Survey of Geometric Methods for Modeling of Virtual Vegetation

Katarína Smoleňová

Fakulta matematiky, fyziky a informatiky UK
smolenova@sccg.sk

Motivation

- Geometric methods for tree modeling
- Realistic representation of trunks and branches
- Difficulty to define exact representation of branch junctions
- Reconstruction of trees in virtual city, parks

Content

- Botanical representation
- Geometric representation
- Detailed
- Geometry of branches
- Global
- Multiscale
- Approaches to plant modeling
- Conclusion

Botanical Representation

- Tree - trunk, crown (branches, leaves)
- Global characteristics
- Acrotonic branching pattern (trees)
- Basitonic branching pattern (shrubs)
- Mesotonic branching pattern
- Local characteristics
- Monopodial branching type
- Sympodial branching type

24. - 26. 10. 2007

Architectural Models

- 23 (24) tree architecture models (Hallé, Oldeman \& Tomlinson, 1978)

Holtun

McClure

Stone

Corner

Koriba

Rauh

Tomlinson

Prévost

Attims Attims Mangenot
SCG' 07 Kočovce

Chamberlain

Petit

Champagnat
Champagnat Troll

Geometric Representation

Detailed Representation

- Modular structure of plants
- Spatial decomposition
- Organ-based decomposition
- Geometrical decomposition
- Topological decomposition

Geometry of Branches

- 3D cylinders
- Cone-sphere

- Generalized cylinders
- Implicit surfaces
- Subdivision surfaces

3D Cylinders

- Branch segments as cylinders with different diameter and height
- Rules of generating model
- Gaps or discontinuities between elements

Cone-Sphere

- Consists of two spheres, together with the part of the cylinder or cone tangent to the two spheres and lying between them
- Discontinuities at the inner side of the elbow
- Blending method; helps for individual limbs, not for branching points

Generalized Cylinders

- Trees - 3D points and their connections
- Limbs - generalized cylinders represented as space curves that interpolate the points (axes) and cross sectional contours perpendicular to the curve
- Trunks - non-circular cross sections
- Surface - created by connecting circular disks

Implicit Surfaces

- Used for modeling smoothly blending branching structures
- Non-smooth features as branch bark ridges, bud scale scars
- Process all branching structures regardless of their complexity
- Computationally expensive

Subdivision Surfaces

- Smooth surfaces
- Mesh build by recursively refining an initial coarse surface
- Rule based mesh growing system as an extension of parametric L-systems where each parametrized symbol represent the face of the mesh
- Multi-resolution technique
- Difficult to create initial subdivision mesh

Global Representation

- Lowest level of complexity
- Trees considered as a whole, represented with a single or few primitives
- Adapted for distant views

Multiscale Representation

- Representation with adaptive complexities, LOD
- Multiscale hierarchy based on structure or spatial representation of trees

Approaches to Plant Modeling

- Rule-based
- L-systems (Kurth, 1994, Prusinkiewicz et al., 1990)
- Geometric rules (Weber et al., 1995)
- Botanical rules (De Reffye et al., 1988)

Approaches to Plant Modeling

- Image-based
- Visual hull (Sakaguchi et al., 1999, Shlyakhter et al., 2001)
- Volumetric approach (Reche et al., 2004)
- Photogrammetry (Tan et al., 2007, Quan et al., 2006)

Conclusion

- Several geometric methods for modeling of branching structures of trees
- Continuous model from a discrete set of geometric primitives
- Realistic representation of trunk and branches
- Representation of branch junctions

Acknowledgement

- AV 4/0023/05 Považské múzeum 3D on-line
- EUROSENSE s.r.o.- aerial photography, orthophoto, 3D model of Budatín
- Považské múzeum Žilina - situation map of Budatín
- Andrej Ferko

Faculty of Mathematics, Physics and Informatics CU, Bratislava

- Danica Černušáková

Faculty of Natural Sciences CU, Bratislava

- Marek Fabrika

Faculty of Forestry TU, Zvolen

Thank you for your attention.

www.sccg.sk/~smolenova smolenova@sccg.sk

