Geometric Modeling in Graphics

Part 0: Introduction

Martin Samuelčík

www.sccg.sk/~samuelcik samuelcik@sccg.sk

Modeling in Graphics

- Bringing geometry of real world object to virtual space
- <u>Representing</u> real world objects as virtual objects in computer memory
- Procedural and manual <u>creation</u> of virtual objects
- Boundary and volume representations of ID, 2D or 3D objects
- Algorithms for <u>changing</u> properties or <u>increasing</u> quality of models in given representation
- Algorithms for <u>conversions</u> between representations
- Intersections and <u>Boolean operations</u>
- Compression, serialization and transfer of objects

Modeling in Graphics

Representations of Object

Boundary representation

- Only boundary of object is described
- <u>Polygonal meshes</u> set of vertices (geometrical information), edges and faces(topological information)
- <u>Parametric surfaces</u> smooth representation of boundary based on parametric formulas
- <u>Implicit surfaces</u> smooth representation of boundary based on parametric formulas
- Point clouds set of unorganized points, only geometric information
- Volume representation
 - Also interior of object is described
 - Discrete grids and distance fields
 - FREP implicit volume representation
 - Parametric volumes

Representations of Objects

Lectures Syllabus

	 Objects, manifolds, polygonal meshes, and representations, winged-edge, quad- edge, half-edge, visualization
Polygonal meshes	Mesh simplification, progressive meshes, compression
	Subdivision algorithms, mesh smoothing
	Parametrization, triangularization, normals, curvatures, skeletons
	 Global and local solutions for mesh editing, mesh comparison and classification
Parametric objects	 Parametric interpolation and approximation curves, animation curves, polynomic curves in several forms
	 Parametric surfaces, polynomial forms (Bezier, NURBS), algorithms, tessellation, basic objects
Implicit rep. & volumes	Volumetric representation, discrete grids, distance fields, marching cubes
	 Implicit curves and surfaces, properties and algorithms, conversion to polygonal meshes, FREP
	 Unorganized set of points, normals estimation, nearest neighbors search,
Point	registration, visualization
clouds	 Clasterization, surface reconstruction, point cloud comparison
	Review of API libraries and software solutions
	lygonal eshes metric cts cit rep. umes Point clouds

Exercises

- Focused on boundary representation, polygonal meshes, halfedge data structure
- Conversion from other representations to half-edge
- Implementing one basic algorithm from previous lecture
- Multiple options for graphics engine and programming environment
 - Unity + C#
 - Unreal Engine + UnrealScript
 - Irrlicht + C++
 - OGRE + C++
 - Blender + Python
 - MeshLab + C
 - OpenGL + C,C#

Evaluation

- Programming assignments during semester as continuation of exercise tasks
 - I. Half-edge structure, import from file, cube & sphere, neighborhood queries, visualization, deadline 15.3.2016, 15 points
 - 2. Subdivision & simplification algorithms on half-edge structure, deadline 12.4.2016, 15 points
 - 3. Marching cubes (half-edge from uniform volume grid), intersection of 2 volumes, conversion of implicit objects to volume representation, deadline 17.5.2016, 20 points
- Assignments submitted after deadline 50% points off
- Oral examination at the end of semester 50 points
- Final grade
 - A: 91-100 points
 - B: 81-90 points
 - C: 71-80 points
 - D: 61-70 points
 - E: 51-60 points
 - Fx: 00-50 points

The End