

Survey of Geometric Methods for Modeling of Virtual Vegetation

Katarína Smoleňová

Fakulta matematiky, fyziky a informatiky UK smolenova@sccg.sk

SCG' 07

Motivation

- Geometric methods for tree modeling
- Realistic representation of trunks and branches
- Difficulty to define exact representation of branch junctions
- Reconstruction of trees in virtual city, parks

Content

- Botanical representation
- Geometric representation
 - Detailed
 - Geometry of branches
 - Global
 - Multiscale
- Approaches to plant modeling
- Conclusion

Botanical Representation

- Tree trunk, crown (branches, leaves)
- Global characteristics
 - Acrotonic branching pattern (trees)
 - Basitonic branching pattern (shrubs)
 - Mesotonic branching pattern
- Local characteristics
 - Monopodial branching type
 - Sympodial branching type

SCG' 07 Kočovce

Architectural Models

23 (24) tree architecture models (Hallé, Oldeman & Tomlinson, 1978)

24. - 26. 10. 2007

Geometric Representation

Detailed Representation

Geometric Representation Detailed Representation

Geometry of Branches

- 3D cylinders
- Cone-sphere

- Generalized cylinders
- Implicit surfaces
- Subdivision surfaces

Branch segments as cylinders with different diameter and height

3D Cylinders

- Rules of generating model
- Gaps or discontinuities between elements

9

D1

Height

H_o

KNOT

TRUNK

TOP BASE

Cone-Sphere

- Consists of two spheres, together with the part of the cylinder or cone tangent to the two spheres and lying between them
- Discontinuities at the inner side of the elbow
- Blending method; helps for individual limbs, not for branching points

Generalized Cylinders

- Trees 3D points and their connections
- Limbs generalized cylinders represented as space curves that interpolate the points (axes) and cross sectional contours perpendicular to the curve
- Trunks non-circular cross sections
- Surface created by connecting circular disks

Used for modeling smoothly blending branching structures Non-smooth features as branch bark ridges, bud scale scars

Implicit Surfaces

- Process all branching structures regardless of their complexity
- Computationally expensive

Subdivision Surfaces

- Smooth surfaces
- Mesh build by recursively refining an initial coarse surface
- Rule based mesh growing system as an extension of parametric L-systems where each parametrized symbol represent the face of the mesh
- Multi-resolution technique
- Difficult to create initial subdivision mesh

Global Representation

- Lowest level of complexity
- Trees considered as a whole, represented with a single or few primitives
- Adapted for distant views

Multiscale Representation

- Representation with adaptive complexities, LOD
- Multiscale hierarchy based on structure or spatial representation of trees

Approaches to Plant Modeling

- Rule-based
 - L-systems (Kurth, 1994, Prusinkiewicz et al., 1990)
 - Geometric rules (Weber et al., 1995)
 - Botanical rules (De Reffye et al., 1988)

Approaches to Plant Modeling

- Image-based
 - Visual hull (Sakaguchi et al., 1999, Shlyakhter et al., 2001)
 - Volumetric approach (Reche et al., 2004)
 - Photogrammetry (Tan et al., 2007, Quan et al., 2006)

24. - 26. 10. 2007

SCG' 07 Kočovce

Conclusion

- Several geometric methods for modeling of branching structures of trees
- Continuous model from a discrete set of geometric primitives
- Realistic representation of trunk and branches
- Representation of branch junctions

Acknowledgement

- AV 4/0023/05 Považské múzeum 3D on-line
- EUROSENSE s.r.o. aerial photography, orthophoto, 3D model of Budatín
- Považské múzeum Žilina situation map of Budatín
- Andrej Ferko
 Faculty of Mathematics, Physics and Informatics CU, Bratislava
- Danica Černušáková
 Faculty of Natural Sciences CU, Bratislava
- Marek Fabrika Faculty of Forestry TU, Zvolen

Thank you for your attention.

www.sccg.sk/~smolenova smolenova@sccg.sk