Fractals

Part 4 : IFS

Transformations in HS

- Contractions {f₁, f₂, ..., f_N} with factors {s₁, s₂, ..., s_N}.
- W: H(X) -> H(X) $W(B) = \bigcup_{n=1}^{N} f_n(B) \quad \forall B \in H(X)$
- W is contraction
- W has fixed point in H(X)
- Fixed point = non-empty compact set
- Attractor, invariant

IFS

- Complete metric space (X,d)
- Finite set of contractions f₁,...,f_N with contraction factors s₁,...,s_N
- Notation (X,f₁,...,f_N)
- Hutchinson operator W
- Contraction factor $s = max \{s_1, \dots, s_N\}$

$$W(B) = \bigcup_{n=1}^{N} f_n(B) \quad \forall B \in H(X)$$

IFS 2

- Iterated function system
- Deterministic fractal
- Simple description of attractor
- Multiple reduction copy machine
- Attractor is limit of forward iterations
- Independent on initial set

IFS – computing attractors

- Deterministic & stochastic algorithms
- Deterministic:
- B in H(X)
- For n = 1 to infinity Wⁿ(B) = W(Wⁿ⁻¹(B)) Delete Wⁿ⁻¹, paint Wⁿ
- Can be computed adaptively

Dimension of IFS attractor

- In simple case
- f_i(A) and f_j(A) are disjunctive for attractor A and i <> j, this means no overlapping
- f_i are contractions with same factor c
- D = log(N) / log(1/c)
- $s_1^D + \dots + s_N^D = 1$

Affine transformations

- y = Ax + b
- A consists of rotation, scaling
- b is translation
- We needs 3 points to determine it
- Fixed point
- Contraction (Euclidean metric): $a^2 + c^2 < 1, b^2 + d^2 < 1, a^2 + b^2 + c^2 + d^2 < 1 + (ad cb)^2$

Classical fractals as IFS

- Cantor set
- f1 = [(1/3)*x,(1/3)*y]
- f2 = [(1/3)*x + 2/3, (1/3)*y]
- Attractor = Cantor set

Cal	for	Initial Image	 	C_0
Cantor	Cantor	Step 1	 	C_1
Canadox Canadox	Canadersk Canadersk	Step 2	 	C_2
		Step 3	 	C_3
		Step 4	 	C_4

Initial Image

Stage 1

 $f_1(x,y) = \left(\begin{array}{cc} 0.85 & 0.04 \\ -0.04 & 0.85 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} 0 \\ 1.6 \end{array}\right)$ $f_2(x,y) = \left(egin{array}{cc} -0.15 & 0.28 \ 0.26 & 0.24 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight) + \left(egin{array}{c} 0 \ 0.44 \end{array}
ight)$ $f_3(x,y) = \begin{pmatrix} 0.2 & -0.26 \\ 0.23 & 0.22 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 1.6 \end{pmatrix}$ $f_4(x,y) = \left(egin{array}{cc} 0 & 0 \ 0 & 0.16 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight)$

Barnsley's fern 2

Chaos game with triangle

- Given 3 points A, B, C
- Points probabilities p1,p2,p3
- Starting with point z₀ from plane
- In step i pick randomly point from A,B,C with given probability
- Make center from picked point and z_i
- This center is z_{i+1}

Chaos game with triangle

And the Result is ...

Chaos game generally

- Given IFS
- Given probabilities for each contraction in IFS - p₁,...,p_N;p₁+...+p_N = 1
- Pick starting point z₀
- In i-th step pick one contraction f_i

•
$$z_{i+1} = f_j(z_i)$$

Chaos game

- Stochastic algorithm for computing attractor
- Using randomness
- Controlled with probability
- Attractor can appear faster
- Working just with points

Why is it working?

- We can have $A_0 = \{z_0\}$
- In IFS: $A_1 = \{f_1(z_0), \dots, f_N(z_0)\}$
- In k-th step: N^k points
- Chaos game produces only one from these points; z_k in A_k
- So z_k is still close to attractor

Addressing system

- After k iterations we have some point
- Address: s₁s₂...s_k; s_i in {1,2,...,N}
- In j-th step we picked s_i-th contraction
- Point in attractor = infinite address
- In IFS we have in k-th step all available addresses, in chaos game we have one

Generating attractor

Given point P from attractor

•
$$P = s_1 s_2 ...$$

- For some number m, the point s₁...s_m is ε close to P
- If some point S contains sequence s₁...s_m, then it's ε close to P
- Such sequence will exists

Picking good probabilities

- Can be given
- Each probability is 1/N
- Heuristic methods:

$$p_i = \frac{\left|\det A_i\right|}{\sum_{i=1}^{N} \left|\det A_i\right|}$$

Adaptive methods

Chaos game & IFS

Other transformations

Morfing of IFS

// fern

 $\{0.850000, 0.040000, -0.040000, 0.850000, 0.000000, 1.600000, 0.850000\},\$ $\{0.200000, -0.260000, 0.230000, 0.220000, 0.000000, 1.600000, 0.070000\},\$ $\{-0.150000, 0.280000, 0.260000, 0.240000, 0.000000, 0.440000, 0.070000\},$ $\{0.000000, 0.000000, 0.000000, 0.160000, 0.000000, 0.000000, 0.010000\},\$ $\{1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 1.000000\},$ $\{0.500000, 0.000000, 0.000000, 0.500000, -0.500000, 0.000000, 0.333333\},$ // triangle $\{0.500000, 0.000000, 0.000000, 0.500000, 0.500000, 0.000000, 0.333333\},$ $\{0.500000, 0.000000, 0.000000, 0.500000, 0.000000, 0.860000, 0.333334\},\$ $\{1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 1.000000\},$ $\{1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 1.000000\},$

Fractal Flame

- Added variation function
- RWA Random Walk Algorithm
- Each visited pixel increased color

$V_0(x,y)$	(x,y)	linear
$V_1(X,y)$	(sin x, sin y)	sinusoidal
$V_2(X,Y)$	(x/r², y/r²)	spherical
V ₃ (x,y)	$(r \times \cos(\varphi + r), r \times \sin(\varphi + r))$	swirl
$\nabla_{i}(x,y)$	(r×cos(2φ), r×sin(2φ))	horseshoe
$V_5(X,Y)$	(φ/π, r-1)	polar
$V_6(X,Y)$	(r×sin(φ+r), r×cos(φ-r))	handkerchief
$V_7(X,y)$	(r×sin(φr), -r×cos(φr))	heart
$V_8(X,y)$	(φ×sin(πr)/π, φcos(πr)/π)	disc
V ₉ (x,y)	((cos φ+sin r)/r, (sin φ-cos r)/r)	spiral
V ₁₀ (X,Y)	((sin φ)/r, (cos φ)r)	hyperbolic
V ₁₁ (X,Y)	((sin φ)(cos r), (cos φ)(sin r))	diamond
$V_{12}(X,y)$	(r×sin ³ (φ+r), r×cos ³ (φ-r))	ex
$V_{13}(X,Y)$	$(r^{1/2} \times \cos(\varphi/2 + \Omega), r^{1/2} \times \sin(\varphi/2 + \Omega))$	julia
$V_{14}(X,y)$		
V ₁₅ (X,Y)		
V ₁₆ (X,Y)	(2r/(r+1)x, 2r/(r+1)y)	fisheye
V ₁₇ (X,Y)		
V ₁₈ (X,Y)		
V ₁₉ (X,Y)		
V ₂₀ (X,Y)	(cos(mx)×cosh(y), -sin(mx)×sinh(y))	cosine

End of Part 4