Fractals

Part 5 : Fractal compression

Martin Samuelčík
Department of Applied Informatics

IFS

Initial Image

Stage 1

Using IFS

- Model natural objects
- Simulate natural cases
- Inverse problem
- Reconstructing objects
- Fractal interpolation
- Image compression and coding

Coding of IFS

- Let's have fractal as attractor of IFS
- We can describe this image very easily
- Perfect coding
- Independent of scale
- Perfect compression
- Complex shape <-> low count of bits

Generalization

- Using previous approach for any image
- Good compression
- Finding similarities in image
- We want image as attractor
- Or his good approximation
- Progressive showing of image

Image

- Image of pixels - in discrete space
- Finite resolution
- Generalized image for IFS
- $\mathrm{I}(\mathrm{x}, \mathrm{y})$ in $<0,1>$ for x, y in $<0,1>$
- Infinite resolution
- Then it is member of $\mathrm{H}(\mathrm{X})$

Metric on Images

- Comparing 2 images
- Defining contractive transformation
- Basic metric
- $\sup _{x, y \text { in }<0,1>}|f(x, y)-g(x, y)|$
- Least square metric
- Ai, bi are intensities of 2 images
- Minimization of
- R is then distance $\quad R=\sum_{i=1}\left(s . a_{i}+o-b_{i}\right)^{2}$

Compression of images

- In pixel space
- Storing pixels and using data compression
- Storing coefficients of DCT transformations
- All in discrete space
- Jpeg, Gif, Png, Bmp ...

Collage theorem

- (X,d) complete metric space
- L in $H(X), \varepsilon>0$
- IFS $\left\{X, f_{1}, \ldots, f_{N}\right\}$ with contr. factor s

$$
h\left(L, \bigcup_{i=1}^{N} f_{i}(L)\right)<\varepsilon
$$

- Then

$$
h\left(L, x_{W}\right)<\frac{\varepsilon}{(1-s)}
$$

- Where x_{W} is attractor of IFS $\left\{X, f_{1}, \ldots, f_{N}\right\}$

Collage theorem 2

- If we cover precisely L with its affine copies, then attractor IFS approximate L with good precision
- For smaller ε we need more f_{i}
- Effective representation assume that transformations cover L and two transformation have no intersection

Improving IFS

- $\mathrm{f}_{\mathrm{i}}: \mathrm{D}_{\mathrm{i}}->\mathrm{R}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{~N}$
$f_{i}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right):\left(\begin{array}{lll}a_{i} & b_{i} & 0 \\ c_{i} & d_{i} & 0 \\ 0 & 0 & s_{i}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{l}e_{i} \\ f_{i} \\ o_{i}\end{array}\right)$

$$
\bigcup_{i=1}^{N} R_{i}=I ; R_{i} \cap R_{j}=0, i \neq j
$$

- $f_{i}(I)=f_{i}(x, y, I(x, y))$
- $\mathrm{S}_{\mathrm{i}}, \mathrm{O}_{\mathrm{i}}$ - contrast, brightness
- f_{i} is restricted to D_{i}
- Partitioned IFS (PIFS)

Transformations

\square

Fractal compression

- Barnsley
- Covered with copyright
- Perfect <-> useless
- Need to be optimalized
- Rapidly improved
- Now? Not used

Fractals vs Pixels

Encoding

- Now for given image I we want to find improved IFS $\left\{X, f_{1}, \ldots, f_{N}\right\}$
- W(I) should be very close to our image $I \approx I^{\prime}=W\left(I^{\prime}\right) \approx W(I)$
- Minimal value of $h\left(I \cap R_{i}, f_{i}(I)\right)$
- Have to find $D_{i}, R_{i}, s_{i}, o_{i}$
- Store only these values

Decoding

- We have IFS
- We can start with any image
- Should have lot of steps
- Using deterministic or stochastic algorithm
- No pixelization = scale detail
- Need to decode whole

Decoding 2

Simple example

- 256×256 image
- R_{1}... R_{1024} - all non-overlaping $8 x 8$ subimages
- $\mathrm{D}_{1}, \ldots, \mathrm{D}_{58081}$ - all 16×16 subimages
- For each R_{i} find D_{i} so that minimizes

$$
h\left(I \cap R_{i}, f_{i}\left(D_{i}\right)\right)
$$

Simple example 2

- Minimalization using least square metric
- This metric gives us also $\mathrm{s}_{\mathrm{i}}, \mathrm{o}_{\mathrm{i}}$
- We get f_{1}, \ldots, f_{1024}
- We store this system
- 65536 -> 3968
- With decoding improving detail $8 \times 8,4 \times 4$

Result

Partitioning image

- Uniform - Quadtree, HV
- Triangular, Custom

Other results

Optimizing

- Compression ratio <-> fidelity
- Encoding time
- Choosing ranges
- Choosing domains

Fractal interpolation

- Image encoded using fractal compression is "pixelation free"
- Good for expanding images - bilinear, cubic spline, statistical interpolation
- PIFS is created, used for expansion (contaction) of image and then discarded

Fractal interpolation

Search strategies

- Heavy brute force
- Light brute force
- Restricted area search
- Local spiral search
- Look same place
- Categorized search

Fractal compression

- Promising technology in the late 1980s
- Main competitor - JPEG
- Large advantage over JPEG at low image quality levels
- "Graduate Student Algorithm": lock a graduate student in a room with a computer until they solve your problem.

Fractal interpolation

- Points $A_{i}=\left(x_{i} y_{i}\right), i=0, .,, M$
- Define function w such that $f\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}$
- f -attractor of IFS $\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{M}}\right)$
- d_{i} is free parameter, $\left|\mathrm{d}_{\mathrm{i}}\right|<1$

$$
\begin{aligned}
& w_{i}\binom{x}{y}=\left(\begin{array}{ll}
a_{i} & 0 \\
c_{i} & d_{i}
\end{array}\right)\binom{x}{y}+\binom{e_{i}}{f_{i}}: \quad i=1,2, \ldots, M . a_{i}=\frac{\left(x_{i}-x_{i-1}\right)}{\left(x_{M}-x_{0}\right)} \\
& c_{i}=\frac{\left(y_{i}-y_{i-1}\right)}{\left(x_{\mu}-x_{0}\right)}-d_{i} \frac{\left(y_{\mathcal{M}}-y_{0}\right)}{\left(x_{\mathcal{K}}-x_{0}\right)} \\
& w_{i}\binom{x_{0}}{y_{0}}=\binom{x_{i-1}}{y_{i-1}} \quad \text { and } \quad w_{i}\binom{x_{M}}{y_{M}}=\binom{x_{i}}{y_{i}}: \quad i=1,2, \ldots, M \begin{array}{l}
e_{i}=\frac{\left(x_{M}\left(x_{-1}-x_{0} x_{i}\right)\right.}{\left(x_{\mathcal{M}}-x_{0}\right)} \\
f_{i}=\frac{\left(x_{M} y_{i-1}-x_{0} y_{i}\right)}{\left(x_{M}-x_{0}\right)}-d_{i} \frac{\left(x_{M} y_{0}-x_{0} y_{M}\right)}{\left(x_{M}-x_{0}\right)}
\end{array}
\end{aligned}
$$

Interpolation

(a)

(b)

End

End of Part 5

