optional functionality that impose additional requirements on 
the template arguments if and only if this functionality is used. 

A good example for the generic programming paradigm is the 
Standard Template Library [a, 25,291. The main source of its gen- 
erality md flexibility stems from the separation of concepts and 
rnadels 1291. For esample, an iterator is an abstract concept de- 
fined in terms of requirements. A certain class is said to be a 
modA of the concept if it fulfills the requirements. The iterator 
concept is a genrralization of a pointer and the usual C-pointer is 
a model of an itemtor. Iterators serve hvo purposes: They refer to 
an item and they traverse over the sequence of items in a container 
c&s. Container classes manage collections of items. Different 
categories are defined for iterators: input, output, forward, bidi- 
xctional and random-access iterators. They differ mainly in their 
tmversal capabilities. The usual C-pointer is a random-access iter- 
ator. Gazeric dgoritltms in the STL are not written for a particular 
container class but for a pair of iterators instead. The so called 
range [first, beyond) of hvo iterators denotes the sequence 
of all itemtors obtained by starting with first and advancing 
first until beyond is reached, but does not include beyond. 
A container is supposed to provide a type, which is a model of an 
itcrator, and two member functions: begin ( ) returns the start it- 
erator of the sequence and end ( 1 retums the iterator referring to 
the ‘past-the-end’-position of the sequence. A generic contains 
function could be written as follows and will work for any model 
of an input iterator. 

Wrqlate -xlass InputIterator, class T> 
boo1 containsi InputIterator first, 

InputIterator beyond, 
const T& value) 

I 
while ((first != beyond) &L (*first != value)) 

++firSt; 
return (first != beyond); 

1 

The advantages of the generic pro,hng paradigm are strong 
type checking at compile time during the template instantiation, 
no need for estra storage or additional indirections during function 
calls, and full support of inline member functions and code opti- 
mization at compile time [32]. One disadvantage is the lack of a 

formal scheme in the language for espressing the requirements of 
template arguments, the equivalent to the virtual base class in the 
object-oriented programming paradigm. This is left to the pragram 
documentation. Another disadvantage is that the flexibility is only 
available at compile time. Polymorphic lists at runtime cannot be 
implemented in this way. 

In many places we follow in CGAL the generic programming 
paradigm to gain flesibility and efficiency. Important is the com- 
pliance with the STL to promote the re-use of esisting gcnerlc nl- 
gorithms and container classes, but - more important - to unify the 
look-and-feel of the design of CGAL with the C++ Standard, It is 
therefore easy to learn and easy to use for users familiar with the 
STL. In a few places we make use of the object-oriented program- 
ming paradigm, for esample the protected access to the internal 
representation, see Section 9. 

5 Design Goals for Polyhedral Surfaces 

We define the concept polyhedron similar to STL container clusses 
to be responsible of managing the items of a polyhedml surface 
and their combinatorial structure. We have identified the following 
design issues: 

1. 

2. 

3. 

4. 

5. 

The edge-based data structures discussed in the previous sec- 
tion have a natural notion of the edges around a vertes or 
around a facet. It would be costly to provide itemtors for 
these kind of circular sequences since the notion of r;mges 
and the ‘past-the-end’ value do not estend naturally. WC pro- 
pose a concept similar to iterators - what we call circubor 
- for this kind of structure. 

STL containers base their interface on iterators. For polyhe- 
dral surfaces the order of the stored items is not well-d&cd 
in certain situations, e.g. after Euler opemtions. Here we fall 
back on the concept of handles, which is the item-denoting 
part of iterators and ignore the traversal capabilities. In par- 
ticular, any model of an iterator or circulator is II model of a 
handle. 

The actual storage organization of the vertices, edge!, and 
facets influences the space and runtime efficiency. A doubly- 
connected list representation allows random insertion md rL’- 
moval while providing bidirectional iterators that enumemte 
all items. A more space efficient storage uses an STL vector 
which allows only the efficient removal of items at the end of 
the vector but provides random-access iterators. Other vxl- 
ants, like managing chunks of memory or simple allocation 
on the heap without any iterators over all items could be an- 
ticipated too. 

