Fractals

Part 3 : Mathematical background

Department of Applied Informatics

Space

- Space = set
- Is there relation between elements of this set ?
- Topology = how
- Geometry = where
- Relation = function of two arguments = metric

Metric space

- X - set (space)
- d:X x X -> R
- $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x}) \quad$ (symmetry)
- $d(x, y)>=0$
- $d(x, y)=0<=>x=y$
- $\mathrm{d}(\mathrm{x}, \mathrm{y})<=\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{y}, \mathrm{z})$
(triangle inequality)

Metric spaces

- (X,d) - metric space
- Open ball:

$$
B(x, r)=\{y \text { in } X: d(x, y)<r\}
$$

- Circle:

$$
C(x, r)=\{y \text { in } X: d(x, y)=r\}
$$

- r = radius

Metric spaces - examples

- Trivial: $d(x, y)=0$ if $x=y$ else 1
- ($\mathrm{R}, \mathrm{d}) ; \mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|$
- Euclidean space ($\mathrm{R}^{\mathrm{n}, \mathrm{d} \text {) }}$
- Manhattan ($\mathrm{R}^{2}, \mathrm{~d}_{1}$)
- Generalized ($\mathrm{R}^{\mathrm{n}}, \mathrm{d}_{\mathrm{p}}$)

- Spherical space

$$
d=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \quad d_{p}=\sqrt[p]{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{p}}
$$

Generalized spaces

- Topological space
- Vector space - vector addition, scalar multiplication
- Hilbert space - vector space with inner product
- Banach space - vector space with norm
- Hausdorff space

Limits

- Convergent sequence x_{n} have limit s
- For $\varepsilon>0$ exists $N>0$ so that $d\left(x_{n}, x\right)<\varepsilon$, for each $\mathrm{n}>\mathrm{N}$
- Notation: $\quad x=\lim _{n \rightarrow \infty} x_{n}$
- Cauchy sequence: For $\varepsilon>0$ exists $\mathrm{N}>0$ so that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)<\varepsilon$, for each $\mathrm{n}, \mathrm{m}>\mathrm{N}$
- Cauchy $=$ knowing conv. without limit

Complete \& compact

- Complete space: if each Cauchy sequence has limit in space X
- Compact set: from any sequence of elements of S, a subsequence can always be extracted which tends to some limit element x of S
- Limit point: limit of any sequence
- Prefect set: S = limit points
- Closed set: S consists all limit points

Complete \& compact 2

- Compact <=> is bounded and closed
- Cantor set is perfect
- Set of rational numbers is not complete, compact
- Euclid space with euclidean metrics is complete

More metrics

- In complete metric spaces

- $d(x, A)=\inf \{d(x, y) ; y$ in $A\} ; A$ is set
- ? $\mathrm{d}(\mathrm{A}, \mathrm{B})=\sup \{\mathrm{d}(\mathrm{x}, \mathrm{B}) ; \mathrm{x}$ in A$\}$
- d(A,B) <> d(B,A) - not a metric
- Solution: Hausdorff metric

$$
h(A, B)=\max \{d(A, B), d(B, A)\}
$$

Hausdorff space

- X - complete metric space
- $\mathrm{H}(\mathrm{X})$ - set of all non-empty compact subsets of X
. "Subset of set of all subsets"
- We need metric for compactness
- (H(X),h) -Hausdorff space

Hausdorff space 2

- $h(A, B)$ is small for similar sets
- $A_{\varepsilon}=\{x \mid d(x, y)<\varepsilon$ for some y in $A\}-$ ε - collar
- $h(A, B)=\inf \left\{\varepsilon \mid A\right.$ in $B_{\varepsilon} \& B$ in $\left.A_{\varepsilon}\right\}$
- If A, B are two points $=>h(A, B)=d(A, B)$
- Many fractals "live" in (H(X),h)

Hausdorff measure

- $\operatorname{diam}(A)=\sup \left\{d(x, y)_{\Phi} x, y\right.$ in $\left.U\right\}$
- open cover of A: $A \subset \bigcup U_{i}$
- s-dimensional Hausdorff measure:

$$
\begin{gathered}
h_{\varepsilon}^{s}(A)=\inf \left\{\sum_{i=1}^{\infty} \operatorname{diam}\left(U_{i}\right)^{s}\right\} ; \operatorname{diam}\left(U_{i}\right)<\varepsilon \\
h^{s}(A)=\lim _{\varepsilon \rightarrow 0} h_{\varepsilon}^{s}(A)
\end{gathered}
$$

- Can be used for length of curve, area of surface, ...

Hausdorff dimension

- For any set A there exist number D(A)
- For $s<D(A)$ is measure infinite
- For $s>D(A)$ is measure 0
- D(A) - Hausdorff dimension
- D(A) can be infinite, 0 , any positive real number

Transformations

- In metric space X
- Transformation on X is function $f: X$-> X
- If S is subset of $X, f(S)=\{f(x) \mid x$ in $S\}$
- Forward iterations $x, f(x), f(f(x)), . ., f^{n}(x), .$.
- Orbit, Infinitely process
- We need to measure transformations

Transformations 2

- Affine: preserving collinearity and ratios of distances - scaling, translation, rotation, shearing
- Affine: $F(x)=A x+b$
- Polynomial
- Linear fractional (Mobius)

Contraction transformation

- Contraction: $d(f(x), f(y))<=C d(x, y)$ for each x, y in X
- C in $<0,1$)
- C depends on metric
- Contraction ($\mathrm{C}<1$), expansion ($\mathrm{C}>1$), symmetry ($\mathrm{C}=1$)
- Contraction is always continuous

Fixed point theorem

- Banach

- (X,d) complete metric space
- f - contraction
- There exists unique fixed point x_{f} : $\mathrm{f}\left(\mathrm{x}_{\mathrm{f}}\right)=\mathrm{x}_{\mathrm{f}}$
- For each x in X sequence $\left\{f^{n}(x)\right\}$ converges to X_{f}

Fixed point theorem 2

- Simple proof
- Speed of conversion

$$
d\left(x^{*}, x_{n}\right) \leq \frac{q^{n}}{1-q} d\left(x_{1}, x_{0}\right)
$$

- Base for many fractals
- Generalized for sets
- Other fixed point theorems

Transformations in HS

- $f(B)=\{f(x): x$ in $B\}$, for B in $H(X)$
- If f is contraction in X, then is in $H(X)$
- Contractions $\{\mathrm{f} 1, \mathrm{f} 2, \ldots, \mathrm{fN}\}$ with factors $\{\mathrm{s} 1, \mathrm{~s} 2, \ldots, \mathrm{sN}\}$.
- W: $\mathrm{H}(\mathrm{X})->\mathrm{H}(\mathrm{X}) \quad W(B)=\bigcup_{n=1}^{N} f_{n}(B) \quad \forall B \in H(X)$
- W is contraction with factor $s=\max \{s 1, s 2, \ldots, s N\}$

End

End of Part 3

