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Problem of initial points 

 Newton method for computing root of 
function numerically 

 Computing using iterations 

 

 

 For given root, which initial points lead 
to this root? 
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Example 

 Equation: z3 – 1 

 3 roots in complex plane 

 Newton method, sequence 

 

 

 What is basin of attraction? 

 What are boundaries of 3 basins? 
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Pixel game 

 Starting with discrete board 

 Picked initial point (square) 

 Two cases: periodic and fixed 

 Basin of attraction of fixed square = set 
of initial squares that lead to initial 
square 

 Source of steps? 



Pixel game 2 



Newton fractal 



Complex numbers 

 3 types of notation: 

 

 Simple addition, multiplication 

 Operations like with real numbers 

 Square roots 

 Equations 
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Prisoners, escapees 

 Observe z -> z2 

 Infinite iterations = orbits 

 For points in unit circle we have 
prisoners 

 Else we have escapees 

 Escape set E, prisoner set P 

 Boundary between E,P = Julia set 



Prisoners, escapees 2 

 Invariant under iteration 



Extending 

 z2 + c 

 

 

 Julia set 

 Shape? 
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Julia set c=-0.5+0.5i 



Threshold radius 

 When iteration leaves this radius, point 
is escaping 

 r(c)=max(|c|,2) 

 Using for visualization 

 Easy proof 

 



Encirclement 

 Generalized threshold circle for any 
iteration step 

 

 

 

 Generally explicit formulas of these 
encirclements cannot be given 
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Encirclement 2 



Zooming Julia sets 



Connectivity 
 

 Julia set is a nowhere dense set 

 Uncountable set (of the same 
cardinality as the real numbers)  

 Can be connected and unconnected 
(Fatou dust) 

 Based on critical orbit:  
 Critical point – where derivation is 0 

 0 -> c ->c2 + c -> (c2 + c)2 + c -> … 

 This sequence should be bounded 



Definitions 

 For arbitrary complex rational function f 

 Fatou domains Fi 

 Finite number of open sets 

 f behaves in a regular and equal way on Fi 

 The union of all Fi’s is dense in complex plane 

 Each Fi contains at least one critical point of f 

 Fatou set F(f) – union of all Fi 

 Julia set J(f) – complement of F(f) 

 Each of the Fatou domains has the same boundary, 
which consequently is the Julia set 

 J(f) is connected <=> each Fatou component 
contains at most one critical value. 



Properties 

Let J(f) be any Julia set using rational function f. Then: 

 If a point P belongs to J(f), then all successors (i.e. f(P), f(f(P)), ...) 
and predecessors of P belong to J(f). 

 J(f) is an attractor for the inverse dynamical system of f(z). That 
means, if you take any point P and calculate its predecessors 
(predecessors of P are all points Q with f(Q)=P or f(f(Q))=P and so 
on...), then these predecessors converge to J(f). 

 If P belongs to J(f), then the set of all predecessors of P cover J(f) 
completely. 

 If f(z) is a polynomial in z, then J(f) is: 
- either connected (one piece) 
- or a Cantor set (dust of infinitely many points) 

 If f(z) is a polynomial in z, then J(f) can be thought of the border of 
the area defining the set of points which are attracted by infinity. 



Drawing similar to IFS 

 Using inverse transformations 

 2 functions 

 Finding point inside Julia set 

 Finding fixed point 

 Complete invariance 



Using IFS 



Invariance 

 If z is point from set, also f(z) is from 
set 

 f-1(z) = -(z-c)0,5 

 f-1(z) = +(z-c)0,5 

 f(z) = z2+c 

 Indicates self-similarity 

 



Visualization 

 For each pixel in image, 
compute iterations, with 
max number of iterations 

 Check for boundary 2 

 Color pixel based on total 
number of iterations for 
that pixel 

 Use color table 

 



Quaternion Julia sets 

 Extension of real and complex numbers 

 i2=j2=k2=ijk=-1 

 z=x0+x1i+x2j+x3k 

 Four dimensions 

 We can ignore some coordinates 

 Again z -> z2 + c 



Quaternion Julia sets 



Mandelbrot set 

 M={c in C;Jc is connected} 

 M={c in C;c->c2+c->… is bounded} 

 Threshold radius 2 

 Encirclements 

 Not same iterations, these are different 
for each point 



Mandelbrot set 2 

 On real axis 

 [-2, 0.25] 

 Area  

 1.50659177 ± 
0.00000008 

 Connected 

 Haussdorf dimension 
of boundary – 2 

 Period bulbs based on 
rational numbers 



Zooming Mandelbrot 



Parts of Mandelbrot 

Elephant valley 

0,25+0,0i 

Seahorse valley 

-0,75+0,0i 



Parts of Mandelbrot 

West seahorse valley 

-1,26+0,0i 

Triple spiral valley 

-0,088+0,655i 



Coloring Mandelbrot 

 Based on number of iterations 



Coloring Mandelbrot 

 Coloring by number of iterations  

 Coloring by real part of orbit 

 Coloring by imaginary part of orbit 

 Coloring by sum of real and imaginary 
part of orbit 

 Coloring by angle of orbit 



Budhabrot technique 



3D Mandelbrot 



Comparing 



Other formulae 



Barnsley M1,M2,M3 

if (real(z) >= 0)   

 z(n+1)=(z-1)*c  

else   

 z(n+1)=(z+1)*c 

 

 

 

if (real(z)*imag(c) + real(c)*imag(z) >= 0)  

 z(n+1) = (z-1)*c  

else  

 z(n+1) = (z+1)*c  

 

 

 

if (real(z(n) > 0)  

 z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1) + i * (2*real(z((n)) * imag(z((n)))  

else  

 z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1 + real(c) * real(z(n)) + i * (2*real(z((n)) * imag(z((n)) + imag(c) * real(z(n))  

  



Barnsley J1,J2,J3 

 if (real(z) >= 0) 

         z(n+1)=(z-1)*c 

     else 

         z(n+1)=(z+1)*c 

     if (|z|>2) break;  

 

 

 if (real(z)*imag(c) + real(c)*imag(z) >= 0) 

         z(n+1) = (z-1)*c 

     else 

         z(n+1) = (z+1)*c 

     if (|z|>2) break;  

 

 

 if (real(z(n) > 0) 

         z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1) 

                + i * (2*real(z((n)) * imag(z((n))) 

     else 

         z(n+1) = (real(z(n))^2 - imag(z(n))^2 - 1 + real(c) * real(z(n)) 

                + i * (2*real(z((n)) * imag(z((n)) + imag(c) * real(z(n)) 

     if (|z|>2) break;  



Magnet 



Phoenix 

zn+1=zn
2+Re(c)+Im(c)yn 

yn+1=zn  



End 

 

 

End of Part 6 