The necessary incidence information might depend on the 
application. The minimum needed for traversals are next ( 1 
and opposite ( ) pointers. The prev ( ) pointer can be 
simulated with a search around the vertex or facet. For tri- 
angulations this is still a simple espression, i.e. prev ( 1 z 
next ( 1 ->next ( 1, and for constant degree II constant time 
operation. If no information needs to be attached to vertices 
or facets, no storage should be allocated for them, including 
the referencing pointer in the edges. In its estreme the data 
structure reduces to an undirected graph. 

It should be easy to add additional information to the differ- 
ent items, e.g. color to facets. Geometry will be attached us- 
ing the same technique. Modifying one item should not hin- 
der the re-use of the other items, for example, adding color 
to facets should not imply that a new vertes type must be 
declared. 
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6, The data structure should provide an easy-to-use high-level 
interface. This interface should protect the internal combi- 
natorial integrity of the data structure as given in Defini- 
tion 2,3. Advanced algorithms concerned with efficiency, 
c.g, a lile format scanner, should be allowed to access the 
internal structure in a controlled fashion. 

7, The management of connected components and containment 
relations, e.g. holes in facets or shells, is seen as an indepen- 
dent functionality with its own layer. Different solutions can 
be envisioned. 

We concentrate on the combinatorial aspects of the polyhedral sur- 
face, Additional issues will appear when considering geometry, 
for cxamplc flexibility with the point type and the geometric pred- 
icates, One technique explored for this in CGAL is an extension 
of the traits classes [2G] known from the C++ standard library, 
SW [7,9,31. 

B Previous Work 

The Library of Efticient Datatypes and Algorithms (LEDA) [22, 
231 contains no data structure tailored for three-dimensional poly- 
hedrons, but it provides a general data structure for graphs and one 
for planar maps derived from graphs. Additional information can 
be attached either by parameterizcd graphs or by node arrays and 
edge arrays, These are associative arrays (hash tables) which al- 
lows the easy addition of information even for temporary purposes. 
The disadvantage of the parameterized graph is that one must al- 
ways specify both parameters. The disadvantages of the node and 
cd&e arrays are the additional costs for the lookup operations and 
additional storage requirements. A more subtle disadvantage is that 
a rcfcrence to a node is not sufficient to retrieve its associated at- 
tributes. The array must be known too. The current size of graph 
nodes is equivalent to 13 pointers and for halfedges it is 11 pointers. 
There is no flexibility for obtaining smaller graph structures. LEDA 
has its own notion of itcrators and a rich body of algorithms for 
working on graphs. At the moment it is not compliant to the STL. 
LEDA is very homogeneous and easy-to-use. Its own framework 
is generic and flexible but (currently) monolithic when combined 
with other libraries like the STL. It does not reach the flexibility 
in runtime and space efficiency tuning achieved with the approach 
presented in this paper. 

The Minimal Rendering Tool MRT uses a halfedge data struc- 
ture to represent polyhedral surfaces [2]. It is implemented as 
a C++ class hierarchy and provides Euler operations to maintain 
combinatorial integrity. The internal representation is accessible 
at construction time and protected thereafter. No other access is 
granted. It separates geometry and topology except for vertices 
where n point is incorporated just at the combinatorial level for effi- 
ciency reasons. Flexibility and genericity are achieved with virtual 
member functions for geometric properties. No flexibility is avail- 
able at the topological level. Facets are responsible of storing the 
ring of halfedges of their boundary. Summarizing, this approach 
leads to larger nodes for vertices, halfedges and facets and slower 
funclions for geometric properties than the solution we developed. 

7 Circulators 

Our new concept of circulufors reflects the fact that combinato- 
rial structures often lead to circular sequences, in contrast to the 
linear sequences supported with iterators and container classes in 
the STL. For example polyhedral surfaces and planar maps give 
rise to the circular sequence of edges around a vertex or a facet. 
Implcmcnting iterators for circular sequences is possible, but not 
straightforward, since no natural past-the-end situation is available. 

An arbitrary sentinel in the cyclic order would break the natural 
symmetry in the configuration, which is in itself a bad idea, and 
will lead to cumbersome implementations. Another solution stores, 
within the iterator, a starting edge, a current edge, and a kind of 
winding-number that is zero for the begin ( 1 -iterator and one for 
the past-the-end itemto?. No solution is known to us that would 
provide a light-weight iterator as it is supposed to be (in terms of 
space and efficiency). Therefore we introduced in CGAL the sim- 
ilar concept of cinxhfors, which does allow light-weight imple- 
mentations. The CGAL support library provides adaptor classes 
that convert between iterators and circulators, thus integrating this 
new concept into the framework of the STL. 

