Fractals

Part 6 : Julia and Mandelbrot sets, ...

Department of Applied Informatics

Problem of initial points

- Newton method for computing root of function numerically
- Computing using iterations

$$
y_{i+1}=y_{i}-\frac{f\left(y_{i}\right)}{f^{\prime}\left(y_{i}\right)}
$$

- For given root, which initial points lead to this root?

Example

- Equation: $z^{3}-1$
- 3 roots in complex plane
- Newton method, sequence

$$
y_{n+1}=y_{n}-\frac{y_{n}^{3}-1}{2 y_{n}^{2}}
$$

- What is basin of attraction?
- What are boundaries of 3 basins?

Pixel game

- Starting with discrete board
- Picked initial point (square)
- Two cases: periodic and fixed
- Basin of attraction of fixed square = set of initial squares that lead to initial square
- Source of steps?

Pixel game 2

L	K2	K 3	K 3	K4	K4	15	16	17	18	18	19
K	K3	K 3		K 3	13	H4	H5	G 7	H8	H9	H9
1	13	13	K 4	K3	12	G 3	F5	F 7	F 8	G 9	G 10
H	H_{3}	14	K 5	L3	K 1	D 2	B 5	D7	F9	F9	G 10
G	G 4	H5	K 7	K 6	L. 2	A 2	C 7	C 10	E 10	F 10	F 10
F	F 4	F6	F 9	F 10	F 11		F 10				
E	E 4	D 5	B 7	B6	A 2	L2	17	110	Q 10	F 10	F 10
D	D 3	C 4	B 5	A 3	B 1	H2	K 5	H7	F9	F9	E 10
C	C 3	C 3	B 4	B 3	C 2	E 3	F 5	F 7	F 8	E9	E 10
B	B3	B 3		B3	C 3	D4	D 5	E 7	D 8	D 9	D 9
A	B2	B 3	B 3	B4	B4	C 5	C 6	C 7	C 8	C 8	C 9
	1	2	3	4	5	6	7	8	9	10	11

2	1	1	2	2	5	6	4	4	4	4
1	1		1	3	3	3	5	6	4	4
3	3	2	1	4	5	3	3	3	3	2
5	2	4	2	2	3	4	5	3	3	2
5	3	4	4	2	2	4	4	2	1	1
2	3	3	1	2	2	2	2	2		1
5	3	4	4	2	2	4	4	2	1	1
5	2	4	2	2	3	4	5	3	3	2
S	3		1	4	5	3	3	3	3	2
	1		1	3	3		5	6	4	4
2	1	1	2	2	5	6	4	4	4	4

Newton fractal

Complex numbers

- 3 types of notation:

$$
a+b i ; r(\cos (\varphi)+i \sin (\varphi)) ; r . e^{i \varphi}
$$

- Simple addition, multiplication
- Operations like with real numbers
- Square roots
- Equations

Prisoners, escapees

- Observe z -> z2
- Infinite iterations = orbits
- For points in unit circle we have prisoners
- Else we have escapees
- Escape set E, prisoner set P
- Boundary between E,P = Julia set

Prisoners, escapees 2

- Invariant under iteration

	length	angle	length	angle	length	angle
z	0.8	10°	1.0	10°	1.5	50°
z^{2}	0.64	20°	1.0	20°	2.25	100°
z^{4}	0.4096	40°	1.0	40°	5.06	200°
z^{8}	0.1678	80°	1.0	80°	25.63	40°
z^{16}	0.0281	160°	1.0	160°	656.90	80°
z^{32}	0.0008	320°	1.0	320°	431439.89	160°

Extending

$z^{2}+c$
$z_{n+1}=z_{n}^{2}+c$

	Orbit 1		Orbit 2		Orbit 3	
	x	y	x	y	x	y
z_{0}	1.00	0.00	0.50	0.25	0.00	0.88
z_{1}	0.50	0.50	-0.31	0.75	-1.27	0.50
z_{2}	-0.50	1.00	-0.96	0.03	0.87	-0.77
z_{3}	-1.25	-0.50	0.43	0.44	-0.34	-0.85
z_{4}	0.81	1.75	-0.51	0.88	-1.12	1.07
z_{5}	-2.90	3.34	-1.01	-0.39	-0.41	-1.90
z_{6}	-3.26	-18.91	0.37	1.30	-3.93	2.04
z_{7}	-347.46	123.68	-2.04	1.46	10.79	-15.52
z_{8}			1.53	-5.46	-124.77	-334.49
z_{9}			-28.01	-16.27		

- Julia set
- Shape?

