Introduction to rule-based modelling with GroIMP

Katarína Smoleňová

Georg-August University of Göttingen, Germany Chair for Computer Graphics and Ecological Informatics

18.11.2010 / DigiPlant seminar, ECP, France

Uni Göttingen

Outline

What is GroIMP?

Growth-grammar related Interactive Modelling Platform Relational Growth Grammars eXtended L-system language

Simple examples

XL features

Applications

FSPM

Visualizations

Artificial life

Games

Growth-grammar related Interactive Modelling Platform

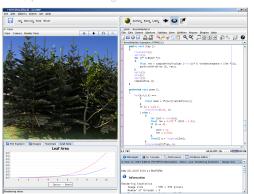
Outline

What is GroIMP?

Growth-grammar related Interactive Modelling Platform

XL features

Growth-grammar related Interactive Modelling Platform


GroIMP (open-source)

- Growth-grammar related Interactive Modelling Platform
- ► Editable GUI, possible configuration:

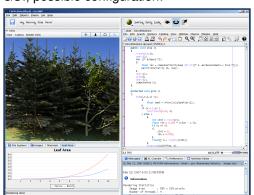
Menu Methods

3D View

File Explorer Shaders Charts

3D Toolbar

Text Editor



- ► Growth-grammar related Interactive Modelling Platform
- ► Editable GUI, possible configuration:

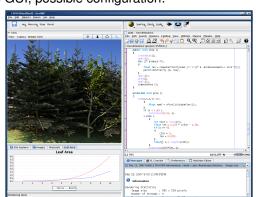
Menu Methods

3D Viev

File Explorer Shaders Charts

3D Toolbar

Text Editor


- ► Growth-grammar related Interactive Modelling Platform
- Editable GUI, possible configuration:

Menu

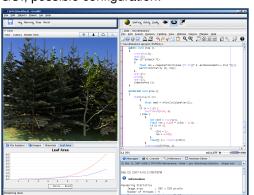
Methods

3D Viev

File Explorer Shaders Charts

3D Toolbar

Text Editor



- Growth-grammar related Interactive Modelling Platform
- Editable GUI, possible configuration:

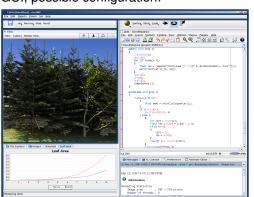
Menu Methods

3D Viev

File Explorer Shaders Charts

3D Toolbar

Text Editor



- Growth-grammar related Interactive Modelling Platform
- Editable GUI, possible configuration:

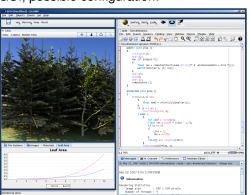
Menu Methods

3D View

Shaders
Charts

3D Toolbar

Text Editor



- Growth-grammar related Interactive Modelling Platform
- Editable GUI, possible configuration:

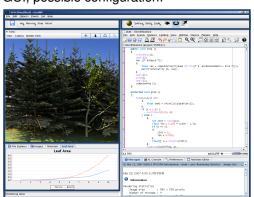
Menu Methods

3D View

File Explorer Shaders Charts

3D Toolbar

Text Editor



- Growth-grammar related Interactive Modelling Platform
- Editable GUI, possible configuration:

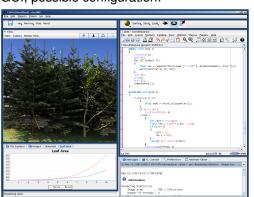
Menu Methods

3D View

File Explorer Shaders Charts

3D Toolbar

Text Editor



- Growth-grammar related Interactive Modelling Platform
- Editable GUI, possible configuration:

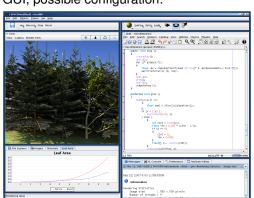
Menu Methods

3D View

File Explorer Shaders Charts

3D Toolbar

Text Editor



- Growth-grammar related Interactive Modelling Platform
- Editable GUI, possible configuration:

Menu Methods

3D View

File Explorer Shaders Charts

3D Toolbar

Text Editor

Outline

What is GroIMP?

Relational Growth Grammars

XL features

What is GroIMP?

