Fractals

Part 4 : IFS

Martin Samuelčík
Department of Applied Informatics

Transformations in HS

- Contractions $\left\{f_{1}, f_{2}, \ldots, f_{N}\right\}$ with factors $\left\{s_{1}, S_{2}, \ldots, s_{N}\right\}$.
- W: $\mathrm{H}(\mathrm{X})$-> $\mathrm{H}(\mathrm{X}) \quad W(B)=\bigcup_{n=1}^{N} f_{n}(B) \quad \forall B \in H(X)$
- W is contraction
- W has fixed point in $\mathrm{H}(\mathrm{X})$
- Fixed point = non-empty compact set
- Attractor, invariant

IFS

- Complete metric space (X, d)
- Finite set of contractions f_{1}, \ldots, f_{N} with contraction factors $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}}$
- Notation ($\mathrm{X}, \mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{N}}$)
- Hutchinson operator W
- Contraction factor $\mathrm{s}=\max \left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}}\right\}$

$$
W(B)=\bigcup_{n=1}^{M} f_{n}(B) \quad \forall B \in H(X)
$$

IFS 2

- Iterated function system
- Deterministic fractal
- Simple description of attractor
- Multiple reduction copy machine
- Attractor is limit of forward iterations
- Independent on initial set

IFS - computing attractors

- Deterministic \& stochastic algorithms
- Deterministic:
- B in $H(X)$
- For $\mathrm{n}=1$ to infinity $W^{n}(B)=W\left(W^{n-1}(B)\right)$
Delete $\mathrm{W}^{\mathrm{n}-1}$, paint W^{n}
- Can be computed adaptively

Dimension of IFS attractor

- In simple case
- $f_{i}(A)$ and $f_{j}(A)$ are disjunctive for attractor A and i <> j, this means no overlapping
- f_{i} are contractions with same factor c
- $D=\log (N) / \log (1 / c)$
- $\mathrm{s}_{1} \wedge \mathrm{D}+\ldots .+\mathrm{s}_{\mathrm{N}} \wedge \mathrm{D}=1$

Affine transformations

- $y=A x+b$
- A consists of rotation, scaling
- b is translation
- We needs 3 points to determine it
- Fixed point
- Contraction (Euclidean metric): $\mathrm{a}^{2}+\mathrm{c}^{2}<1, \mathrm{~b}^{2}+\mathrm{d}^{2}<1$, $a^{2}+b^{2}+c^{2}+d^{2}<1+(a d-c b)^{2}$

Classical fractals as IFS

- Cantor set
- $f 1=\left[(1 / 3)^{*} x,(1 / 3)^{*} y\right]$
- $\mathrm{f} 2=\left[(1 / 3)^{*} \mathrm{x}+2 / 3,(1 / 3)^{*} \mathrm{y}\right]$
- Attractor = Cantor set

Koch curve as IFS

$$
f_{1}(\mathbf{x})=\left[\begin{array}{cc}
0.333 & 0 \\
0 & 0.333
\end{array}\right] \mathbf{x}
$$

Scale by r

$$
f_{2}(\mathbf{x})=\left[\begin{array}{cc}
0.167 & -0.289 \\
0.289 & 0.167
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0.333 \\
0
\end{array}\right]
$$

Scale by r, rotation by 60

$$
f_{3}(\boldsymbol{x})=\left[\begin{array}{ll}
0.167 & 0.289 \\
-0.289 & 0.167
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
0.500 \\
0.289
\end{array}\right]
$$

Scale by r, rotation by -60

$$
f_{4}(x)=\left[\begin{array}{cc}
0.333 & 0 \\
0 & 0.333
\end{array}\right] x+\left[\begin{array}{c}
0.667 \\
0
\end{array}\right]
$$

Scale by r

Sierpinski gasket as IFS

Initial image

$$
\begin{aligned}
f_{1}(x)= & {\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] x } \\
& \text { scale by } r \\
f_{2}(x) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] x+\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \\
& \text { scale by } r
\end{aligned}
$$

$$
f_{B}(x)=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] x+\left[\begin{array}{l}
0.250 \\
0.433
\end{array}\right]
$$

$$
\text { scale by } r
$$

为等

圆

 든） ［50］乘尞

4
 （10）

viry

（1）
感 \square 5

（7）
n

國原埌
國

國

3×5

四
変殔

回

돈

Barnsley's fern

Initial Image

$$
\begin{gathered}
f_{1}(x, y)=\left(\begin{array}{rr}
0.85 & 0.04 \\
-0.04 & 0.85
\end{array}\right)\binom{x}{y}+\binom{0}{1.6} \\
f_{2}(x, y)=\left(\begin{array}{rr}
-0.15 & 0.28 \\
0.26 & 0.24
\end{array}\right)\binom{x}{y}+\binom{0}{0.44} \\
f_{3}(x, y)=\left(\begin{array}{rr}
0.2 & -0.26 \\
0.23 & 0.22
\end{array}\right)\binom{x}{y}+\binom{0}{1.6} \\
f_{4}(x, y)=\left(\begin{array}{rr}
0 & 0 \\
0 & 0.16
\end{array}\right)\binom{x}{y}
\end{gathered}
$$

Barnsley's fern 2

Other IFS examples

Chaos game with triangle

- Given 3 points A, B, C
- Points probabilities p1,p2,p3
- Starting with point z_{0} from plane
- In step i pick randomly point from A,B,C with given probability
- Make center from picked point and z_{i}
- This center is $\mathrm{z}_{\mathrm{i}+1}$

Chaos game with triangle

And the Result is

Chaos game generally

. Given IFS

- Given probabilities for each contraction in IFS - $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{N}} ; \mathrm{p}_{1}+\ldots+\mathrm{p}_{\mathrm{N}}=1$
- Pick starting point z_{0}
- In i-th step pick one contraction f_{j}
- $\mathrm{z}_{\mathrm{i}+1}=\mathrm{f}_{\mathrm{j}}\left(\mathrm{z}_{\mathrm{i}}\right)$

Chaos game

- Stochastic algorithm for computing attractor
- Using randomness
- Controlled with probability
- Attractor can appear faster
- Working just with points

Why is it working?

