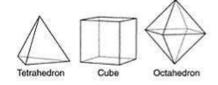
Fractals

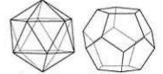
Part 1 : Introduction & History

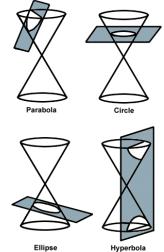
Martin Samuelčík, samuelcik@sccg.sk I4, Department of Applied Informatics, FMFI, UK

Classic geometry

- Regular objects
- Line, circle, square, smooth curves
- Conics, smooth surfaces
- Hard to describe natural objects
- Simple when zooming







loosahedron

Dodecahedron

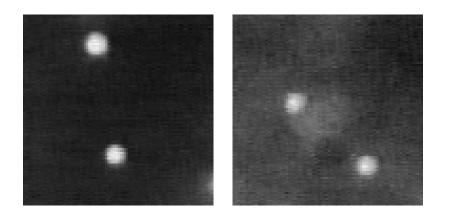


"Nature" geometry

- Irregular, fragmented objects, shapes
- Chaos inside
- Pretty to look
- Hard to describe
- Coastlines, trees, clouds, …
- Process of creation repeated "operations"

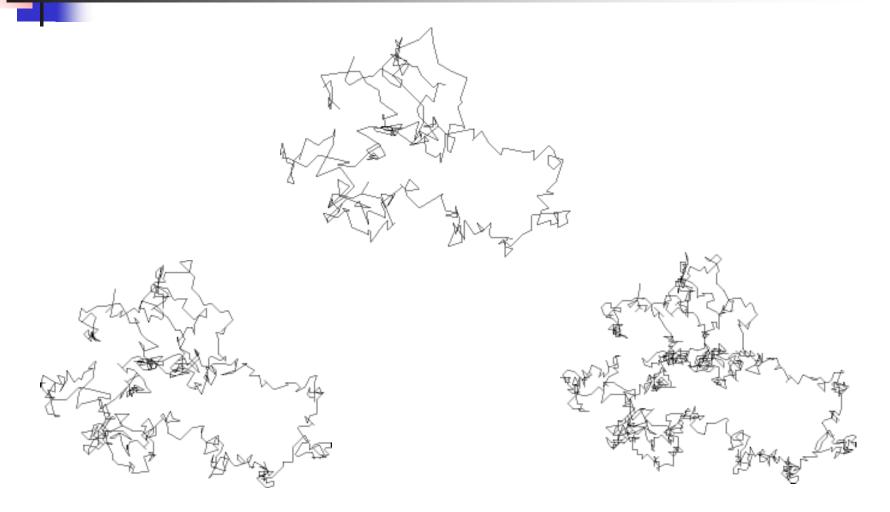
Brownian motion

 Robert Brown – Scottish botanist
 random movement of a small particle when in a liquid or gas



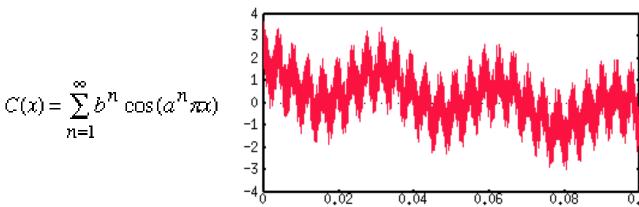
Brownian motion 2

- Jean Perrin
- tried to measure the velocity which is the derivative of the particle's position
- "varies in the wildest way in magnitude and direction, and does not tend to a limit"
- "nature contains of non-differentiable as well as differentiable processes"



Mathematical monsters

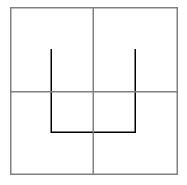
- Not differentiable functions
- Beginning of previous century
- Deplorable evil, pathological monster
- Karl Weierstrass

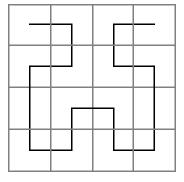


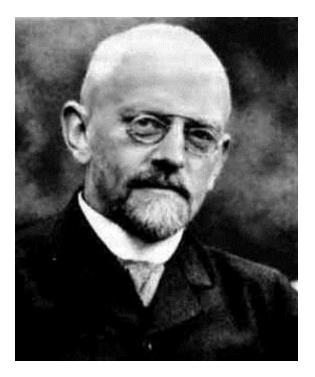
Mathematical monsters 2

David Hilbert

Space Filling Curve

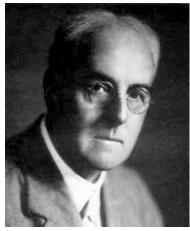






Length of coastline

- What is the length of country's coastline?
- L.F. Richardson Corsica
- B. Mandelbrot Great Britain
- Spain-Portugal: 987-1214 km
- Netherlands-Belgium: 380-449 km
- 1cm:100km 1cm:1km