Relational Growth Grammars

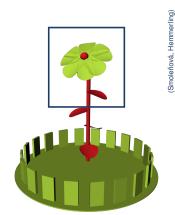
RGG

- Relational Growth Grammars
- Graph structure rewriting formalism
- L-systems included as subset (parallel rewriting of strings)
- Plant structure and development

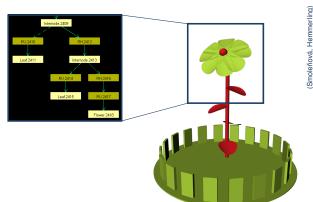
What is GroIMP?

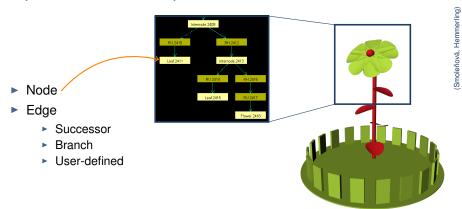
RGG

- Relational Growth Grammars
- Graph structure rewriting formalism
- L-systems included as subset (parallel rewriting of strings)
- Plant structure and development described by RGG
 - Plant as an assemblage of organs or modules (nodes) which are connected (by edges)
 - Rules describe how the structure develops

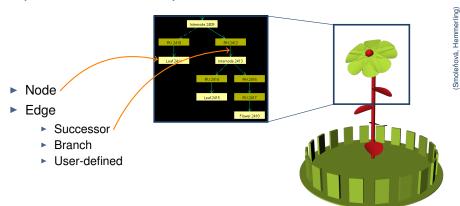


- Node
- Edge
 - Successor
 - Branch
 - User-defined

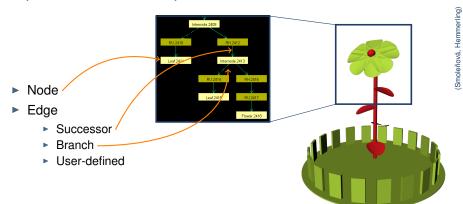


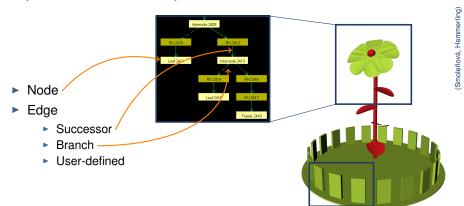

- Node
- Edge
 - Successor
 - Branch
 - User-defined

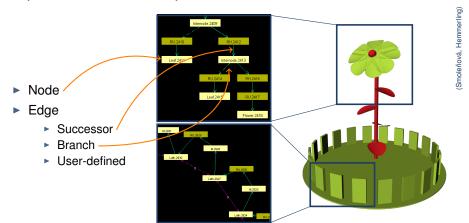
- Node
- Edge
 - Successor
 - Branch
 - User-defined

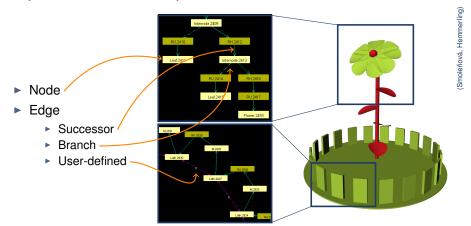


Graph structure - example

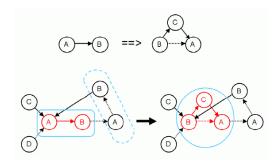



Katarína Smoleňová Uni Göttingen





Graph structure - example



Uni Göttingen

Graph rewriting - example

Complete RGG rule

```
(* context *), left-hand side, (condition)
                 ==>
  right-hand side {imperative code}
```


Outline

What is GroIMP?

Growth-grammar related Interactive Modelling Platform Relational Growth Grammars

eXtended L-system language

Simple examples

XL features

Applications

FSPM

Visualizations

Artificial life

Games

- eXtended L-systems language
- Implementation of RGG formalism
- Based on Java (object-oriented)

- eXtended L-systems language
- Implementation of RGG formalism
- Based on Java (object-oriented)
- Rule-based and Java code can be freely mixed and nested
 - ► [] rule block
 - { } code block (in Java)
- Different types of rules
 - ==> L-system rule
 - ==>> general graph rewriting rule
 - ::> application rule (only parameters are changed)

- eXtended L-systems language
- Implementation of RGG formalism
- Based on Java (object-oriented)
- Rule-based and Java code can be freely mixed and nested
 - [] rule block
 - { } code block (in Java)
- Different types of rules
 - ==> L-system rule
 - ==>> general graph rewriting rule
 - ::> application rule (only parameters are changed)

Outline

What is GroIMP?

