# Fractals

#### Part 8 : Stochastic fractals



#### Why randomness ?

- Generalized set of shapes
- More nature-like
- Not strict self-similarity
- Often using Brownian motion
- For each type of fractal
- Using randomness in any stage



# Sierpinski





# Percolation

- Given triangular or square lattice
- Given probability p
- Color each sub cell with probability
- Check number of disjunctive parts
- Many -> one clusters = percolation
- p<sub>c</sub> percolation threshold

#### Percolation 2



### Forest fire simulation

- Square lattice
- Trees with probability p
- For p>p<sub>c</sub> whole forest will burn
- For p<p<sub>c</sub> only part of forest will burn
- For p=p<sub>c</sub> the forest will burn for longest time
- p<sub>c</sub> ~ 0.5928

#### Forest fire simulation 2



| -                   | ***                                | <b><b><b><b><b></b></b></b></b></b> | 666 66669                             | <b>666 6666</b>                                                                                                                                               |
|---------------------|------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 000 0 0           | 7 000 0 0                          |                                     | ,                                     |                                                                                                                                                               |
| 4444 A4             | 4400 44                            | 9999 99                             | 9999 99                               | <b><u><u></u></u></b> <u></u> |
| 0 0000 0            | / 9999 9                           |                                     | , ቀቀቀቀ ቀ                              |                                                                                                                                                               |
| 3 44 444            | 7 66 646                           |                                     |                                       | . 20                                                                                                                                                          |
| 0 000000 00         | 2000000 00                         | . /30000 00                         |                                       | 11.7099 99                                                                                                                                                    |
| 00 000 00           |                                    |                                     | 10 999 99                             | . ? 999 99                                                                                                                                                    |
| 0 0000              | / 6666 66                          |                                     |                                       | , 0000                                                                                                                                                        |
| 4444 444            | 0000 0 00                          | <b>****</b> * **                    | <b>6666</b> 6 66                      |                                                                                                                                                               |
| 69 69               | 99 99                              | 00 00                               | <b>60 00</b>                          | <b>49 44</b>                                                                                                                                                  |
| Step 0              | Step 1                             | Step 2                              | Step 3                                | Step 4                                                                                                                                                        |
|                     | 000 00000                          | 000 00000                           |                                       | 011 00000                                                                                                                                                     |
| 00000               | 000 0 0                            | 0.000                               | 0.79 0 0                              |                                                                                                                                                               |
| 6666 66             | 0700 00                            | 7/00 00                             | 1.14 66                               |                                                                                                                                                               |
| ******              | 1.900 0                            | 1100                                | 119 0                                 |                                                                                                                                                               |
| 1 000               |                                    |                                     | ///                                   | 1                                                                                                                                                             |
| 100 00              | 1 1 1 1 1 1 1 1                    | 1 11 511                            |                                       |                                                                                                                                                               |
| ALL AND TT          | LILLIN-TT                          |                                     | 1111111                               |                                                                                                                                                               |
|                     |                                    |                                     |                                       | <b>60</b>                                                                                                                                                     |
| AND A AN            | I ITOT TT                          | I IT A AA                           | THE A                                 |                                                                                                                                                               |
| TOTICI              | -VICT TT                           |                                     |                                       |                                                                                                                                                               |
| <b>TT</b>           |                                    | Step 7                              | Stan 8                                | Step 9                                                                                                                                                        |
| Step 5              | Step 0                             | Step 7                              | alep a                                | Siep 7                                                                                                                                                        |
|                     | -1                                 | 99999                               | <u>₽₽₽.3₽</u>                         | T                                                                                                                                                             |
|                     | a ara Tota                         | 1 1 1 1 7                           |                                       |                                                                                                                                                               |
| RR                  |                                    |                                     |                                       |                                                                                                                                                               |
|                     |                                    | 1                                   | · · · · · · · · · · · · · · · · · · · | 1                                                                                                                                                             |
| and a marked for    | A second and a second state of the | A _ A A A A                         | - <del></del>                         |                                                                                                                                                               |
| Letter to the State | LALLA (2.                          | AAAAAA AA                           |                                       |                                                                                                                                                               |
| TT                  |                                    |                                     | A. e. e. e. e. e. e.                  |                                                                                                                                                               |
|                     | <u>??</u>                          |                                     | 1 - 1 - 1 - 2                         | L_LLL_L_L                                                                                                                                                     |
| <b>₽</b>            |                                    | 1.1.1.7. 22                         |                                       |                                                                                                                                                               |
|                     |                                    |                                     |                                       | <u>"</u>                                                                                                                                                      |
| Step 10             | Step 11                            | Step 12                             | Step 13                               | Step 14                                                                                                                                                       |
| 111 90111           | 111 3/111                          | In time                             | -                                     |                                                                                                                                                               |
|                     |                                    | 1                                   | Tree                                  |                                                                                                                                                               |
| 111111              | 1111 11                            | 1111 11                             | A . 1100                              |                                                                                                                                                               |
|                     |                                    |                                     | N/V                                   |                                                                                                                                                               |
|                     | 1 11 111                           | 1 11 111                            | Burning tree                          |                                                                                                                                                               |
| 11111111111         |                                    |                                     |                                       |                                                                                                                                                               |
|                     |                                    | 44 444 44                           | 1                                     |                                                                                                                                                               |
| 1 111 11            | 1.111.11                           | 4.444.44                            | I Burr                                | ned out                                                                                                                                                       |
| 1111 9 11           |                                    |                                     |                                       |                                                                                                                                                               |
| 11 70               | 11 11                              |                                     |                                       |                                                                                                                                                               |
| Step 15             | Step 16                            | Step 17                             | 4 Stun                                | nn                                                                                                                                                            |
| and the             | inch to                            | mup to                              |                                       | 9 <b>9</b> 3                                                                                                                                                  |