Circulators share most requirements with iterators. Three cir- 
culator categories are defined: forward, bidirectional and random- 
access circulators. Given a circulator c the operation *c denotes 
the item the circulator refers to. The operation ++c advances the 
circulator by one item and --c steps a bidirectional circulator one 
item backwards. For random-access circulators c+n advances the 
circulator by n where n is a natural number. Two circulators can be 
compared for equality. 

Circulators develop different notions of reachability and ranges 
than iterators. A circulator d is called reachable from c if c can 
be made equal to d with finitely many applications of the operator 
++c. Due to the circularity of the data structure this is always true if 
both circulators refer to items of the same data structure. In partic- 
ular, c is always reachable from c. Given two circulators c and d, 
the range [c, d) denotes all circulators obtained by starting with 
c and advancing c until d is reached, but does not include d if d # 
c. So far it is the same range definition as for iterators. The differ- 
ence lies in the use of [c , c 1 for denoting all items in the circular 
data structure, whereas for an iterator i the range [ i , i 1 denotes 
the empty range. As long as c ! = d the range Kc, d) behaves 
like an iterator range and could be used in STL algorithms. It is 
possible to write just as simple algorithms that work with iteratom 
as well as with circulators, including the full range definition [16]. 
An additional test c == NULL is now required that is true if and 
only if the data structure is empty. In this case the circulator c is 
said to have a singular value. For the complete description of the 
requirements for circulators we refer to [16]. 

We repeat the example for the generic contains function 
from Section 4 for a range of circulators. The main difference is 
the use of a do-while loop instead of awhile loop. 

template <class InputCirculator, class Tz- 
boo1 contains( Inputcirculator c, 

InputCirculator d, 
const T& value) 

c 
if (c!=NULL) { 

a0 t 
if ( *c == value) 

return true; 
) vIhile t++c != d) ; 

1 
return false; 

1 

8 Design Overview 

The global picture of the design is given in Figure 7. The design 
strictly separates topology and geometry. Vertices, halfedges and 
facets carry both kinds of information. The Halfedge,data, 
structure is the container managing these three items and their 
topological relations. The Topological-planarmap iS a face- 
based representation. It maintains hoIes in facets and is able to enu- 

r%is is currently implemented in CGAL as an adaptor class which pro- 
vides a pair of iterators for a given circulator. 
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Figure 7: Design overview. 

rrvmte outer and inner boundaries of a facet. It uses the edge-based 
data structure. The Polyhedron uses the Halfedge-data- 
structure and adds geometric operations. It imposes furthzr 
mstrictions on the data structure as defined for the polyhedral com- 
plvs above, for esample, that an edge always has hvo distinct end- 
points. The Planarmap and a possible Polyhedron-vritb- 
holes are based on the topological planar map since they will 
maintain holes in facets. 

All entities in this picture are sets of requirements. Each can 
kw multiple models. There are many different possibilities for 
vertices, edges and facets. Currently two different models are pro- 
vidcd for the Halfedge-data-structure. lvlany cornbin+ 
tions are possible and result in different polyhedron data structures. 
We make use of the implicit instantiation of template classes in 
C++ as described above. The requirement sets consist of a ma&- 
tory part that every model must comply with and certain optional 
pxts a model must only comply with if the corresponding function- 
ality is actually used. For esample, a vertes is allowed to be empty. 
If wc want to use it for the polyhedral surface then the normal ve:- 
tor computation imposes the additional requirements that the vertex 
must contain a three-dimensional point and must give access to it 
with the member function point ( ) . 

9 Design of the Polyhedron 

A more refined picture of the design is shown in Figure S. At 
the bottom we start with base classes for vertices, halfedges and 
kits. Their responsibilities are the actual storage of the incidences 
in terms of void-pointers, the geometry and other attributes. Es- 
pzciallv the storage of incidences with void-pointers allows, for 
wxnp~e, the facet class to be exchanged without changing the half- 
edge elm. The advantage of strong type checking will be reestab- 
lishzd for the void-pointers in the nest layer. Implementations for 
vertices, edges and fxets are provided that fulfill the minimal set of 
rcqdrcments. They can be used as base classes for own extensions. 
Richer implementations are provided as defaults; for polyhedrons 
they provide a three-dimensional point in the vertices and a plane 
equation in the facets. 

