Fractals

Part 1 : Introduction \& History

Classic geometry

- Regular objects
- Line, circle, square, smooth curves
- Conics, smooth surfaces
- Hard to describe natural objects
- Simple when zooming

"Nature" geometry

- Irregular, fragmented objects, shapes
- Chaos inside
- Pretty to look
- Hard to describe
- Coastlines, trees, clouds, ...
- Process of creation - repeated "operations"

Brownian motion

- Robert Brown - Scottish botanist - random movement of a small particle when in a liquid or gas

Brownian motion 2

- Jean Perrin
- tried to measure the velocity which is the derivative of the particle's position
- "varies in the wildest way in magnitude and direction, and does not tend to a limit"
- "nature contains of non-differentiable as well as differentiable processes"

Brownian motion 3

Mathematical monsters

- Not differentiable functions - Beginning of previous century
- Deplorable evil, pathological monster
- Karl Weierstrass

$$
c(x)=\sum_{n=1}^{\infty} b^{n} \cos \left(a^{n} \pi x\right)
$$

Mathematical monsters 2

- David Hilbert
- Space Filling Curve

Length of coastline

- What is the length of country's coastline?
- L.F. Richardson - Corsica
- B. Mandelbrot - Great Britain
- Spain-Portugal: 987-1214 km

- Netherlands-Belgium: 380-449 km
- $1 \mathrm{~cm}: 100 \mathrm{~km}-1 \mathrm{~cm}: 1 \mathrm{~km}$

Richardson's method

- Given ruler with constant length
- Measure length using ruler
- Using smaller ruler we get more details
- Length is increasing
- Infinite length
- Impossible to measure exactly

Richardson's length

- While measuring coastline of Corsica
- $\mathrm{L}(\mathrm{s}) \approx \mathrm{Hs}^{1-\mathrm{D}}, \mathrm{N}(\mathrm{s}) \mathrm{s}^{\mathrm{D}}=\mathrm{H}$
- L(s) - length of coastline measured using ruler with length s
- H - constant
- s - length of ruler
- D - constant (Richardson's)
- N - number of pieces

Richardson's length 2

- Plot of log/log
- Mandelbrot: $\log [L(\mathrm{~s})]=(1-\mathrm{D}) \log (\mathrm{s})+\mathrm{b}$

Length of curve

- Used approximation with open polygon
- Limit to infinity
- Length of given curve:

$$
L(f)=\int \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

- What if there's no derivation?
- What if there's no exact function?

Topological dimension

- Integer

$$
\begin{array}{ll}
r=3 & N=3
\end{array}
$$

$$
\mathbf{N}=\mathbf{r}^{\mathbf{D}}
$$

Fractal dimension

- Based on Hausdorff-Besicovitch dimension in metric space
- s - scaling factor
- $N(s)$ - number of coverage sets at factor s

$$
\begin{aligned}
& N(s) \approx s^{-D} \quad \text { for } \quad s \rightarrow 0^{+} \\
& D=-\lim _{s \rightarrow 0^{+}} \frac{\log N(s)}{\log s}
\end{aligned}
$$

Fractal dimension 2

- Non-integer H-B dimension = fractal dimension
- Sometimes hard to compute it analytically
- Statistical methods
- Clipper method, box counting method, mass-radius method

Similarity dimension

- Self-similarity fractals
- Easy to compute
- Analytical expression
. Formula

$$
D=\frac{\log L(s)}{\log (1 / s)}
$$

Box counting method

- Divide measuring space into boxes
- Count number of boxes containing set
- Do several measurements with different box sizes
- Make $\log \mathrm{N}(\mathrm{s}) / \log (1 / \mathrm{s})$ graph
- Slope of approximation line is fractal dimension

Box counting method 2

Fractals - definition

- Benoit Mandelbrot
- Fractal dimension > topological dimension
- Other definitions
- Based on fractal properties
- Fractus = to break, irregular

Fractals - properties

- Self-similarity, Self-affinity
- Deterministic
- Non-deterministic
- Extended Euclidean geometry
- Infinity
- Scaling independent
- Modeling, approximating natural objects

Koch's curve

- Niels Fabian Helge von Koch
- Initiator: abscissa E
- Generator: 4 abscissas
- Algorithm: in $\mathrm{E}_{\mathrm{i}-1}$ replace all abscissas with generator and you have E_{i}
- Koch's curve:

$$
K=\lim _{n->\infty} E_{n}
$$

Koch's curve 2
\qquad

$$
\text { जrick }+r^{3}<
$$

$25^{25} 3^{2}$

Koch's curve 3

- Length of K: $L\left(E_{0}\right)=l$

$$
\begin{aligned}
& L\left(E_{1}\right)=\frac{4}{3} l \\
& L\left(E_{i}\right)=\frac{4}{3} L\left(E_{i-1}\right) \\
& L\left(E_{i}\right)=\left(\frac{4}{3}\right)^{i} l \\
& L(K)=\infty
\end{aligned}
$$

Koch's curve 4

- Self-similarity dimension - easy to find
- For each (i-th) step $s=1 / 3^{i}, N(s)=4^{i}$
- $D=\log N(s) / \log (1 / s)=\log 4 / \log 3$
- $D=1,261859$....
- Statistically is near this value
- More than curve, less than plane
- Koch = Corsica, Great Britain

Koch's snowflake

- Measure inside snowflake (area):

$$
S=\frac{2 \sqrt{3}}{5} a^{2}
$$

- Infinite length
- Zero curve area
- Finite space

Generalized Koch's curve

- Can generate curves with different dimensions
- New parameter a
- For $a=60^{\circ}$ we have standard Koch's curve
- Dimension: $\quad D=\frac{\log 4}{\log (2+2 * \cos \alpha)}$

Videos

- Hunting the Hidden Dimension
- http://www.youtube.com/watch?v=ZbK92b RW2IQ
- Clouds Are Not Spheres
- http://www.youtube.com/watch?v=Y9CFZb gJ94I
- Fractals - The Colors Of Infinity
- http://www.youtube.com/watch?v=Lk6QU 94xAb8

End

End of Part 1