	Orbit 1		Orbit 2		Orbit 3	
	x	y	x	y	x	y
z_{0}	0.000	0.000	0.500	-0.250	-0.250	0.500
z_{1}	-0.500	0.500	-0.313	0.250	-0.688	0.250
z_{2}	-0.500	0.000	-0.465	0.344	-0.090	0.156
z_{3}	-0.250	0.500	-0.402	0.180	-0.516	0.472
z_{4}	-0.688	0.250	-0.371	0.355	-0.456	0.013
z_{3}	-0.090	0.156	-0.488	0.237	-0.292	0.488
z_{100}	-0.473	0.291	-0.393	0.290	-0.438	0.217
z_{200}	-0.394	0.279	-0.411	0.271	-0.409	0.290
z_{300}	-0.411	0.273	-0.409	0.276	-0.407	0.272
z_{400}	-0.408	0.276	-0.409	0.275	-0.409	0.276
z_{500}	-0.409	0.275	-0.409	0.275	-0.409	0.275

Threshold radius

- When iteration leaves this radius, point is escaping
- r(c)=max (|c|,2)
- Using for visualization
- Easy proof

Figure 3: (a) Filled Julia set for $z^{2}-2$. (b) Filled Julia set for $z^{2}-3$.

Encirclement

- Generalized threshold circle for any iteration step

$$
Q_{c}^{(-k)}=\left\{z_{0} ;\left|z_{k}\right| \leq r(c)\right\} ; k=0,1, \ldots \ldots
$$

$$
\lim _{k \rightarrow \infty} Q_{c}^{(-k)}=P_{c}
$$

- Generally explicit formulas of these encirclements cannot be given

Encirclement 2

=

Zooming Julia sets

Connectivity

- Julia set is a nowhere dense set
- Uncountable set (of the same cardinality as the real numbers)
- Can be connected and unconnected (Fatou dust)
- Based on critical orbit:
- Critical point - where derivation is 0
- 0 -> c ->c ${ }^{2}+c$-> $\left(c^{2}+c\right)^{2}+c$-> ...
- This sequence should be bounded

Definitions

- For arbitrary complex rational function f
- Fatou domains F_{i}
- Finite number of open sets
- f behaves in a regular and equal way on F_{i}
- The union of all F_{i} 's is dense in complex plane
- Each F_{i} contains at least one critical point of f
- Fatou set $F(f)$ - union of all F_{i}
- Julia set J(f) - complement of F(f)
- Each of the Fatou domains has the same boundary, which consequently is the Julia set
- $J(f)$ is connected <=> each Fatou component contains at most one critical value.

Properties

Let $\mathrm{J}(\mathrm{f})$ be any Julia set using rational function f . Then:

- If a point P belongs to $J(f)$, then all successors (i.e. $f(P), f(f(P)), \ldots$) and predecessors of P belong to $\mathrm{J}(\mathrm{f})$.
- $\quad J(f)$ is an attractor for the inverse dynamical system of $f(z)$. That means, if you take any point P and calculate its predecessors (predecessors of P are all points Q with $f(Q)=P$ or $f(f(Q))=P$ and so on...), then these predecessors converge to $J(f)$.
- If P belongs to $J(f)$, then the set of all predecessors of P cover $J(f)$ completely.
- If $f(z)$ is a polynomial in z, then J(f) is:
- either connected (one piece)
- or a Cantor set (dust of infinitely many points)
- If $f(z)$ is a polynomial in z, then $J(f)$ can be thought of the border of the area defining the set of points which are attracted by infinity.