The Halfedge-datastructureis responsible of thestor- 
ago organization of the vertices, halfedges and facets. Currently 
implementations are provided that use a bidirectional list or an 
STL vector internally. The Halfedge-data-structure de- 
rlvcs new classes for vertices, halfedges and facets. They replace 
the void-pointer incidence information with type-safe pointers at 
the interface. Additional information besides the incidence infor- 
mation simply stays unaffected and will be inherited from the base 
&WX 

Figure S: Responsibilities of the different layers in the design. 

For the Half edge-data-structure different models are 
possible (hvo are already available). Thus the set of requirements 
for the Halfedge-data-structure is kept small. To sup 
port the implementation of high-level operations, a helper class 
Halfedge-data-structure-decorator is provided, which 
is not shown in Figure 8 but would be placed at the side of the 
Halfedge-datastructure since it broadens that interface 
but does not hide it. It adds Euler operations and adaptive func- 
tionality. For esample, if the prev ( ) function is not provided for 
halfedges, a f indprev ( 1 function searches the previous half- 
edge along the facet. If the prev ( ) function is now implemented, 
the f in&prev ( ) function simply calls it. This distinction can be 
resolved at compile time with a technique called comnpik-rirrte tags, 
similar to iterator tags in [31]. 

The Polyhedron layer adds ease-of-use in terms of high- 
level functions, high-level concepts for accessing the items, i.e. han- 
dles, iterators and circulators (pointers are no longer visible at this 
interface), and the protection of the combinatorial integrity. It de- 
rives new vertices, halfedges and facets to provide the handles and 
to hide the pointers. 

Algorithms with invalid intermediate states need access to the 
internal representation. A protected access is granted for classes 
derived from Islodif ierbase following the strategy pattern [S]. 
The example in Figure 9 depicts the class design for a file format 
scanner for polyhedrons. The backdoor provided here is a hind of 
callback-function embedded in a class object. The Polyhedron 
accepts a modifier class with the delegate ( 1 member function 
and calls its virtual operator ( ) member function with the in- 
ternal halfedge data structure. The Scanner class derives from 
the Nodif ierbase and implements the operator ( ) func- 
tion where it can access the internal representation. The achieve- 
ment is here that the delegate ( ) function of the Polyhedron 
can verify the validity of its own internal representation after the 
operator ( ) function has done its work. The Scanner class is 
in charge of returning from execution only with a valid represcnta- 
tion, even in the case of a failure. This approach is also known from 
database systems as transactions. The special task the Scanner 
accomplishes (only creation of new items) enables us to implement 
the transaction scheme efficiently with a simple rollback fimction 
that deletes all items created so far in the case of a failure. In gen- 
eral the rollback would be more costly. 

10 Evaluation of the New Design 

We will illustrate in the following that our design not only meets 
the design goals formulated in Section 5 but that it is also still easy 
to use. A certain familiarity with the look-and-feel of C or C++ 
will help in this section. 
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llincludo <CGAL/Cartesian.b 
llinclude <CGAL/Halfedge_data_structure~olyhedron~default~3.~ 
Iljncludo <CGAL/Polyhedron-default-traits-3.b 
#include cCGAL/Polyhedron-3.h> 

typcdef CGAL,Carteoian<double> R; 
typcdef CGAL,Halfedge~data~structure_polyhedron_default~3~R> HDS; 
typodef CGAL-Polyhedron-default-traits-34+ Traits; 
typodef CGAL,Polyhedron_3<Traits,HDS> Polyhedron; 

int main0 1 
Polyhedron P; 
P.make,tetrahedron(); 
roturn 0; 

1 

Figure 10: Example program illustrating a default polyhedron instantiation in CGAL. 

Figure 9: Class diagram of the polyhedron design illustrating the 
safe access to the internal representation using the strategy pattern 

We start with a complete program in Figure 10 using a de- 
fault polyhedron instantiation in CGAL'. The #include direc- 
tives provide the types used in the example. It is convenient to 
USC typedef’s to create the nested type declarations one by one. 
CGAL supports different representation types; CGAL-Cartesian 
lo one of them, parameter&i with the coordinate type double. 
The default halfcdge data structure for polyhedrons uses thre-di- 
menaional points for the vertices and a plane equation for the facets 
as determined by R. The CGAL-Polyhedron-3 is parameter&d 
with a traits class for the geometric parameterization and the half- 
edge data structure. The main ( ) function declares a variable P for 
the polyhedron and creates a combinatorial tetrahedron in P where 
rjpaw for points and plane equations is reserved in the vertices and 
fncets (even though the space is not used here). More informa- 
tion about representation classes and traits classes in CGAL can be 
found in [7]. 

