Fractals

Part 6 : Julia and Mandelbrot sets, ...

Problem of initial points

- Newton method for computing root of function numerically
- Computing using iterations

$$y_{i+1} = y_i - \frac{f(y_i)}{f'(y_i)}$$

For given root, which initial points lead to this root?

Example

- Equation: z³ 1
- 3 roots in complex plane
- Newton method, sequence

$$y_{n+1} = y_n - \frac{y_n^3 - 1}{2y_n^2}$$

- What is basin of attraction?
- What are boundaries of 3 basins?

Pixel game

- Starting with discrete board
- Picked initial point (square)
- Two cases: periodic and fixed
- Basin of attraction of fixed square = set of initial squares that lead to initial square
- Source of steps?

	1	2	3	4	5	6	7	8	9	10	11
A	B2	В3	В3	В4	В4	C 5	C 6	C 7	С8	C 8	C 9
в	В3	В3	X	В3	С3	D4	D 5	E 7	D 8	D 9	D 9
С	С3	С3	В4	в 3	C 2	E 3	F 5	F 7	F 8	E 9	E 10
D	D3	C 4	B 5	A3	B 1	Н2	K 5	Н7	F 9	F 9	E 10
Е	E 4	D 5	B 7	B 6	A2	L2	17	1 10	G 10	F 10	F 10
F	F 4	F 6	F9	F 10	F 11	\boxtimes	F 10				
G	G4	H 5	K 7	К6	L2	A 2	C 7	C 10	E 10	F 10	F 10
н	НЗ	14	K 5	L3	K 1	D 2	B 5	D 7	F 9	F 9	G 10
I	13	13	K 4	КЗ	12	G 3	F 5	F 7	F 8	G 9	G 10
к	КЗ	КЗ	X	КЗ	13	Н4	Η5	G 7	H 8	Н9	Н9
L	К2	КЗ	КЗ	K 4	K 4	15	16	17	18	18	19
			-	-		_	-				

2	1	1	2	2	5	6	4	4	4	4
1	1	•	1	3	3	3	5	6	4	4
3	3	2	1	4	5	3	3	3	3	2
5	2	4	2	2	3	4	5	3	3	2
5	3	4	4	2	2	4	4	2	1	1
2	3	3	1	2	2	2	2	2	•	1
5	з	4	4	2	2	4	4	2	1	1
5	2	4	2	2	3	4	5	3	3	2
8	3	2	1	A	5	з	3	3	3	2
1	1	0	1	3	3	Э	5	6	4	4
2	1	1	2	2	5	6	4	4	4	4

Complex numbers

- 3 types of notation:
 - $a+bi; r(\cos(\varphi)+i\sin(\varphi)); r.e^{i\varphi}$
- Simple addition, multiplication
- Operations like with real numbers
- Square roots
- Equations

Prisoners, escapees

- Observe z -> z²
- Infinite iterations = orbits
- For points in unit circle we have prisoners
- Else we have escapees
- Escape set E, prisoner set P
- Boundary between E,P = Julia set

Prisoners, escapees 2

Invariant under iteration

	length	angle	length	angle	length	angle
2	0.8	10°	1.0	10°	1.5	50°
z^2	0.64	20ª	1.0	20 ⁿ	2.25	100°
24	0.4096	40°	1.0	40°	5.06	200°
z ⁸	0.1678	80°	1.0	80°	25.63	40°
z^{16}	0.0281	160°	1.0	160°	656.90	80°
z ³²	0.0008	320°	1.0	320°	431439.89	160°

Extending

■ Z² + C

 $z_{n+1} = z_n^2 + c$

	Orb	it 1	Ort	nit 2	Orbit 3		
	x	y	x	y	x	y	
z ₀	1.00	0.00	0.50	0.25	0.00	0.88	
21	0.50	0.50	-0.31	0.75	-1.27	0.50	
22	-0.50	1.00	-0.96	0.03	0.87	-0.77	
23	-1.25	-0.50	0.43	0.44	-0.34	-0.85	
24	0.81	1.75	-0.51	0.88	-1.12	1.07	
25	-2.90	3.34	-1.01	-0.39	-0.41	-1.90	
26	-3.26	-18.91	0.37	1.30	-3.93	2.04	
21	-347.46	123.68	-2.04	1.46	10.79	-15.52	
28			1.53	-5.46	-124.77	-334.49	
29			-28.01	-16.27			

Julia setShape?

	Orb	it 1	Ort	oit 2	Orbit 3		
	x	y	x	y	x	y	
z_0	0.000	0.000	0.500	-0.250	-0.250	0.500	
z_1	-0.500	0.500	-0.313	0.250	-0.688	0.250	
22	-0.500	0.000	-0.465	0.344	-0.090	0.156	
23	-0.250	0.500	-0.402	0.180	-0.516	0.472	
24	-0.688	0.250	-0.371	0.355	-0.456	0.013	
23	-0.090	0.156	-0.488	0.237	-0.292	0.488	
z100	-0.473	0.291	-0.393	0.290	-0.438	0.217	
z ₂₀₀	-0.394	0.279	-0.411	0.271	-0.409	0.290	
2300	-0.411	0.273	-0.409	0.276	-0.407	0.272	
2400	-0.408	0.276	-0.409	0.275	-0.409	0.276	
2500	-0.409	0.275	-0.409	0.275	-0.409	0.275	

c=-0.5+0.5i

Threshold radius

- When iteration leaves this radius, point is escaping
- r(c)=max(|c|,2)
- Using for visualization

Easy proof

Figure 3: (a) Filled Julia set for $z^2 - 2$. (b) Filled Julia set for $z^2 - 3$.