Drawing similar to IFS

- Using inverse transformations
- 2 functions
- Finding point inside Julia set
- Finding fixed point
- Complete invariance

Using IFS

\%
\%
10

Invariance

- If z is point from set, also $f(z)$ is from set
- $f^{-1}(z)=-(z-c)^{0,5}$
- $f^{-1}(z)=+(z-c)^{0,5}$
- $f(z)=z^{2}+C$
- Indicates self-similarity

Visualization

- For each pixel in image, compute iterations, with max number of iterations
- Check for boundary 2
- Color pixel based on total number of iterations for that pixel
- Use color table

Quaternion Julia sets

- Extension of real and complex numbers
- $i^{2}=j^{2}=k^{2}=i j k=-1$
- $z=x_{0}+x_{1} i+x_{2} \mathrm{j}+x_{3} k$
- Four dimensions
- We can ignore some coordinates
- Again $z->z^{2}+c$

Mandelbrot set

- $M=\left\{c\right.$ in $C ; J_{c}$ is connected $\}$
- $\mathrm{M}=\left\{\mathrm{c}\right.$ in $\mathrm{C} ; \mathrm{c}->\mathrm{c}^{2}+\mathrm{c}->\ldots$ is bounded $\}$
- Threshold radius 2
- Encirclements
- Not same iterations, these are different for each point

Mandelbrot set 2

- On real axis
- [-2, 0.25]
- Area
- $1.50659177 \pm$ 0.00000008
- Connected
- Haussdorf dimension of boundary - 2
- Period bulbs based on rational numbers

Zooming Mandelbrot

Parts of Mandelbrot

Elephant valley
$0,25+0,0 \mathrm{i}$

Seahorse valley
$-0,75+0,0 \mathrm{i}$

Parts of Mandelbrot

West seahorse valley
$-1,26+0,0 i$

Triple spiral valley
-0,088+0,655i

Coloring Mandelbrot

- Based on number of iterations

Coloring Mandelbrot

- Coloring by number of iterations
- Coloring by real part of orbit
- Coloring by imaginary part of orbit
- Coloring by sum of real and imaginary part of orbit
- Coloring by angle of orbit

Budhabrot technique

\square

3D Mandelbrot

\square

Comparing

Other formulae

단

Barnsley M1,M2,M3

if $(\operatorname{real}(z)>=0)$
$\mathrm{z}(\mathrm{n}+1)=(\mathrm{z}-1)$ * c
else
$\mathrm{z}(\mathrm{n}+1)=(\mathrm{z}+\mathbf{1}) * \mathrm{c}$

if $(\operatorname{real}(\mathrm{z}) * \operatorname{imag}(\mathrm{c})+\operatorname{real}(\mathrm{c}) * \operatorname{imag}(\mathrm{z})>=0)$
$\mathrm{z}(\mathrm{n}+1)=(\mathrm{z}-1) * \mathbf{c}$
else
$\mathbf{z}(\mathrm{n}+1)=(\mathrm{z}+1) * \mathbf{c}$
if $(\operatorname{real}(z(n)>0)$
$z(n+1)=\left(\operatorname{real}(z(n))^{\wedge} 2-\operatorname{imag}(z(n))^{\wedge} 2-1\right)+i *(2 * \operatorname{real}(z((n)) * \operatorname{imag}(z((n)))$
else
$z(n+1)=\left(\operatorname{real}(z(n))^{\wedge} 2-\operatorname{imag}(z(n))^{\wedge} 2-1+\operatorname{real}(c) * \operatorname{real}(z(n))+i *(2 * \operatorname{real}(z((n)) * \operatorname{imag}(z((n))+\operatorname{imag}(c) * \operatorname{real}(z(n))\right.$

Barnsley J1,J2,J3

- if $($ real $(z)>=0)$

$$
\mathrm{z}(\mathrm{n}+1)=(\mathrm{z}-1) * \mathrm{c}
$$

- else
$z(n+1)=(z+1) * c$
- if $(|z|>2)$ break;

Magnet

$$
z_{n+1}=\left(\frac{2_{2}^{2}+(c-1)}{22_{n}^{2}+(c-2)}\right)^{2}
$$

End

End of Part 6