Richardson's method

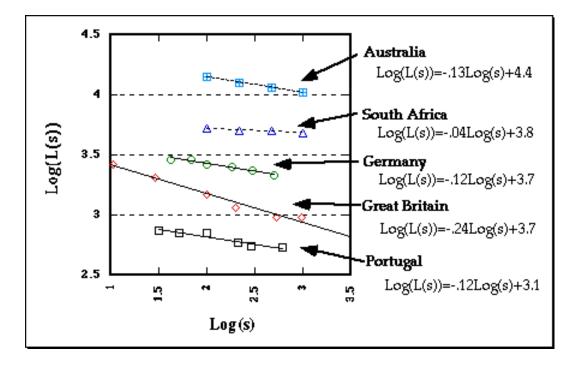
- Given ruler with constant length
- Measure length using ruler
- Using smaller ruler we get more details
- Length is increasing
- Infinite length
- Impossible to measure exactly

Richardson's length

- While measuring coastline of Corsica
- L(s) \approx Hs^{1-D}, N(s)s^D = H
- L(s) length of coastline measured using ruler with length s
- H constant
- s length of ruler
- D constant (Richardson's)
- N number of pieces

Richardson's length 2

- Plot of log/log
- Mandelbrot: log[L(s)] = (1-D)log(s) + b



Length of curve

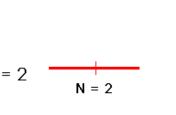
- Used approximation with open polygon
- Limit to infinity
- Length of given curve:

$$L(f) = \int \sqrt{1 + [f'(t)]^2} dt$$

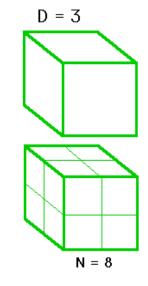
- What if there's no derivation?
- What if there's no exact function?

Topological dimension

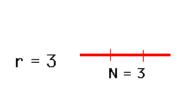
Integer
F. Hausdorff
L. E. J. Brouwer r = 2

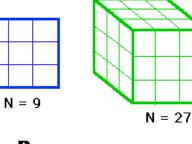


D = 1









 $N = r^{D}$

D = 2

N = 4

Fractal dimension

- Based on Hausdorff-Besicovitch dimension in metric space
- s scaling factor
- N(s) number of coverage sets at factor s

$$N(s) \approx s^{-D} \qquad for \qquad s \to 0^+$$
$$D = -\lim_{s \to 0^+} \frac{\log N(s)}{\log s}$$

Fractal dimension 2

- Non-integer H-B dimension = fractal dimension
- Sometimes hard to compute it analytically
- Statistical methods
- Clipper method, box counting method, mass-radius method

Similarity dimension

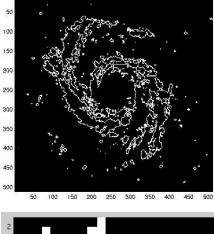
- Self-similarity fractals
- Easy to compute
- Analytical expression
- Formula

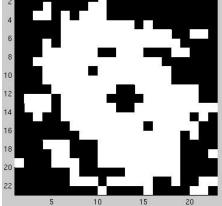
$$D = \frac{\log L(s)}{\log(1/s)}$$

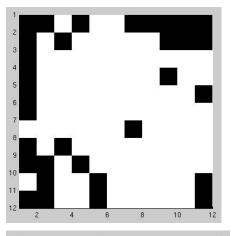
Box counting method

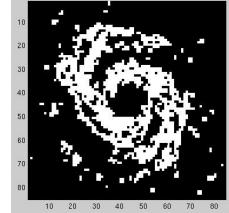
- Divide measuring space into boxes
- Count number of boxes containing set
- Do several measurements with different box sizes
- Make log N(s)/log(1/s) graph
- Slope of approximation line is fractal dimension

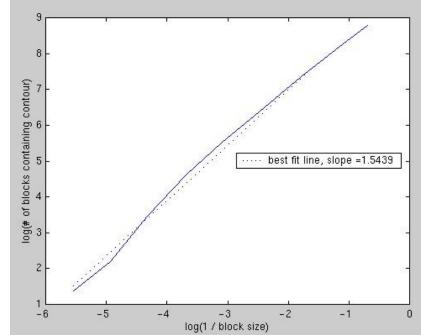
Box counting method 2











Fractals - definition

- Benoit Mandelbrot
- Fractal dimension > topological dimension
- Other definitions
- Based on fractal properties
- Fractus = to break, irregular