The class Polyhedron provides the claimed ease-of-use with 
handles, iterators, circulators and high-level operations, thus ad- 
dressing design goals (1) and (2). This default representation is 
actually equivalent to: 

typodof COAL-Halfedge-data-structure-using-list< 
CGALJertexJnax-base< CGAL_Point_3cR> >, 
CGAL-Halfedge,w-base, 
CGAL,Polyhedron-facet,max_base<R> z- HDS; 

The internal storage organization can be easily changed with the 
clans CGALHalfedge-data-structure-using-vector to 
n vector-based one. This satisfies design goal (3). The requirements 

~CaALusestheprelixCGAL,fornllglobalnames,whichvrillbere- 
placed by a nnmespnce, and the sufhx -3 for threediiensional entities. 

that a self-written class must fulfill to be a model of a halfedge data 
structure are documented in [ 171. 

If we exchange the default base classes for the minimal base 
classes CGAI-Vertex-min-base,CGAL-Halfedge-min, 
base and CGAL-Facetminbase, vfe get a data structure for 
undirected graphs; vertices and facets are empty (besides a few 
compile-time tags) and the minimal halfedge base class stores only 
a next() and an opposite0 pointer. This makes four point- 
ers per edge. See [17j for the actual short implementations of these 
base classes. In analogy to the quad-edge data structure we can re- 
place the opposite ( ) pointer internally by a single bit knowing 
that opposite halfedges are always stored in consecutive places by 
our halfedge data structures. Knowing C, this bit can be put into 
the least-significant bit of the next 0 pointer, which is always 
zero on todays systems. This yields an implementation with two 
pointers per edge! The easy realization of this idea in our design is 
shown in the manual [17]. 

We can add a color variable to the default facet: 
template <class R> 
struct Facet 
: public CGAL-Polyhedron-facet_max_hasecD ( 

CGAL-Color color; 
1; 

This facet can be used instead of the default and we have a poly- 
hedron with colored facets. This satisfies design goal (5). Simi- 
larly easy is the realization of data structure with incidences that 
lie between the minimal and maximal supported incidences. We 
add a previous pointer to the minimal halfedge in the following ex- 
ample. Thetypesupportsfialfedgeprevindicatesthatthe 
class now supports a previous pointer. 
class Halfedge : public CGAL-Halfedge-min-base ( 

void* pm; 
public: 

typedef CGAL-Tag-true Supports-halfedgegrev; 
void* prev ( 1 { return prv;) 
const void* prev() const t return prv;) 
void set_prev( void* h) ( prv = h;} 

I; 

The whole spectrum of incidences is easily available in the design 
presented, fulIiUing design goal (4). Design goals (6) and (7) are 
also met. The example for the easy use of the modifier mecha- 
nism and the transaction scheme for the scanner can be found in 
the manual [15]. 

Summingup,we havemetall designgoals presented in Sec- 
tion 5 without imposing runtime and storage overhead. &defined 
implementations are easy to use and different solutions within the 
possible flexibiity can be achieved with little effort. 
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11 Conclusion 

We have presented a design framework for combinatorial data struc- 
turns, such as planar-maps and polyhedral surfaces. It extends to 
curved-surface environments and can also be applied to other com- 
binatorial data structures, such as triangle-based structures for tri- 
;lngulations. We have identified important fundamentals for such 
a design: A proper definition of the modeling space, strong type 
chcsking, time and space efficiency. 

The adaption of the generic programming paradigm used in the 
STL has led to an easy-to-use and flexible high-level interface for 
polyhedral surfaces featuring handles, iterators, the new concept 
circulators and Euler operators. The internal representation can be 
chosen from a wide range of different halfedge data structures ex- 
plaiting many tradeoffs between time and storage efficiency, iter- 
ntor categories and modifiability. Additional attributes are easy to 
add. Other solutions, such as dynamic type checking at runtime, 
gcncric attribute pointers or templates, can still be added within this 
design. The integritv of the internal representation is protected and 
a mech:anism is avakable that grants safe access to it. We expect a 
continuation of this approach in CGAL. 
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