
Fractals

Part 6 : Julia and Mandelbrot sets, …

Martin Samuelčík

Department of Applied Informatics

Problem of initial points

 Newton method for computing root of
function numerically

 Computing using iterations

 For given root, which initial points lead
to this root?

)(

)(
'1

i

i

ii
yf

yf
yy 

Example

 Equation: z3 – 1

 3 roots in complex plane

 Newton method, sequence

 What is basin of attraction?

 What are boundaries of 3 basins?

2

3

1
2

1

n

n

nn
y

y
yy




Pixel game

 Starting with discrete board

 Picked initial point (square)

 Two cases: periodic and fixed

 Basin of attraction of fixed square = set
of initial squares that lead to initial
square

 Source of steps?

Pixel game 2

Newton fractal

Complex numbers

 3 types of notation:

 Simple addition, multiplication

 Operations like with real numbers

 Square roots

 Equations

 ierirbia .));sin()(cos(; 

Prisoners, escapees

 Observe z -> z2

 Infinite iterations = orbits

 For points in unit circle we have
prisoners

 Else we have escapees

 Escape set E, prisoner set P

 Boundary between E,P = Julia set

Prisoners, escapees 2

 Invariant under iteration

Extending

 z2 + c

 Julia set

 Shape?

czz nn 

2

1

Julia set c=-0.5+0.5i

Threshold radius

 When iteration leaves this radius, point
is escaping

 r(c)=max(|c|,2)

 Using for visualization

 Easy proof

Encirclement

 Generalized threshold circle for any
iteration step

 Generally explicit formulas of these
encirclements cannot be given

,.....1,0)};(||;{ 0

)( kcrzzQ k

k

c

c

k

ck PQ 



)(lim

Encirclement 2

Zooming Julia sets

Connectivity

 Julia set is a nowhere dense set

 Uncountable set (of the same
cardinality as the real numbers)

 Can be connected and unconnected
(Fatou dust)

 Based on critical orbit:
 Critical point – where derivation is 0

 0 -> c ->c2 + c -> (c2 + c)2 + c -> …

 This sequence should be bounded

Definitions

 For arbitrary complex rational function f

 Fatou domains Fi

 Finite number of open sets

 f behaves in a regular and equal way on Fi

 The union of all Fi’s is dense in complex plane

 Each Fi contains at least one critical point of f

 Fatou set F(f) – union of all Fi

 Julia set J(f) – complement of F(f)

 Each of the Fatou domains has the same boundary,
which consequently is the Julia set

 J(f) is connected <=> each Fatou component
contains at most one critical value.

Properties

Let J(f) be any Julia set using rational function f. Then:

 If a point P belongs to J(f), then all successors (i.e. f(P), f(f(P)), ...)
and predecessors of P belong to J(f).

 J(f) is an attractor for the inverse dynamical system of f(z). That
means, if you take any point P and calculate its predecessors
(predecessors of P are all points Q with f(Q)=P or f(f(Q))=P and so
on...), then these predecessors converge to J(f).

 If P belongs to J(f), then the set of all predecessors of P cover J(f)
completely.

 If f(z) is a polynomial in z, then J(f) is:
- either connected (one piece)
- or a Cantor set (dust of infinitely many points)

 If f(z) is a polynomial in z, then J(f) can be thought of the border of
the area defining the set of points which are attracted by infinity.

Drawing similar to IFS

 Using inverse transformations

 2 functions

 Finding point inside Julia set

 Finding fixed point

 Complete invariance

Using IFS

Invariance

 If z is point from set, also f(z) is from
set

 f-1(z) = -(z-c)0,5

 f-1(z) = +(z-c)0,5

 f(z) = z2+c

 Indicates self-similarity

Visualization

 For each pixel in image,
compute iterations, with
max number of iterations

 Check for boundary 2

 Color pixel based on total
number of iterations for
that pixel

 Use color table

Quaternion Julia sets

 Extension of real and complex numbers

 i2=j2=k2=ijk=-1

 z=x0+x1i+x2j+x3k

 Four dimensions

 We can ignore some coordinates

 Again z -> z2 + c

Quaternion Julia sets

Mandelbrot set

 M={c in C;Jc is connected}

 M={c in C;c->c2+c->… is bounded}

 Threshold radius 2

 Encirclements

 Not same iterations, these are different
for each point

Mandelbrot set 2

 On real axis

 [-2, 0.25]

 Area

 1.50659177 ±
0.00000008

 Connected

 Haussdorf dimension
of boundary – 2

 Period bulbs based on
rational numbers

Zooming Mandelbrot

Parts of Mandelbrot

Elephant valley

0,25+0,0i

Seahorse valley

-0,75+0,0i

Parts of Mandelbrot

West seahorse valley

-1,26+0,0i

Triple spiral valley

-0,088+0,655i

Coloring Mandelbrot

 Based on number of iterations

Coloring Mandelbrot

 Coloring by number of iterations

 Coloring by real part of orbit

 Coloring by imaginary part of orbit

 Coloring by sum of real and imaginary
part of orbit

 Coloring by angle of orbit

Budhabrot technique

3D Mandelbrot

Comparing

Other formulae

Barnsley M1,M2,M3

if (real(z) >= 0)

 z(n+1)=(z-1)*c

else

 z(n+1)=(z+1)*c

if (real(z)*imag(c) + real(c)*imag(z) >= 0)

 z(n+1) = (z-1)*c

else

 z(n+1) = (z+1)*c

if (real(z(n) > 0)

 z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1) + i * (2*real(z((n)) * imag(z((n)))

else

 z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1 + real(c) * real(z(n)) + i * (2*real(z((n)) * imag(z((n)) + imag(c) * real(z(n))

Barnsley J1,J2,J3

 if (real(z) >= 0)

 z(n+1)=(z-1)*c

 else

 z(n+1)=(z+1)*c

 if (|z|>2) break;

 if (real(z)*imag(c) + real(c)*imag(z) >= 0)

 z(n+1) = (z-1)*c

 else

 z(n+1) = (z+1)*c

 if (|z|>2) break;

 if (real(z(n) > 0)

 z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1)

 + i * (2*real(z((n)) * imag(z((n)))

 else

 z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1 + real(c) * real(z(n))

 + i * (2*real(z((n)) * imag(z((n)) + imag(c) * real(z(n))

 if (|z|>2) break;

Magnet

Phoenix

zn+1=zn
2+Re(c)+Im(c)yn

yn+1=zn

End

End of Part 6