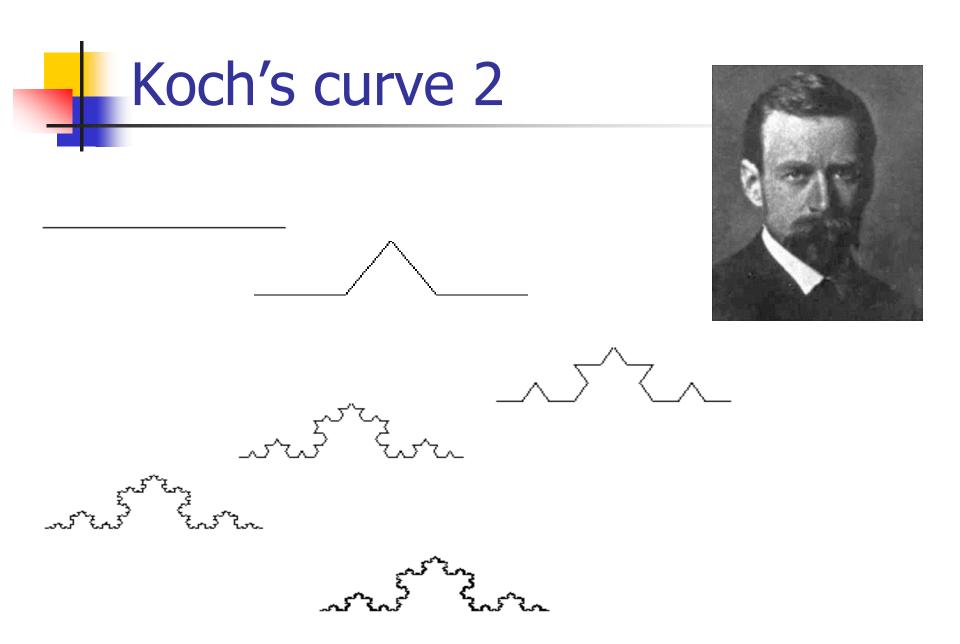
Fractals - properties

- Self-similarity, Self-affinity
- Deterministic
- Non-deterministic
- Extended Euclidean geometry
- Infinity
- Scaling independent
- Modeling, approximating natural objects

Koch's curve

- Niels Fabian Helge von Koch
- Initiator: abscissa E
- Generator: 4 abscissas
- Algorithm: in E_{i-1} replace all abscissas with generator and you have E_i
- Koch's curve:

$$K = \lim_{n \to \infty} E_n$$



Koch's curve 3 • Length of K: $L(E_0) = l$ $L(E_1) = \frac{4}{3}l$ $L(E_i) = \frac{4}{3} L(E_{i-1})$ $L(E_i) = \left(\frac{4}{3}\right)^i l$ $L(K) = \infty$

Koch's curve 4

- Self-similarity dimension easy to find
- For each (i-th) step s = 1/3ⁱ, N(s)=4ⁱ
- D=log N(s)/log(1/s)=log 4/log 3
- D = 1,261859....
- Statistically is near this value
- More than curve, less than plane
- Koch = Corsica, Great Britain

Koch's snowflake

 Measure inside snowflake (area):

$$S = \frac{2\sqrt{3}}{5}a^2$$

- Infinite length
- Zero curve area
- Finite space

Generalized Koch's curve

- Can generate curves with different dimensions
- New parameter a
- For a = 60° we have standard Koch's curve
- Dimension: $D = \frac{\log 4}{\log(2 + 2 \cos \alpha)}$

Fraktální geometrie

principy a aplikace

Literature

THE FRACTAL GEOMETRY OF NATURE

Benoit B. Mandelbrot

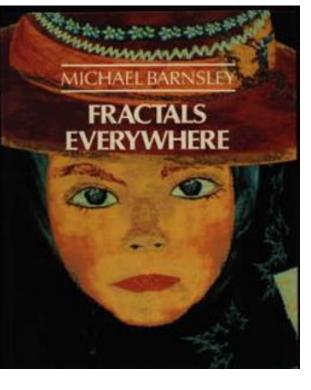
Ivon Zolinka, Františsk Vöslaf, Marok Čundik

Peitgen Jürgens

Saupe

Chaos and Fractals New Frontiers of Science

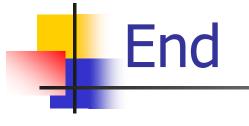
SECOND EDITION



Videos

Hunting the Hidden Dimension

- <u>http://www.youtube.com/watch?v=ZbK92b</u> <u>RW2IQ</u>
- Clouds Are Not Spheres
 - <u>http://www.youtube.com/watch?v=Y9CFZb</u> <u>gJ94I</u>
- Fractals The Colors Of Infinity
 - <u>http://www.youtube.com/watch?v=Lk6QU</u> <u>94xAb8</u>



End of Part 1