#### Renormalization

- For triangular lattice
- Sites -> super-sites
- Super-site is occupied if two or three sites are occupied



### **Renormalization 2**

- With p'>p we fill gasps
- With p'
- p'=p we expect similarity
- p'=p<sup>3</sup>+3p<sup>2</sup>(1-p)
- p=p<sub>c</sub>=0.5
- Statistical self-similarity

#### **Renormalization 3**



# Particles aggregation

- Laboratory experiment
- Zinc-metal leaves







# DLA

- Particle is moving with Brownian motion
- If free particle approaches to sticky particle, it stops and becomes sticky
- Repeating with another particle
- Simulation using pixels
- Diffusion Limited Aggregation



# Problems

- What is the fractal dimension?
- Density of particles decreases from center. Is there power law for it?
- Is voltage with relation to fractal dimension?
- Is size of aggregate with relation to fractal dimension?

![](_page_16_Picture_0.jpeg)

#### Still not precise solutions

■ D~1.7

![](_page_16_Figure_3.jpeg)

![](_page_17_Picture_0.jpeg)

#### Iocal.wasp.uwa.edu.au/~pbourke/fractals/dla3d/

![](_page_18_Picture_1.jpeg)

3D DLA

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_3.jpeg)

# Using DLA & percolation

- Distribution of galaxies
- Microcosm
- Porous media
- Clouds, rainfall areas
- Simulation of growth
- Crystals

### **Brownian motion**

- "Chaotic" movement of particles
- Related to Gaussian distribution
- Statistically self-similar fractal
- Base for other statistical fractals

![](_page_20_Figure_5.jpeg)

#### **Gaussian distribution**

Probability density function 

$$f(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

![](_page_21_Figure_3.jpeg)

 $\mu = 0$ ,  $\sigma^2 = 0.2$ .  $\sigma^2 = 1.0, -$ 

 $\mu = -2, \sigma^2 = 0.5, \sigma$ 

 $\sigma^2 = 5.0$ 

-3

-2

-1

0

Х

1

2

3

5

4

 $\mu = 0.$ 

 $\mu = 0$ 

0.8

 $\Phi_{\mu,\sigma^{2}}(x)$ 

0.2

0.0

-5

-4

Cumulative distribution function

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt = \frac{1}{2} \left[ 1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right], \quad x \in \mathbb{R}.$$
$$F(x; \, \mu, \sigma^2) = \Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{2} \left[ 1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right], \quad x \in \mathbb{R}.$$

# Simulation of BM

- 1D simulation Wiener process
  - $W_0 = 0$ ,  $W_t W_s \sim N(0, t-s)$

#### Proceeding in t with uniform steps

- $X(0)=0, X(k)=D_1+...+D_k; k=1,2,3,...$
- Using Gaussian random numbers (expected value 0, variance 1) as displacement D<sub>k</sub>
- Scaling:
  - V<sub>t</sub>=1/sqrt(c)W<sub>ct</sub> is another Wiener process
  - in x 2 times, in y sqrt(2) times
  - X(t+dt)-X(t) and 1/r<sup>0.5</sup>(X(t+r.dt)-X(t)) are statistically equivalent
- $X(t+dt) = X(t) + v \cdot dt^{0.5} \cdot N(0,1)$ 
  - v speed of particle

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

- Construction of parabola P(x) = a bx<sup>2</sup>,
   b > 0
- Archimedes

![](_page_24_Figure_3.jpeg)

![](_page_25_Picture_1.jpeg)

Landsberg curve

- In each stage for each line displace midpoint in y-direction with Gaussian random number multiplied by scale
- X(0)=0; X(1)=GRN
- $X(1/2) = (1/2) * (X(0) + X(1)) + D_1 / sqrt(2)$
- Recursive algorithm

#### Hurst exponent

- Creating Fractal Brownian Motion (FBm)
- Can be generalized with parameter H
- In i-th step, multiply Gaussian random number by 2<sup>-Hi</sup>
- H Hurst exponent, 0<H<1</p>
- Curves dimension D = 2-H
- Surfaces dimension D = 3-H

#### **Exponents and dimensions**

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_1.jpeg)

### Midpoint displacement ext.

- Modeling natural objects
- Coastline = initial closed polygon,
- Landscape = extension to 2D, dividing triangles or squares
- Fake clouds = colored height map
- True clouds = map of points above threshold

### Coastline

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Picture_0.jpeg)

Better method – subdividing squareDiamond-square algorithm

![](_page_33_Picture_2.jpeg)

old points
new points

#### Improvements

- Merging of different terrains with several Hurst exponents
- Adding fractal noise to smooth terrain
- Spectral Synthesis Method remove high frequencies using Fourier transform

![](_page_34_Picture_4.jpeg)

### Visualization

- Mostly visualization of height map
- Coloring: Mapping aerial textures, using height for color
- Acceleration structures quadtrees
- HW support tesselation, vertex shaders displacement mapping
- Raytracing subdivided are only parts of terrain that are hit by some ray

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

# **Professional landscape**

![](_page_37_Picture_1.jpeg)

# Generating clouds

- 2D clouds = height map
- Draw the height field as color map with different transparency based on height

![](_page_38_Picture_3.jpeg)

![](_page_39_Picture_0.jpeg)

#### End of Part 8