Growth-grammar related Interactive Modelling Platforn Relational Growth Grammars eXtended L-system language

Simple examples

XL features

Applications

FSPM

Visualizations

Artificial life

Games

Simple examples presenting features of XL

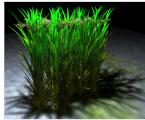
- L-system rules (==>)
 - Bracketed, parametric, context-sensitive, stochastic L-systems
- ▶ Other rules (==>>, ::>)
- Combination of Java (imperative, object-oriented) and rule-based programming
- Edge types
- Queries, aggregation operators
- Rate assingment operator (to solve ODE's)
- Instantiation

Outline

Applications •00000

XL features

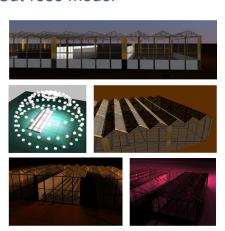
Applications


FSPM

Barley, rice model

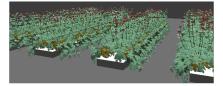
Applications 000000

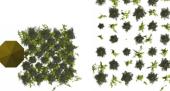
Poplar, rapeseed, arabidopsis, tomato model



Applications 000000

Buck-Sorlin et al.)


Cut-rose model


Applications 00000 00000000 00

Tree competition (beech, spruce)

Applications 000000

(Hemmerling et al.)

FSPM

Tree competition (beech, spruce)

Outline

Applications 000000

XL features

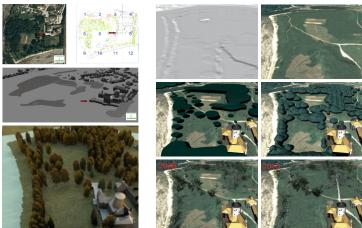
Applications

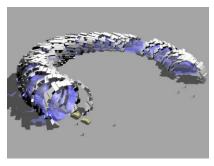
Visualizations

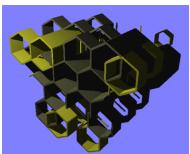
Applications 000000 0**000000000**

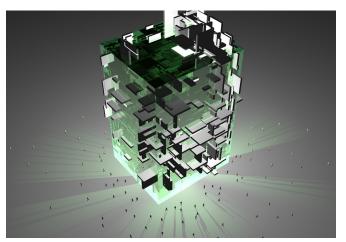
Virtual scenes

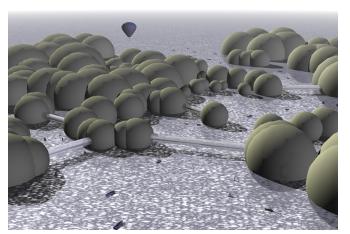
Reconstruction of trees (Branitzer park, Cottbus, Germany)


Reconstruction of trees (Branitzer park, Cottbus, Germany)




Reconstruction of parks (Budatín park, Žilina, Slovakia)


Architecture


Architecture

Applications 00000 00000•000 00

Architecture

Visualizations

Architecture

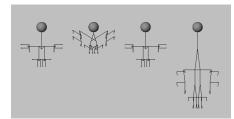
(Jarchow)

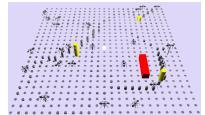
Visualizations

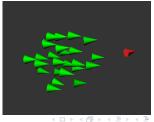
Text visualization (Yesterday, Beatles)

Outline

Applications


XL features


Applications


Artificial life

Biomorphs, artificial ants, boids

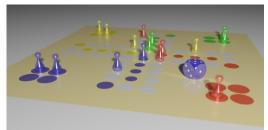
Applications

00

Outline

Applications

•0


XL features

Applications

Games

Ludo, snooker

Applications

00

- Extension of GroIMP/XL for component-based modelling
- Implementation of GreenLab, LIGNUM model using rule-based approach
- 2D graph layouts, point cloud processing (Octave Etard)
- Interface between forest growth simulator SIBYLA and GroIMP
- And more ...

More information:

http://www.grogra.de http://sourceforge.net/projects/groimp

Kniemeyer, O. 2008. Design and implementation of a graph grammar based language for functional-structural plant modelling

http://opus.kobv.de/btu/volltexte/2009/593/

Thank you for your attention.

More information:

http://www.grogra.de http://sourceforge.net/projects/groimp

Kniemeyer, O. 2008. Design and implementation of a graph grammar based language for functional-structural plant modelling

http://opus.kobv.de/btu/volltexte/2009/593/