Encirclement

 Generalized threshold circle for any iteration step

$$Q_{c}^{(-k)} = \{z_{0}; | z_{k} | \le r(c)\}; k = 0, 1, \dots$$
$$\lim_{k \to \infty} Q_{c}^{(-k)} = P_{c}$$

 Generally explicit formulas of these encirclements cannot be given

Zooming Julia sets

Connectivity

- Julia set is a nowhere dense set
- Uncountable set (of the same cardinality as the real numbers)
- Can be connected and unconnected (Fatou dust)
- Based on critical orbit:
 - Critical point where derivation is 0
 - 0 -> c -> c^2 + c -> $(c^2 + c)^2$ + c -> ...
 - This sequence should be bounded

Definitions

- For arbitrary complex rational function f
- Fatou domains F_i
 - Finite number of open sets
 - f behaves in a regular and equal way on F_i
 - The union of all F_i's is dense in complex plane
 - Each F_i contains at least one critical point of f
- Fatou set F(f) union of all F_i
- Julia set J(f) complement of F(f)
- Each of the Fatou domains has the same boundary, which consequently is the Julia set
- J(f) is connected <=> each Fatou component contains at most one critical value.

Properties

Let J(f) be any Julia set using rational function f. Then:

- If a point P belongs to J(f), then all successors (i.e. f(P), f(f(P)), ...) and predecessors of P belong to J(f).
- J(f) is an attractor for the inverse dynamical system of f(z). That means, if you take any point P and calculate its predecessors (predecessors of P are all points Q with f(Q)=P or f(f(Q))=P and so on...), then these predecessors converge to J(f).
- If P belongs to J(f), then the set of all predecessors of P cover J(f) completely.
- If f(z) is a polynomial in z, then J(f) is:
 - either connected (one piece)
 - or a Cantor set (dust of infinitely many points)
- If f(z) is a polynomial in z, then J(f) can be thought of the border of the area defining the set of points which are attracted by infinity.

Drawing similar to IFS

- Using inverse transformations
- 2 functions
- Finding point inside Julia set
- Finding fixed point
- Complete invariance

Invariance

- If z is point from set, also f(z) is from set
- $f^{-1}(z) = -(z-c)^{0,5}$
- $f^{-1}(z) = +(z-c)^{0,5}$
- $f(z) = z^2 + c$
- Indicates self-similarity

Visualization

- For each pixel in image, compute iterations, with max number of iterations
- Check for boundary 2
- Color pixel based on total number of iterations for that pixel
- Use color table

Quaternion Julia sets

- Extension of real and complex numbers
- i²=j²=k²=ijk=-1
- $z = x_0 + x_1 i + x_2 j + x_3 k$
- Four dimensions
- We can ignore some coordinates
- Again z -> z² + c

Quaternion Julia sets

Mandelbrot set

- M={c in C;J_c is connected}
- M={c in C;c->c²+c->... is bounded}
- Threshold radius 2
- Encirclements
- Not same iterations, these are different for each point

Mandelbrot set 2

- On real axis
 - [-2, 0.25]
- Area
 - 1.50659177 ±
 0.00000008
- Connected
- Haussdorf dimension of boundary – 2
- Period bulbs based on rational numbers

Zooming Mandelbrot

Elephant valley 0,25+0,0i

Seahorse valley -0,75+0,0i

West seahorse valley -1,26+0,0i Triple spiral valley -0,088+0,655i

Coloring Mandelbrot

Based on number of iterations

Coloring Mandelbrot

- Coloring by number of iterations
- Coloring by real part of orbit
- Coloring by imaginary part of orbit
- Coloring by sum of real and imaginary part of orbit
- Coloring by angle of orbit

Budhabrot technique

Other formulae

Barnsley M1,M2,M3

if $(real(z) \ge 0)$ z(n+1)=(z-1)*celse z(n+1)=(z+1)*c

```
if (real(z)*imag(c) + real(c)*imag(z) >= 0)

z(n+1) = (z-1)*c

else

z(n+1) = (z+1)*c
```

```
if (real(z(n) > 0))
```

 $z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1) + i * (2*real(z((n)) * imag(z((n))))))$

else

Barnsley J1, J2, J3

- if (real(z) >= 0)
- z(n+1)=(z-1)*c
- else
- z(n+1)=(z+1)*c
- if (|z|>2) break;
- if (real(z)*imag(c) + real(c)*imag(z) >= 0)
- z(n+1) = (z-1)*c
- else
- z(n+1) = (z+1)*c
- if (|z|>2) break;
- if (real(z(n) > 0)
- $z(n+1) = (real(z(n))^2 imag(z(n))^2 1)$
 - + i * (2*real(z((n)) * imag(z((n)))
- else
- $z(n+1) = (real(z(n))^2 imag(z(n))^2 1 + real(c) * real(z(n))$

+ i *
$$(2*real(z((n)) * imag(z((n)) + imag(c) * real(z(n)))))$$

$$z_{n+1} = \left(\frac{z_n^2 + (c-1)}{2z_n + (c-2)}\right)^2$$

 $z_{n+1} = z_n^2 + Re(c) + Im(c)y_n$ $\mathbf{y}_{n+1} = \mathbf{z}_n$

End of Part 6