- We can have $A_{0}=\left\{z_{0}\right\}$
- In IFS: $A_{1}=\left\{f_{1}\left(\mathrm{z}_{0}\right), \ldots, \mathrm{f}_{\mathrm{N}}\left(\mathrm{z}_{0}\right)\right\}$
- In k-th step: N^{k} points
- Chaos game produces only one from these points; z_{k} in A_{k}
- So z_{k} is still close to attractor

Addressing system

- After k iterations we have some point
- Address: $s_{1} s_{2} \ldots s_{k} ; s_{i}$ in $\{1,2, \ldots, N\}$
- In j-th step we picked s_{j}-th contraction
- Point in attractor = infinite address
- In IFS we have in k-th step all available addresses, in chaos game we have one

Generating attractor

- Given point P from attractor
- $P=s_{1} s_{2} \ldots$
- For some number m, the point $s_{1} \ldots s_{m}$ is ε close to P
- If some point S contains sequence $\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{m}}$, then it's ε close to P
- Such sequence will exists

Picking good probabilities

- Can be given
- Each probability is $1 / \mathrm{N}$
- Heuristic methods:

$$
p_{i}=\frac{\left|\operatorname{det} A_{i}\right|}{\sum_{i=1}^{N}\left|\operatorname{det} A_{i}\right|}
$$

- Adaptive methods

Chaos game \& IFS

Other transformations

Morfing of IFS

// fern	\{ 0
	\{ 0.200000,-0.260000, 0.230000, 0.220000, 0.000000, 1.600000, 0.070000\},
	$\{-0.150000,0.280000,0.260000,0.240000,0.000000,0.440000,0.070000\}$,
	$\{0.000000,0.000000,0.000000,0.160000,0.000000,0.000000,0.010000\}$,
	\{ 1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 1.000000\},
// triangle	\{ 0.500000, 0.000000, 0.000000, 0.500000,-0.500000, 0.000000, 0.333333\},
	\{ $0.500000,0.000000,0.000000,0.500000,0.500000,0.000000,0.333333\}$,
	\{ 0.500000, 0.000000, 0.000000, 0.500000, 0.000000, 0.860000, 0.333334\},
	\{ 1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 1.000000\},
	\{ 1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 1.00000

Fractal Flame

- Added variation function
- RWA - Random Walk Algorithm
- Each visited pixel - increased color

$V_{0}(\mathrm{x}, \mathrm{y})$	(C, y)	linear
$V_{1}(x, y)$	$\left(\sin x_{1} \sin y\right)$	sinusoidal
$\mathrm{V}_{2}(\mathrm{x}, \mathrm{y})$	($\mathrm{dir}{ }^{2}, \mathrm{yin}^{2}$)	spherical
$V_{3}(x, y)$	$(r \times \cos (\varphi+r), r \times \sin (\varphi+r)$)	swirl
$V_{4}(\mathrm{x}, \mathrm{y})$	$(r \times \cos (2 \varphi), r \times \sin (2 \varphi))$	horseshoe
$V_{5}(x, y)$	($\varphi / \pi, r-1$)	polar
$\mathrm{V}_{6}(\mathrm{x}, \mathrm{y})$	$(\mathrm{r} \times \sin (\varphi+r), \mathrm{r} \times \cos (\varphi-r))$	handkerchief
$\mathrm{V}_{7}(\mathrm{~N}, \mathrm{y})$	$\left(r \times \sin (\varphi)^{\prime}\right),-r \times \cos (\varphi p)$)	heart
$\mathrm{V}_{8}(\mathrm{X}, \mathrm{y})$	$(\varphi \times \sin (\pi r) / \pi, \varphi \cos (\pi r) / \pi)$	disc
$V_{9}(1, y)$	$\left((\cos \varphi+\sin r) / r_{0}(\sin \varphi-\cos r) / r\right)$	spiral
$V_{10}(\mathrm{X}, \mathrm{y})$	$((\sin \varphi) / \mathrm{r},(\cos \varphi) r)$	hyperbolic
$V_{11}(\mathrm{~N}, \mathrm{y})$	$((\sin \varphi)(\cos r),(\cos \varphi)(\sin r))$	diamond
$V_{12}\left(\underline{x}, y^{\prime}\right)$	$\left(\mathrm{r} \times \sin ^{3}(\varphi+\mathrm{r}), \mathrm{r} \times \cos ^{3}(\varphi-r)\right.$)	ex
$V_{13}(\mathrm{x}, \mathrm{y})$	$\left(r^{1 / 2} \times \cos (\varphi / 2+\Omega), r^{1 / 2} \times \sin (\varphi / 2+\Omega)\right.$)	julia
$V_{14}(x, y)$		
$V_{15}\left(x_{1}, y^{\prime}\right)$		
$\mathrm{V}_{16}(\mathrm{X}, \mathrm{y})$	$(2 \mathrm{r}(\mathrm{l}(\mathrm{r}+1) \times 2 \mathrm{l},(\mathrm{r}+1) \mathrm{y})$	fisheye
$V_{17}(x, y)$		
$V_{18}(x, y)$		
$V_{19}(1, y)$		
$V_{20}(\mathrm{X}, \mathrm{y})$	$(\cos (\pi x) \times \cosh (\hat{)},-\sin (\pi x) \times \sinh (\hat{y})$	cosine

End

End of Part 4

